首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The detection of high‐energy astro‐physical neutrinos of extraterrestrial origin by the IceCube neutrino observatory in Antarctica has opened a unique window to the cosmos that may help to probe both the distant Universe and our cosmic backyard. The arrival directions of these high‐energy events have been interpreted as uniformly distributed on the celestial sphere. Here, we revisit the topic of the putative isotropic angular distribution of these events applying Monte Carlo techniques to investigate a possible anisotropy. A modest evidence for anisotropy is found. An excess of events appears projected towards a section of the Local Void, where the density of galaxies with radial velocities below 3000 km s–1 is rather low, suggesting that this particular group of somewhat clustered sources are located either very close to the Milky Way or perhaps beyond 40 Mpc. The results of further analyses of the subsample of southern hemisphere events favour an origin at cosmological distances with the arrival directions of the events organized in a fractal‐like structure. Although a small fraction of closer sources is possible, remote hierarchical structures appear to be the main source of these very energetic neutrinos. Some of the events may have their origin at the IBEX ribbon. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The measurement of large scale anisotropies in cosmic ray arrival directions is generally performed through harmonic analyses of the right ascension distribution as a function of energy. These measurements are challenging due to the small expected anisotropies and meanwhile the relatively large modulations of observed counting rates due to experimental effects. In this paper, we present a procedure based on the shuffling technique to carry out these measurements, applicable to any cosmic ray detector without any additional corrections for the observed counting rates.  相似文献   

3.
Anisotropy in the arrival directions of cosmic rays with energies above 1017 eV is studied using data from the Akeno 20 km2 array and the Akeno Giant Air Shower Array (AGASA), using a total of about 114 000 showers observed over 11 years. In the first harmonic analysis, we have found a strong anisotropy of 4% around 1018 eV, corresponding to a chance probability of 0.2% after taking the number of independent trials into account. with two-dimensional analysis in right ascension and declination, this anisotropy is interpreted as an excess of showers near the directions of the Galactic Center and the Cygnus region.  相似文献   

4.
The existence of the cosmic ray Halo in our Galaxy has been discussed for more than half a century. If it is real it could help to explain some puzzling features of the cosmic ray flux: its small radial gradient, nearly perfect isotropy and the low level of the fine structure in the energy spectra of the various particles. All these features could be understood if: (a) the Halo has a big size (b) cosmic rays in the Halo have a uniform spatial or radial distribution and (c) the cosmic ray density in the Halo is comparable or even higher than that in the Galactic Disk. The main topic of the paper concerns the present status of the anisotropy and a model for its formation. In our model the extremely small amplitude of the dipole anisotropy is due to the dilution of the anisotropy in the Disk by the dominating isotropic cosmic rays from the Halo. Some minor deviations from complete isotropy in the sub-PeV and PeV energy regions point out to the possible contribution of the Single Source with the phase of its first harmonic opposite to the phase produced by the Disk.  相似文献   

5.
A method of reconstructing the declination of galactic cosmic ray anisotropy is described, and its results are presented. The method is based on analysis of delay distributions in symmetrically arranged detectors of an air shower array, and it represents a modification of the crossed telescopes method. It is shown that the declination of the true anisotropy vector is close to 60° (i.e., this vector lies approximately within the galactic plane). Because of this, the true degree of anisotropy of galactic cosmic rays is severalfold higher than the first harmonic of intensity in the sidereal time (the quantity measured directly), and it equals about 0.2%.  相似文献   

6.
The propagation of solar cosmic rays in interplanetary space is considered based on the kinetic equation. The expression for cosmic ray density under instantaneous particle injection by a point-like source is obtained. The set of a differential equation system for harmonics of cosmic ray distribution function is obtained starting from the kinetic equation. The cosmic ray transport equation, taking into account the presence of the second harmonic of particle angular distribution, is derived and the solution of this equation is obtained.  相似文献   

7.
We studied the cosmic ray intensity variation due to interplanetary magnetic clouds during an unusual class of low amplitude anisotropic wave train events. The low amplitude anisotropic wave train events in cosmic ray intensity have been identified using the data of ground based Deep River neutron monitor and studied during the period 1981–1994. Even though the occurrence of low amplitude anisotropic wave trains does not depend on the onset of interplanetary magnetic clouds, but the possibility of occurrence of these events cannot be overlooked during the periods of the interplanetary magnetic cloud events. It is observed that the solar wind velocity remains higher (> 300) than normal and the interplanetary magnetic field B remains lower than normal on the onset of the interplanetary magnetic cloud during the passage of low amplitude wave trains. It is also noted that the proton density remains significantly low during high solar wind velocity, which is expected. The north south component of interplanetary magnetic field Bz turns southward to one day before the arrival of cloud and remains in the southward direction after the arrival of a cloud. During these events the cosmic ray intensity is found to increase with increase of solar wind velocity. The superposed epoch analysis of cosmic ray intensity for these events during the onset of interplanetary magnetic clouds reveals that the decrease in cosmic ray intensity starts not at the onset of the cloud but after a few days. The cosmic ray intensity increases on arrival of the magnetic cloud and decreases gradually after the passage of the magnetic cloud.  相似文献   

8.
The propagation of galactic cosmic rays in heliospheric magnetic fields is studied. An approximate solution to the cosmic ray transport equation has been derived on the basis of a method that takes into account the small value of anisotropy of particle angular distribution. The spatial and energy distributions of the cosmic ray intensity and anisotropy have been investigated, and estimates of cosmic ray energy flux have been carried out.  相似文献   

9.
The structure of the cosmic microwave background temperature is studied in the context of a Bianchi type-V tilted cosmological model. First integrals of the equations for the null geodesics are found by use of the symmetries of the model, enabling the celestial temperature distribution to be found. The quadrupole and dipole moments are calculated for some models, suggesting that the observed anisotropy in the cosmic microwave background can be understood in the context of a Bianchi type-V model of the Universe. The apparent magnitude-redshift relations are also calculated for these models.  相似文献   

10.
The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of “two-dimensional” anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV–1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.  相似文献   

11.
The expected diurnal waves with different harmonics in cosmic ray intensity arising from the semidiurnal anisotropy, due to the geometrical inclination of the Earth's axis, are calculated for different cosmic ray stations. The sensitivity of these waves to the exponent n of the latitude dependence function cosn λ for the semidiurnal anisotropy is investigated. The amplitudes of the geometrical tridiurnal waves for high latitude stations show a great sensitivity to n and, therefore, it is concluded that its value can be determined precisely from the tridiurnal wave rather than from the semidiurnal waves observed at different latitudes. Available data from high latitude neutron monitors were used to determine n and it was found as 2±0.4, which is of higher accuracy than the previously determined values. The present results are consistent with either the density gradient or loss cone models of the semidiurnal anisotropy. Furthermore, they show that the geometrical tridiurnal waves have a very small amplitude and can be neglected in any analysis concerning tridiurnal variations in cosmic ray intensity.  相似文献   

12.
In this work an analysis of a series of complex cosmic ray events that occurred between 17 January 2005 and 23 January 2005 using solar, interplanetary and ground based cosmic ray data is being performed. The investigated period was characterized both by significant galactic cosmic ray (GCR) and solar cosmic ray (SCR) variations with highlighted cases such as the noticeable series of Forbush effects (FEs) from 17 January 2005 to 20 January 2005, the Forbush decrease (FD) on 21 January 2005 and the ground level enhancement (GLE) of the cosmic ray counter measurements on 20 January 2005. The analysis is focusing on the aforementioned FE cases, with special attention drawn on the 21 January 2005, FD event, which demonstrated several exceptional features testifying its uniqueness. Data from the ACE spacecraft, together with GOES X-ray recordings and LASCO CME coronagraph images were used in conjunction to the ground based recordings of the Worldwide Neutron Monitor Network, the interplanetary data of OMNI database and the geomagnetic activity manifestations denoted by K p and D st indices. More than that, cosmic ray characteristics as density, anisotropy and density gradients were also calculated. The results illustrate the state of the interplanetary space that cosmic rays crossed and their corresponding modulation with respect to the multiple extreme solar events of this period. In addition, the western location of the 21 January 2005 solar source indicates a new cosmic ray feature, which connects the position of the solar source to the cosmic ray anisotropy variations. In the future, this feature could serve as an indicator of the solar source and can prove to be a valuable asset, especially when satellite data are unavailable.  相似文献   

13.
Influence of cosmic ray pressure and kinetic stream instability on space plasma dynamics and magnetic structure are considered. It is shown that in the outer Heliosphere are important dynamics effects of galactic cosmic ray pressure on solar wind and interplanetary shock wave propagation as well as on the formation of terminal shock wave of the Heliosphere and subsonic region between Heliosphere and interstellar medium. Kinetic stream instability effects are important on distances more than 40–60 AU from the Sun: formation of great anisotropy of galactic cosmic rays in about spiral interplanetary magnetic field leads to the Alfven turbulence generation by non isotropic cosmic ray fluxes. Generated Alfven turbulence influences on cosmic ray propagation, increases the cosmic ray modulation, decreases the cosmic ray anisotropy and increases the cosmic ray pressure gradient in the outer Heliosphere (the later is also important for terminal shock wave formation). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The various observed harmonics of the cosmic ray variation may be understood on a unified basis if the free space cosmic ray anisotropy is non-sinusoidal in form. The major objective of this paper is to study the first three harmonics of high amplitude wave trains of cosmic ray intensity over the period 1991–1994 for Deep River Neutron Monitoring Station. The main characteristic of these events is that the high amplitude wave trains shows a maximum intensity of diurnal component in a direction earlier than 1800 Hr/co-rotational direction. It is noticed that these events are not caused either by the high-speed solar wind streams or by the sources on the Sun responsible for producing these streams such as polar coronal holes. The direction of semi-diurnal anisotropy shows negative correlation with Bz. The occurrence of high amplitude events is dominant for the positive polarity of Bz component of IMF. The diurnal amplitude of these events shows a negative and the time of maximum shows a weak correlation with disturbance storm time index Dst. The direction of tri-diurnal anisotropy of these events is found to significantly correlate with geomagnetic activity index Ap.  相似文献   

15.
We discuss the effects of certain dynamic features of space environment in the heliosphere, the geo-magnetosphere, and the earth’s atmosphere. In particular, transient perturbations in solar wind plasma, interplanetary magnetic field, and energetic charged particle (cosmic ray) fluxes near 1 AU in the heliosphere have been discussed. Transient variations in magnetic activity in geo-magnetosphere and solar modulation effects in the heliosphere have also been studied. Emphasis is on certain features of transient perturbations related to space weather effects. Relationships between geomagnetic storms and transient modulations in cosmic ray intensity (Forbush decreases), especially those caused by shock-associated interplanetary disturbances, have been studied in detail. We have analysed the cosmic ray, geomagnetic and interplanetary plasma/field data to understand the physical mechanisms of two phenomena namely, Forbush decrease and geomagnetic storms, and to search for precursors to Forbush decrease (and geomagnetic storms) that can be used as a signature to forecast space weather. It is shown that the use of cosmic ray records has practical application for space weather predictions. Enhanced diurnal anisotropy and intensity deficit of cosmic rays have been identified as precursors to Forbush decreases in cosmic ray intensity. It is found that precursor to smaller (less than 5%) amplitude Forbush decrease due to weaker interplanetary shock is enhanced diurnal anisotropy. However, larger amplitude (greater than 5%) Forbush decrease due to stronger interplanetary shock shows loss cone type intensity deficit as precursor in ground based intensity record. These precursors can be used as inputs for space weather forecast.  相似文献   

16.
The purpose of this work is to investigate the first three harmonics of low-amplitude anisotropic wave trains (LAEs) of cosmic ray intensity and their association with solar and heliospheric parameters. The significant behaviour of these events is that the amplitude remains low for the first harmonic and high for the second/third harmonics, whereas direction of the anisotropy shift is towards earlier hours for the first harmonic and towards later hours for the second/third harmonic compared to annual average anisotropy. The first two harmonics are found to correlate well with the solar activity cycle during these LAEs. The amplitude and the direction of the first two harmonics do not show any significant association with the polarity change of the Bx/By component of the interplanetary magnetic field during LAEs. However, the third harmonic (amplitude and phase) shows some positive correlation with the Bx and negative correlation with the By component. The occurrence of LAEs is dominant for the positive polarity of Bx and the negative polarity of By. The occurrence of LAEs is dominant during the period of average solar wind velocity but their occurrence during high-speed solar wind streams cannot be overlooked. The frequency of occurrence of these LAEs is more during co-rotating streams.The amplitude of first and second harmonic shows deviations for different values of geomagnetic activity index Ap. However, the amplitude of second harmonic and direction of all the three harmonics do not show any significant association with the Ap-index. The Ap-index consistently remains in the range 14?Kp?31 during these events.The amplitude of first and third harmonic and the direction of first harmonic show deviations for different values of proton density. However, the amplitude of the second harmonic and the direction of the second and third harmonics do not show any significant association with proton density. The occurrence of LAEs is dominant when proton density remains ?20. The cosmic ray intensity during LAEs has good anti-correlation with interplanetary magnetic field strength (B) and its Bx component, whereas it shows a good correlation with its By component. However, it shows significant anti-correlation with sunspot number, the product (R×V) and (R×B).  相似文献   

17.
Identifying the precursors (pre-increases or pre-decreases) of a geomagnetic storm or a Forbush decrease is of great importance since they can forecast and warn of oncoming space weather effects. A wide investigation using 93 events which occurred in the period from 1967 to 2006 with an anisotropy A xy >1.2% has been conducted. Twenty-seven of the events revealed clear signs of precursors and were classified into three categories. Here we present one of the aforementioned groups, including five Forbush decreases (24 June 1980, 28 October 2000, 17 August 2001, 23 April 2002, and 10 May 2002). Apart from hourly cosmic ray intensity data, provided by the worldwide network of neutron monitor stations, data on solar flares, solar wind speed, geomagnetic indices (Kp and Dst), and interplanetary magnetic field were used for the analysis of the examined cosmic ray intensity decreases. The asymptotic longitudinal cosmic ray distribution diagrams were plotted using the “ring of stations” method. Results reveal a long pre-decrease up to 24 hours before the shock arrival in a narrow longitudinal zone from 90° to 180°.  相似文献   

18.
The variations in the form of the cosmic-ray fluctuation power spectrum as an interplanetary shock wave approaches the Earth have been calculated for different values of cosmic ray anisotropy. The relevant experimental estimates of the power spectra are inferred from the data of cosmic ray detection with the ground-based neutron monitors at cosmic-ray stations. A comparison between the theoretical and experimental estimates has demonstrated an important role of the cosmic ray anisotropy spectrum in the generation of the power spectrum as the latter is rearranged before the interplanetary medium disturbances.  相似文献   

19.
The process of cosmic ray acceleration in the front of the spherical shock wave bounding the supersonic solar wind is studied. On the basis of our analytical solution of the transport equation, the energy and spatial distributions of cosmic ray intensity and anisotropy are investigated. It is shown that the shape of accelerated particle spectrum is determined by the medium compressibility at the shock front and by cosmic ray modulation parameters.  相似文献   

20.
Using the cosmic ray sidereal and anti-sidereal diurnal variations observed underground in London and Hobart during the period 1958–1983, it is demonstrated that: (1) the phase changes of the apparent sidereal diurnal variation observed only in the Northern Hemisphere cannot be attributed to the change of the heliomagnetospheric modulation of galactic cosmic ray anisotropy caused by the polarity reversal of the solar magnetic field, but that they are due to the fluctuation of the spurious sidereal variation produced from the anisotropy responsible for the solar semi-diurnal variation; (2) the spurious sidereal variation can be eliminated from the apparent variation by using the observed anti-sidereal diurnal variation; and (3) after the elimination, the sidereal diurnal variations in the Northern and Southern Hemispheres almost coincide with each other and are stationary throughout the period, regardless of the polarity reversal of the heliomagnetosphere. The origin of the corrected sidereal variation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号