首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We create mock pencil-beam redshift surveys from very large cosmological N -body simulations of two cold dark matter (CDM) cosmogonies, an Einstein–de Sitter model ( τ CDM) and a flat model with Ω0=0.3 and a cosmological constant (ΛCDM). We use these to assess the significance of the apparent periodicity discovered by Broadhurst et al. Simulation particles are tagged as 'galaxies' so as to reproduce observed present-day correlations. They are then identified along the past light-cones of hypothetical observers to create mock catalogues with the geometry and the distance distribution of the Broadhurst et al. data. We produce 1936 (2625) quasi-independent catalogues from our τ CDM (ΛCDM) simulation. A couple of large clumps in a catalogue can produce a high peak at low wavenumbers in the corresponding one-dimensional power spectrum, without any apparent large-scale periodicity in the original redshift histogram. Although the simulated redshift histograms frequently display regularly spaced clumps, the spacing of these clumps varies between catalogues and there is no 'preferred' period over our many realizations. We find only a 0.72 (0.49) per cent chance that the highest peak in the power spectrum of a τ CDM (ΛCDM) catalogue has a peak-to-noise ratio higher than that in the Broadhurst et al. data. None of the simulated catalogues with such high peaks shows coherently spaced clumps with a significance as high as that of the real data. We conclude that in CDM universes, the regularity on a scale of ∼130  h −1 Mpc observed by Broadhurst et al. has a priori probability well below 10−3.  相似文献   

2.
Dynamical dark energy (DE) is a viable alternative to the cosmological constant. Constructing tests to discriminate between Λ and dynamical DE models is difficult, however, because the differences are not large. In this paper we explore tests based on the galaxy mass function, the void probability function (VPF), and the number of galaxy clusters. At high z , the number density of clusters shows large differences between DE models, but geometrical factors reduce the differences substantially. We find that detecting a model dependence in the cluster redshift distribution is a significant challenge. We show that the galaxy redshift distribution is potentially a more sensitive characteristic. We do this by populating dark matter haloes in N -body simulations with galaxies using well-tested halo occupation distributions. We also estimate the VPF and find that samples with the same angular surface density of galaxies, in different models, exhibition almost model-independent VPF which therefore cannot be used as a test for DE. Once again, geometry and cosmic evolution compensate each other. By comparing VPFs for samples with fixed galaxy mass limits, we find measurable differences.  相似文献   

3.
We use a high-resolution ΛCDM numerical simulation to calculate the mass function of dark matter haloes down to the scale of dwarf galaxies, back to a redshift of 15, in a  50 h −1 Mpc  volume containing 80 million particles. Our low-redshift results allow us to probe low-σ density fluctuations significantly beyond the range of previous cosmological simulations. The Sheth & Tormen mass function provides an excellent match to all of our data except for redshifts of 10 and higher, where it overpredicts halo numbers increasingly with redshift, reaching roughly 50 per cent for the  1010–1011 M  haloes sampled at redshift 15. Our results confirm previous findings that the simulated halo mass function can be described solely by the variance of the mass distribution, and thus has no explicit redshift dependence. We provide an empirical fit to our data that corrects for the overprediction of extremely rare objects by the Sheth & Tormen mass function. This overprediction has implications for studies that use the number densities of similarly rare objects as cosmological probes. For example, the number density of high-redshift  ( z ≃ 6) QSOs  , which are thought to be hosted by haloes at 5σ peaks in the fluctuation field, are likely to be overpredicted by at least a factor of 50 per cent. We test the sensitivity of our results to force accuracy, starting redshift and halo-finding algorithm.  相似文献   

4.
We measure the matter power spectrum from 31 Lyα spectra spanning the redshift range of 1.6–3.6. The optical depth, τ, for Lyα absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by using a simple power-law relation,  τ∝ (1 +δ)α  . The non-linear 1D power spectrum of the gas density is then inferred with a method that makes simultaneous use of the one- and two-point statistics of the flux and compared against theoretical models with a likelihood analysis. A cold dark matter model with standard cosmological parameters fits the data well. The power-spectrum amplitude is measured to be (assuming a flat Universe),  σ8= (0.92 ± 0.09) × (Ωm/0.3)−0.3  , with α varying in the range of 1.56–1.8 with redshift. Enforcing the same cosmological parameters in all four redshift bins, the likelihood analysis suggests some evolution in the temperature–density relation and the thermal smoothing length of the gas. The inferred evolution is consistent with that expected if reionization of He  ii occurred at   z ∼ 3.2  . A joint analysis with the Wilkinson Microwave Anisotropy Probe results together with a prior on the Hubble constant as suggested by the Hubble Space Telescope key project data, yields values of Ωm and σ8 that are consistent with the cosmological concordance model. We also perform a further inversion to obtain the linear 3D power spectrum of the matter density fluctuations.  相似文献   

5.
Hydrodynamical simulations of galaxy formation in spatially flat cold dark matter (CDM) cosmologies with and without a cosmological constant (Λ) are described. A simple star formation algorithm is employed and radiative cooling is allowed only after redshift z =1 so that enough hot gas is available to form large, rapidly rotating stellar discs if angular momentum is approximately conserved during collapse. The specific angular momenta of the final galaxies are found to be sensitive to the assumed background cosmology. This dependence arises from the different angular momenta contained in the haloes at the epoch when the gas begins to collapse and the inhomogeneity of the subsequent halo evolution. In the Λ-dominated cosmology, the ratio of stellar specific angular momentum to that of the dark matter halo (measured at the virial radius) has a median value of ∼0.24 at z =0. The corresponding quantity for the Λ=0 cosmology is over three times lower. It is concluded that the observed frequency and angular momenta of disc galaxies pose significant problems for spatially flat CDM models with Λ=0 but may be consistent with a Λ-dominated CDM universe.  相似文献   

6.
The angular cross-correlation between two galaxy samples separated in redshift is shown to be a useful measure of weak lensing by large-scale structure. Angular correlations in faint galaxies arise as a result of spatial clustering of the galaxies as well as gravitational lensing by dark matter along the line of sight. The lensing contribution to the two-point autocorrelation function is typically small compared with the gravitational clustering. However, the cross-correlation between two galaxy samples is almost unaffected by gravitational clustering provided that their redshift distributions do not overlap. The cross-correlation is then induced by magnification bias resulting from lensing by large-scale structure. We compute the expected amplitude of the cross-correlation for popular theoretical models of structure formation. For two populations with mean redshifts of ≃0.3 and 1, we find a cross-correlation signal of ≃1 per cent on arcmin scales and ≃3 per cent on scales of a few arcsec. The dependence on the cosmological parameters Ω and Λ, the dark matter power spectrum and the bias factor of the foreground galaxy population is explored.  相似文献   

7.
赵飞  罗煜  韦成亮 《天文学报》2019,60(4):87-102
为了研究空洞的演化以及暗物质空洞和星系空洞的差别,使用一组高精度的N体模拟数据以及基于此给出的半解析模拟星系数据,在红移2.03到红移0之间取了6个红移的数据,并使用VIDE (Void Identification and Examination toolkit)算法来找空洞,对星系空洞和暗物质空洞的统计性质比如丰度、数目、大小、形状、叠加密度轮廓等演化的比较的结果表明,随着红移的减小,空洞的数目逐渐减少、内部密度逐渐变小、体积逐渐增大、空洞的形状越来越扁.暗物质空洞和星系空洞的数目、平均大小、平均椭率的比值与红移呈线性关系.此外,不论是暗物质空洞还是星系空洞,小的空洞密度比在分布上比大空洞的低,更容易贯通并合,演化效应更明显.另外由于星系总是形成于暗物质密度场的高密度区域,使其不容易示踪暗物质空洞的一些薄弱的墙结构,导致星系空洞提前贯通.而对于已经形成的星系空洞而言,即便是其墙上最薄弱的地方也往往堆积着显著的暗物质,使得星系的位置保持稳定,甚至形成新的星系,从而抑制星系空洞的贯通.整体上暗物质空洞的演化要比星系空洞的演化更加明显.  相似文献   

8.
We present results from the first high-resolution hydrodynamical simulations of non-Gaussian cosmological models. We focus on the statistical properties of the transmitted Lyman-α flux in the high-redshift intergalactic medium. Imprints of non-Gaussianity are present and are larger at high redshifts. Differences larger than 20 per cent at   z > 3  in the flux probability distribution function for high-transmissivity regions (voids) are expected for values of the non-linearity parameter   f NL=±100  when compared to a standard Λ cold dark matter cosmology with   f NL= 0  . We also investigate the one-dimensional flux bispectrum: at the largest scales (corresponding to tens of Mpc), we expect deviations in the flux bispectrum up to 20 per cent at   z ∼ 4  (for   f NL=±100  ), significantly larger than deviations of ∼3 per cent in the flux power spectrum. We briefly discuss possible systematic errors that can contaminate the signal. Although challenging, a detection of non-Gaussianities in the interesting regime of scales and redshifts probed by the Lyman-α forest could be possible with future data sets.  相似文献   

9.
We present predictions for the abundance and nature of extremely red objects (EROs) in the Λ cold dark matter model. EROs are red, massive galaxies observed at   z ≥ 1  and their numbers and properties pose a challenge to hierarchical galaxy formation models. We compare the predictions from two published models, one of which invokes a 'superwind' to regulate star formation in massive haloes and the other which suppresses gas cooling in haloes through 'radio-mode' active galactic nucleus (AGN) feedback. The superwind model underestimates the number counts of EROs by an order of magnitude, whereas the radio-mode AGN feedback model gives excellent agreement with the number counts and redshift distribution of EROs. In the AGN feedback model the ERO population is dominated by old, passively evolving galaxies, whereas observations favour an equal split between old galaxies and dusty starbursts. Also, the model predicts a more extended redshift distribution of passive galaxies than is observed. These comparisons suggest that star formation may be quenched too efficiently in this model.  相似文献   

10.
We analyse the redshift space topology and geometry of the nearby Universe by computing the Minkowski functionals of the Updated Zwicky Catalogue (UZC). The UZC contains the redshifts of almost 20 000 galaxies, is 96 per cent complete to the limiting magnitude m Zw=15.5, and includes the Center for Astrophysics (CfA) Redshift Survey (CfA2). From the UZC we can extract volume-limited samples reaching a depth of 70  h −1 Mpc before sparse sampling dominates. We quantify the shape of the large-scale galaxy distribution by deriving measures of planarity and filamentarity from the Minkowski functionals. The nearby Universe shows a large degree of planarity and a small degree of filamentarity. This quantifies the sheet-like structure of the Great Wall, which dominates the northern region (CfA2N) of the UZC. We compare these results with redshift space mock catalogues constructed from high-resolution N -body simulations of two cold dark matter (CDM) models with either a decaying massive neutrino ( τ CDM) or a non-zero cosmological constant (ΛCDM). We use semi-analytic modelling to form and evolve galaxies in these dark matter‐only simulations. We are thus able, for the first time, to compile redshift space mock catalogues which contain galaxies, along with their observable properties, rather than dark matter particles alone. In both models the large-scale galaxy distribution is less coherent than the observed distribution, especially with regard to the large degree of planarity of the real survey. However, given the small volume of the region studied, this disagreement can still be a result of cosmic variance, as shown by the agreement between the ΛCDM model and the southern region of CfA2.  相似文献   

11.
We present detailed predictions for the properties of Lyα-emitting galaxies in the framework of the Λ cold dark matter cosmology, calculated using the semi-analytical galaxy formation model galform . We explore a model that assumes a top-heavy initial mass function in starbursts and that has previously been shown to explain the sub-millimetre number counts and the luminosity function of Lyman-break galaxies at high redshift. We show that this model, with the simple assumption that a fixed fraction of Lyα photons escape from each galaxy, is remarkably successful at explaining the observed luminosity function of Lyα emitters (LAEs) over the redshift range  3 < z < 6.6  . We also examine the distribution of Lyα equivalent widths and the broad-band continuum magnitudes of emitters, which are in good agreement with the available observations. We look more deeply into the nature of LAEs, presenting predictions for fundamental properties such as the stellar mass and radius of the emitting galaxy and the mass of the host dark matter halo. The model predicts that the clustering of LAEs at high redshifts should be strongly biased relative to the dark matter, in agreement with observational estimates. We also present predictions for the luminosity function of LAEs at   z > 7  , a redshift range that is starting to be be probed by near-infrared surveys and using new instruments such as the Dark Ages Z Lyman Explorer (DAzLE).  相似文献   

12.
The luminosity function of galaxies is derived from a cosmological hydrodynamic simulation of a Λ cold dark matter universe with the aid of a stellar population synthesis model. At     , the resulting B -band luminosity function has a flat faint-end slope of     with the characteristic luminosity and the normalization in fair agreement with observations, while the dark matter halo mass function is steep with a slope of     . The colour distribution of galaxies also agrees well with local observations. We also discuss the evolution of the luminosity function, and the colour distribution of galaxies from     to 5. A large evolution of the characteristic mass in the stellar mass function as a result of number evolution is compensated by luminosity evolution; the characteristic luminosity increases only by 0.8 mag from     to 2, and then declines towards higher redshift, while the B -band luminosity density continues to increase from     to 5 (but only slowly at     .  相似文献   

13.
We investigate the shapes and mutual alignment of voids in the large-scale matter distribution of a Λ cold dark matter (ΛCDM) cosmology simulation. The voids are identified using the novel watershed void finder (WVF) technique. The identified voids are quite non-spherical and slightly prolate, with axis ratios in the order of   c  :  b  :  a ≈ 0.5 : 0.7 : 1  . Their orientations are strongly correlated with significant alignments spanning scales  >30  h −1 Mpc  .
We also find an intimate link between the cosmic tidal field and the void orientations. Over a very wide range of scales we find a coherent and strong alignment of the voids with the tidal field computed from the smoothed density distribution. This orientation–tide alignment remains significant on scales exceeding twice the typical void size, which shows that the long-range external field is responsible for the alignment of the voids. This confirms the view that the large-scale tidal force field is the main agent for the large-scale spatial organization of the cosmic web.  相似文献   

14.
We use very large cosmological N -body simulations to obtain accurate predictions for the two-point correlations and power spectra of mass-limited samples of galaxy clusters. We consider two currently popular cold dark matter (CDM) cosmogonies, a critical density model ( τ CDM) and a flat low density model with a cosmological constant (ΛCDM). Our simulations each use 109 particles to follow the mass distribution within cubes of side 2  h −1 Gpc ( τ CDM) and 3  h −1 Gpc (ΛCDM) with a force resolution better than 10−4 of the cube side. We investigate how the predicted cluster correlations increase for samples of increasing mass and decreasing abundance. Very similar behaviour is found in the two cases. The correlation length increases from     for samples with mean separation     to     for samples with     The lower value here corresponds to τ CDM and the upper to ΛCDM. The power spectra of these cluster samples are accurately parallel to those of the mass over more than a decade in scale. Both correlation lengths and power spectrum biases can be predicted to better than 10 per cent using the simple model of Sheth, Mo & Tormen. This prediction requires only the linear mass power spectrum and has no adjustable parameters. We compare our predictions with published results for the automated plate measurement (APM) cluster sample. The observed variation of correlation length with richness agrees well with the models, particularly for ΛCDM. The observed power spectrum (for a cluster sample of mean separation     ) lies significantly above the predictions of both models.  相似文献   

15.
Weak lensing surveys are expected to provide direct measurements of the statistics of the projected dark matter distribution. Most analytical studies of weak lensing statistics have been limited to quasi-linear scales as they relied on perturbative calculations. On the other hand, observational surveys are likely to probe angular scales less than 10 arcmin, for which the relevant physical length-scales are in the non-linear regime of gravitational clustering. We use the hierarchical ansatz to compute the multipoint statistics of the weak lensing convergence for these small smoothing angles. We predict the multipoint cumulants and cumulant correlators up to fourth order and compare our results with high-resolution ray-tracing simulations. Averaging over a large number of simulation realizations for four different cosmological models, we find close agreement with the analytical calculations. In combination with our work on the probability distribution function, these results provide accurate analytical models for the full range of weak lensing statistics. The models allow for a detailed exploration of cosmological parameter space and of the dependence on angular scale and the redshift distribution of source galaxies. We compute the dependence of the higher moments of the convergence on the parameters Ω and Λ.  相似文献   

16.
The low-redshift evolution of the intergalactic medium is investigated using hydrodynamic cosmological simulations. The assumed cosmological model is a critical density cold dark matter universe. The imposed uniform background of ionizing radiation has the amplitude, shape and redshift evolution as computed from the observed quasar luminosity function by Haardt &38; Madau. We have analysed simulated Lyman-α spectra using Voigt-profile fitting, mimicking the procedure with which quasar spectra are analysed. Our simulations reproduce the observed evolution of the number of Lyman-α absorption lines over the whole observed interval of z  = 0.5 to 4. In particular, our simulations show that the decrease in the rate of evolution of Lyman-α absorption lines at z  ≤ 2, as observed by the Hubble Space Telescope , can be explained by the steep decline in the photoionizing background resulting from the rapid decline in quasar numbers at low redshift.  相似文献   

17.
We examine the status of various dark energy models in light of the recently observed SN 1997ff at   z ≈1.7  . The modified data still fit a pure cosmological constant Λ or a quintessence with an equation of state similar to that of Λ. The kinematical Λ models,  Λ∼ S -2  and  Λ∼ H 2  , also fit the data reasonably well and require less dark energy density (hence more matter energy density) than is required by the constant Λ model. However, the model  Λ∼ S -2  with low energy density becomes unphysical as it cannot accommodate higher redshift objects.
We also examine an alternative explanation of the data, namely the absorption by the intervening whisker-like dust, and find that the quasi-steady state (QSS) model and the Friedmann–Robertson–Walker (FRW) model  Ωm0=0.33  without any dark energy also fit the data reasonably well.
We notice that the addition of SN 1997ff to the old data has worsened the fit to most of the models, except a closed FRW model with a constant Λ and a closed quintessence model with   ω φ =-0.82  , and the models have started departing from each other as we go above   z =1  . However, to make a clear discrimination possible, a few more supernovae with   z >1  are required.
We have also calculated the age of the Universe in these models and find that, in the models with a constant Λ, the expansion age is uncomfortably close to the age of the globular clusters. Quintessence models show even lower age. The kinematical Λ models are, however, interesting in this connection (especially the model  Λ∼ H 2)  , as they give a remarkably large age of the Universe.  相似文献   

18.
We use cosmological Λ cold dark matter (CDM) numerical simulations to model the evolution of the substructure population in 16 dark matter haloes with resolutions of up to seven million particles within the virial radius. The combined substructure circular velocity distribution function (VDF) for hosts of 1011 to  1014 M  at redshifts from zero to two or higher has a self-similar shape, is independent of host halo mass and redshift, and follows the relation  d n /d v = (1/8)( v cmax/ v cmax,host)−4  . Halo to halo variance in the VDF is a factor of roughly 2 to 4. At high redshifts, we find preliminary evidence for fewer large substructure haloes (subhaloes). Specific angular momenta are significantly lower for subhaloes nearer the host halo centre where tidal stripping is more effective. The radial distribution of subhaloes is marginally consistent with the mass profile for   r ≳ 0.3 r vir  , where the possibility of artificial numerical disruption of subhaloes can be most reliably excluded by our convergence study, although a subhalo distribution that is shallower than the mass profile is favoured. Subhalo masses but not circular velocities decrease towards the host centre. Subhalo velocity dispersions hint at a positive velocity bias at small radii. There is a weak bias towards more circular orbits at lower redshift, especially at small radii. We additionally model a cluster in several power-law cosmologies of   P ∝ kn   , and demonstrate that a steeper spectral index, n , results in significantly less substructure.  相似文献   

19.
We study the motion of dust grains into the intergalactic medium (IGM) around redshift   z = 3  , to test the hypothesis that grains can efficiently pollute the gas with metals through sputtering. We use the results available in the literature for radiation-driven dust ejection from galaxies as initial conditions and follow the motion onwards. Via this mechanism, grains are ejected into the IGM with velocities  >100 km s−1  ; as they move supersonically, grains can be efficiently eroded by non-thermal sputtering. However, Coulomb and collisional drag forces effectively reduce the charged grain velocity. Up-to-date sputtering yields for graphite and silicate (olivine) grains have been derived using the code transport of ions in matter ( trim ), for which we provide analytic fits. After training our method on a homogeneous density case, we analyse the grain motion and sputtering in the IGM density field as derived from a Λ cold dark matter (CDM) cosmological simulation at   z = 3.27  . We found that only large  ( a ≳ 0.1μm)  grains can travel up to considerable distances (few  ×100 kpc  physical) before being stopped. Resulting metallicities show a well-defined trend with overdensity δ. The maximum metallicities are reached for  10 < δ < 100  [corresponding to systems, in quasi-stellar object (QSO) absorption spectra, with  14.5 < log N (H  i ) < 16  ]. However the distribution of sputtered metals is very inhomogeneous, with only a small fraction of the IGM volume polluted by dust sputtering (filling factors of 18 per cent for Si and 6 per cent for C). For the adopted size distribution, grains are never completely destroyed; nevertheless, the extinction and gas photoelectric heating effects resulting from this population of intergalactic grains are well below current detection limits.  相似文献   

20.
We propose a non-parametric method of smoothing supernova data over redshift using a Gaussian kernel in order to reconstruct important cosmological quantities including   H ( z )  and   w ( z )  in a model-independent manner. This method is shown to be successful in discriminating between different models of dark energy when the quality of data is commensurate with that expected from the future Supernova Acceleration Probe ( SNAP ). We find that the Hubble parameter is especially well determined and useful for this purpose. The look-back time of the Universe may also be determined to a very high degree of accuracy (≲0.2 per cent) using this method. By refining the method, it is also possible to obtain reasonable bounds on the equation of state of dark energy. We explore a new diagnostic of dark energy – the ' w -probe'– which can be calculated from the first derivative of the data. We find that this diagnostic is reconstructed extremely accurately for different reconstruction methods even if Ω0 m is marginalized over. The w -probe can be used to successfully distinguish between Λ cold dark matter and other models of dark energy to a high degree of accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号