首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>The Ordos Cretaceous Groundwater Basin,located in an arid-semiarid area in northwestern China,is a large-style groundwater basin.SO_4~(2-) is one of the major harmful components in groundwater.Dissolved SO_4~(2-) concentrations,andδ~(34)S-SO_4~(2-) andδ~(18)O-SO_4~(2-) in groundwater from 14 boreholes and in gypsum from aquifer were analyzed.Results show that SO_4~(2-) in shallow groundwaters originates from precipitation,sulfide oxidation,and dissolution of stratum sulphate,with a big range ofδ~(34)S values,from-10.7‰to 9.2‰,and addition of SO_4~(2-) in deep groundwater results from dissolution of stratum sulphate,with biggerδ~(34)S values,from 7.8‰to 18.5‰,compared with those in shallow groundwater.This research also indicates that three types of sulphate are present in the strata,and characterized by highδ~(34)S values and highδ~(18)O values-style,highδ~(34)S values and middleδ~(18)O valuesstyle, middleδ~(34)S values and lowδ~(18)O values-style,respectively.Theδ~(34)S-SO_4~(2-) andδ~(18)O-SO_4~(2-) in groundwater have a good perspective for application in distinguishing different groundwater systems and determining groundwater circulation and evolution in this area.  相似文献   

2.
《Applied Geochemistry》1997,12(3):305-319
An analysis of the S and O isotopic compositions and concentrations of dissolved S04 in river-and lake-water from 7 major catchments of the North and South Islands, New Zealand, allows the distinction between natural (geological, geothermal and volcanic) and anthropogenic S sources.The Buller and the Wairau, relatively pristine rivers in the South Island, show two end-member mixing between34S- and18O-rich rain-water S04 (relatively enriched isotope values) and relatively depleted S04 from oxidation of bedrock sulfide. Tertiary sediments contribute the isotopically most depleted S (down to δ34SCDT−15‰) to the river-water S04, whereas Mesozoic greywacke contributes S with slightly positive δ34S values. River-water S04δ18OSMOW values range from 0 to + 5‰ most probably depending on the micro-environment of the oxidising zone. South Island rivers with S04δ34S> + 5‰ have low S04 concentrations (< 3 mgl−1) and are dominantly composed of rain-water S04 which is principally sea-water derived. In the North Island, the Hutt River S04 samples also lie on an isotopic mixing trend from “greywacke bedrock” to rain-water S04, the latter with δ34S and δ18O values up to + 16 and + 6‰ respectively and a So4/SO4 + Cl fraction of 0.15 (sea-water is 0.12. Although dominated by greywacke, some samples in the Wairarapa area have relatively enriched δ18Sand δ34S values and elevated S04 concentrations (up to 16 mgl), together with higher SO4/SO4 + Cl fraction ratios. This suggests input of fertilizer S04 (δ34S+ 17.2‰andδ18O+ 12.7‰) in the rivers of this agricultural area. The fertilizer loading of the Ruamahanga river can be estimated by its graphical offset from a deduced baseline for bedrockrainfall derived S04 on a S versus O isotope plot. The fertilizer loading represents about 20% of the S04 in the river. Extrapolation of this figure to the annual river discharge indicates that approximately 18% of the amount applied within the catchment is lost to the river.The source of the Whangaehu river is the Ruapehu crater lake (active volcano) with high S04 concentrations and very enriched S04 isotopic signatures (δ34S> + 17‰andδ18O> + 12‰). Downstream this water is diluted by tributaries with lower S04 concentration and isotope signatures of Tertiary sediments similar to the rivers in the South Island. Both geothermal and rain-water S04 inputs to the streams flowing into Lakes Taupo and Rotorua were identified isotopically; in particular waters flowing out from Lake Rotorua have a higher geothermal derived S04 content than the inflows, indicating that there must be a considerable underwater geothermal input to the lake.  相似文献   

3.
《Applied Geochemistry》2003,18(5):765-779
Stable isotope systematics of C, N and S were studied in soils of 5 European forest ecosystems. The sites were located along a North–South transect from Sweden to Italy (mean annual temperatures from +1.0 to +8.5 °C, atmospheric deposition from 2 to 19 kg N ha−1 a−1, and from 6 to 42 kg S ha−1 a−1). In Picea stands, the behavior of C, N and S isotopes was similar in 3 aspects: (1) assimilation favored the lighter isotopes 12C, 14N and 32S; (2) mineralization in the soil profile left in situ residues enriched in the heavier isotopes 13C, 15N and 34S; and (3) NO3–N as well as SO4–S in soil solution was isotopically lighter compared to the same species in the atmospheric input. In this study, emphasis was placed on S isotope profiles which so far have been investigated to a much lesser extent than those of C and N. Sulfate in monthly samples of atmospheric input had systematically higher δ34S ratios than total soil S at the 0–5 cm depth, on average by 4.0‰. Sulfate in the atmospheric input had higher δ34S ratios than in deep (>50 cm) lysimeter water, on average by 3.2‰. Organic S constituted more than 50% of total soil S throughout most of the profiles (0–20 cm below surface). There was a tendency to isotopically heavier organic S and lighter inorganic SO4–S, with ester SO4–S heavier than C-bonded S at 3 of the 5 sites. With an increasing depth (0 to 20 cm below surface), δ13C, δ15N and δ34S ratios of bulk soil increased on average by 0.9, 4.2 and 1.6‰, respectively, reflecting an increasing degree of mineralization of organic matter. The isotope effects of C, N and S mineralization were robust enough to exist at a variety of climate conditions and pollution levels. In the case of S, the difference between isotope composition of the upper organic-rich soil horizon (lower δ34S) and the deeper sesquioxide-rich soil horizons (higher δ34S) can be used to determine the source of SO4 in streams draining forests. This application of δ34S as a tracer of S origin was developed in the Jezeřı́ catchment, Czech Republic, a highly polluted site suffering from spruce die-back. In 1996–1997, the magnitude and δ34S of atmospheric input (20 kg S ha−1 a−1, 5.8‰) and stream discharge (56 kg S ha−1 a−1, 3.5‰) was monitored. Export of S from the catchment was 3 times higher than contemporary atmospheric input. More than 50% of S in the discharge was represented by release of previously stored pollutant S from the soil. Stable isotope systematics of Jezeřı́ soil S (mean of 2.5‰ in the O+A horizon, 4.8‰ in the B horizon, and 5.8‰ in the bedrock) suggests that most of the soil-derived S in discharge must come from the isotopically light organic S present in the upper soil horizon, and that mineralized organically-cycled S is mainly flushed out during the spring snowmelt. The fact that a considerable proportion of incoming S is organically cycled should be considered when predicting the time-scale of acidification reversal in spruce die-back affected areas.  相似文献   

4.
《Applied Geochemistry》2001,16(4):475-488
The usefulness of stable isotopes of dissolved SO434S and δ18O) to study recharge processes and to identify areas of significant inter-aquifer mixing was evaluated in a large, semi-arid groundwater basin in south-eastern Australia (the Murray Basin). The distinct isotopic signatures in the oxidizing unconfined Murray Group Aquifer and the deeper reducing Renmark Group confined aquifer may be more sensitive than conventional chemical tracers in establishing aquifer connections. δ34S values in the unconfined Murray Group Aquifer in the south and central part of the study area decrease along the hydraulic gradient from 20.8 to 0.3‰. The concomitant increasing SO4/Cl ratios, as well as relatively low δ18OSO4 values, suggest that vertical input of biogenically derived SO4 via diffuse recharge is the predominant source of dissolved SO4 to the aquifer. Further along the hydraulic gradient towards the discharge area near the River Murray, δ34S values in the unconfined Murray Group Aquifer increase, and SO4/Cl ratios decrease, due to upward leakage of waters from the confined Renmark Group Aquifer which has a distinctly low SO4/Cl and high δ34S (14.9–56.4‰). Relatively positive δ34S and δ18OSO4 values, and low SO4/Cl in the Renmark Group Aquifer is typical of SO4 removal by bacterial reduction. The S isotope fractionation between SO4 and HS of ∼24‰ estimated for the confined aquifer is similar to the experimentally determined chemical fractionation factor for the reduction process but much lower than the equilibrium fractionation (∼70‰) even though the confined groundwater residence time is >300 Ka years. Mapping the spatial distribution of δ34S and SO4/Cl of the unconfined Murray Group Aquifer provides an indicative tool for identifying the approximate extent of mixing, however the poorly defined end-member isotopic signatures precludes quantitative estimates of mixing fractions.  相似文献   

5.
Groundwater from karst subterranean streams is among the world’s most important sources of drinking water supplies, and the hydrochemical characteristics of karst water are impacted by both natural environment and people. Therefore, the study of hydrochemistry and its solutes’ sources is very important to ensure the normal function of life support systems. In this paper, thirty?five representative karst groundwater samples were collected from different aquifers (limestone and dolomite) and various land use types in Chongqing to trace the sources of solutes and relative hydrochemical processes. Hydrogeochemical types of karst groundwater in Chongqing were mainly of the Ca?HCO3 type or Ca (Mg)?HCO3 type. However, some hydrochemical types of karst groundwater were the K+Na+Ca?SO4 type (G25 site) or Ca?HCO3+SO4 type (G26 and G14 site), indicating that the hydrochemistry of these sites might be strongly influenced by anthropogenic activities or unique geological characteristics. The dissolved Sr concentrations of the studied groundwater ranged from 0.57 to 15.06 μmmol/L, and the 87Sr/86Sr varied from 0.70751 to 0.71627. The δ34S?SO42? fell into a range of ?6.8‰?21.5‰, with a mean value of 5.6‰. The variations of both 87Sr/86Sr and Sr values of the groundwater samples indicated that the Sr element was controlled by the weathering of limestone, dolomite and silicate rock. However, the figure of 87Sr/86Sr vs. Sr2+/[K++Na+] showed that the anthropogenic inputs also obviously contributed to the Sr contents. For tracing the detailed anthropogenic effects, we traced the sources of solutes collected karst groundwater samples in Chongqing according to the δ34S value of potential sulfate sources. The variations of both δ34S and 1/SO42? values of the groundwater samples indicated that the atmospheric acid deposition (AAD), dissolution of gypsum (GD), oxidation of sul?de mineral (OS) or anthropogenic inputs (SF: sewage or fertilizer) have contributed to solutes in karst groundwater. The influence of oxidation of sul?de mineral, atmospheric acid deposit and anthropogenic inputs to groundwater in Chongqing karst areas was much widespread.  相似文献   

6.
The paper presents the results of determinations of stable S and O isotopes of dissolved sulfates and O and H stable isotopes of waters from three ponds, that is, Marczakowe Do?y acid pond, Marczakowe Do?y fish pond and Podwi?niówka acid pit pond, located in the Holy Cross Mountains (south-central Poland). The δ34SV-CDT and δ18OV-SMOW of SO4 2? in waters of three ponds (n = 14) varied from ?16.2 to ?9.5 ‰ (mean of ?13.6 ‰) and from ?8.1 to ?3.2 ‰ (mean of ?4.8 ‰), respectively. The mean δ34S–SO4 2? values were closer to those of pyrite (mean of ?25.4 ‰) and efflorescent sulfate salts (mean of ?25.6 ‰), recorded previously in the Podwi?niówka quarry, than to sulfates derived from other anthropogenic or soil and bedrock sources. The SO4 2? ions formed by bacterially induced pyrite oxidation combined with bacterial (dissimilatory) dissolved sulfate reduction, and presumably with subordinate mineralization of carbon-bonded sulfur compounds, especially in both Marczakowe Do?y ponds. In addition, the comparison of δ18O–SO4 2? and δ18O–H2O values indicated that 75–100 % of sulfate oxygen was derived from water. Due to the largest size, the Podwi?niówka acid pit pond revealed distinct seasonal variations in both δ18O–H2O (?9.2 to ?1.6) and δD–H2O (?29.7 to ?71.3) values. The strong correlation coefficient (r 2 = 0.99) was noted between δ18O–H2O and δD–H2O values, which points to atmospheric precipitation as the only source of water. The sediments of both acid ponds display different mineral inventory: the Marczakowe Do?y acid pond sediment consists of schwertmannite and goethite, whereas Podwi?niówka acid pit pond sediment is composed of quartz, illite, chlorite and kaolinite with some admixture of jarosite reflecting a more acidic environment. Geochemical modeling of two acid ponds indicated that the saturation indices of schwertmannite and nanosized ε-Fe2O3 (Fe3+ oxide polymorph) were closest to thermodynamic equilibrium state with water, varying from ?1.44 to 3.05 and from ?3.42 to 6.04, respectively. This evidence matches well with the obtained mineralogical results.  相似文献   

7.
The isotopic composition of calcite from travertine deposits of the Tokhana-Verkhnii hot spring in the Elbrus area shows broad variations in δ13C and δ18O (from +3.8 to +16.3‰ and from +24.6 to +28.1‰, respectively). The δ13C and δ18O values increase toward the sole of the travertine dome. The isotopically heaviest carbonates (δ13C of up to +16.3‰) were found near the bottom of the dome and composed ancient travertine, which are now not washed by mineral water. The scatter of the δ13C values of the fresh sample is slightly narrower: from +3.8 to +10‰. Calculations indicate that all carbonates of the Tokhana dome were not in equilibrium with spontaneous carbon dioxide released by the spring (\(\delta ^{13} C_{CO_2 } \) = ?8‰). To explain the generation of isotopically heavy travertine, a physicochemical model was developed for precipitation of Ca carbonates during the gradual degassing of the mineral water. The character of variations in the calculated δ13C values (from +5.5 to +13‰) is in good agreement with the tendency in the variations of the δ13C in the carbonate samples. The calculated and measured pH values are also consistent. Our results demonstrate that the isotopic composition of large travertine masses can be heterogeneous, and this should be taken into account during paleoclimatic and paleohydrogeological reconstruction.  相似文献   

8.
Biogeochemical processes were investigated in alpine river—Kamni?ka Bistrica River (North Slovenia), which represents an ideal natural laboratory for studying anthropogenic impacts in catchments with high weathering capacity. The Kamni?ka Bistrica River water chemistry is dominated by HCO3 ?, Ca2+ and Mg2+, and Ca2+/Mg2+ molar ratios indicate that calcite weathering is the major source of solutes to the river system. The Kamni?ka Bistrica River and its tributaries are oversaturated with respect to calcite and dolomite. pCO2 concentrations were on average up to 25 times over atmospheric values. δ13CDIC values ranged from ?12.7 to ?2.7 ‰, controlled by biogeochemical processes in the catchment and within the stream; carbonate dissolution is the most important biogeochemical process affecting carbon isotopes in the upstream portions of the catchment, while carbonate dissolution and organic matter degradation control carbon isotope signatures downstream. Contributions of DIC from various biogeochemical processes were determined using steady state equations for different sampling seasons at the mouth of the Kamni?ka Bistrica River; results indicate that: (1) 1.9–2.2 % of DIC came from exchange with atmospheric CO2, (2) 0–27.5 % of DIC came from degradation of organic matter, (3) 25.4–41.5 % of DIC came from dissolution of carbonates and (4) 33–85 % of DIC came from tributaries. δ15N values of nitrate ranged from ?5.2 ‰ at the headwater spring to 9.8 ‰ in the lower reaches. Higher δ15N values in the lower reaches of the river suggest anthropogenic pollution from agricultural activity. Based on seasonal and longitudinal changes of chemical and isotopic indicators of carbon and nitrogen in Kamni?ka Bistrica River, it can be concluded that seasonal changes are observed (higher concentrations are detected at low discharge conditions) and it turns from pristine alpine river to anthropogenic influenced river in central flow.  相似文献   

9.
Reoxidation of S stored in lowlands after summer droughts has been reported to be responsible for the excess SO4 export observed in many catchments in south central Ontario. Stable S isotopes can be used to identify the source of SO4 export in stream water, and are particularly well suited to evaluating zones of dissimilatory SO4 reduction (DSR) and the contribution of oxidation of reduced S species to stream SO4. The Plastic Lake-1 (PC1) stream drains an upland coniferous forest and then passes through a Sphagnum-dominated swamp before discharging to Plastic Lake. Measurements of SO4 fluxes and isotope ratios were used to determine the source of net SO4 export and the contribution of redox processes to S retention and export in the upland and wetland, respectively. Mass balance budgets for the years 1999/00 and 2000/01, which had comparatively wet summers, indicated that the upland part of the catchment consistently exported SO4 in excess of bulk deposition inputs. In contrast, mass budget calculations for the swamp indicated a net retention of 3 and 2 g S-SO4/m2 of wetland area, in 1999/00 and 2000/01 respectively. Higher δ34SO4 ratios and lower SO4 concentrations in the swamp outflow (average +8.6 ± 2.6‰; 1.5 ± 0.6 mg S-SO4/L) compared to the inflow draining the upland (+5.4 ± 0.7‰; 2.4 ± 0.3 mg S-SO4/L) indicated that DSR was at least partly responsible for net SO4 retention in the swamp. Isotope values in upland stream water (+5.7 ± 0.7‰) were only slightly higher than values in bulk deposition (average +5.1 ± 0.6‰) and soil leachate (+4.4 ± 0.4‰) over the 2-year period of study. Similar δ34SO4 values in upland stream water compared to deposition and soil leachate, despite substantial variations in water table height in the streambed (92 cm), suggest that reoxidation of reduced sulphides is not an important contributor to SO4 export from the upland. Rather, net SO4 export from the upland subcatchment is likely due to net release from upland soil, and slight differences in δ34SO4 between bulk deposition and soil leachate are consistent with SO4 release from organic S forms.  相似文献   

10.
The chemical and isotopic characteristics of the water and suspended particulate materials(SPM) in the Yangtze River were investigated on the samples collected from 25 hydrological monitoring stations in the mainsteam and 13 hydrological monitoring stations in the major tributaries during 2003 to 2007. The water samples show a large variation in both δD( 30‰ to 112‰) and δ18O( 3.8‰ to 15.4‰) values. Both δD and δ18O values show a decrease from the river head to the Jinsha Jiang section and then increase downstream to the river mouth. It is found that the oxygen and hydrogen isotopic compositions of the Yangtze water are controlled by meteoric precipitation, evaporation, ice(and snow) melting and dam building. The Yangtze SPM concentrations show a large variation and are well corresponded to the spatial and temporal changes of flow speed, runoff and SPM supply, which are affected by the slope of the river bed, local precipitation rate, weathering intensity, erosion condition and anthropogenic activity. The Yangtze SPM consists of clay minerals, clastic silicate and carbonate minerals, heavy minerals, iron hydroxide and organic compounds. From the upper to lower reaches, the clay and clastic silicate components in SPM increase gradually, but the carbonate components decrease gradually, which may reflect changes of climate and weathering intensity in the drainage area. Compared to those of the upper crust rocks, the Yangtze SPM has lower contents of SiO2, CaO, K2 O and Na2 O and higher contents of TFe2 O3 and trace metals of Co, Ni, Cu, Zn, Pb and Cd. The ΣREE in the Yangtze SPM is also slightly higher than that of the upper crust. From the upper to lower reaches, the CaO and MgO contents in SPM decrease gradually, but the SiO2 content increases gradually, corresponding to the increase of clay minerals and decrease of the carbonates. The δ30SiSPM values( 1.1‰ to 0.3‰) of the Yangtze SPM are similar to those of the average shale, but lower than those of the granite rocks( 0.3‰ to 0.3‰), reflecting the effect of silicon isotope fractionation in silicate weathering process. The δ30SiSPM values of the Yangtze SPM show a decreasing trend from the upper to the middle and lower reaches, responding to the variation of the clay content. The major anions of the river water are HCO 3, SO 4 2, Cl, NO 3, SiO 4 4 and F and the major cations include Ca2+, Na+, Mg2+, K+ and Sr2+. The good correlation between HCO3-content and the content of Ca2+may suggest that carbonate dissolution is the dominate contributor to the total dissolved solid(TDS) of the Yangtze River. Very good correlations are also found among contents of Cl, SO4 2, Na+, Mg2+, K+and Sr2+, indicating the important contribution of evaporite dissolution to the TDS of the Yangtze River. High TDS contents are generally found in the head water, reflecting a strong effect of evaporation in the Qinghai-Tibet Plateau. A small increase of the TDS is generally observed in the river mouth, indicating the influence of tidal intrusion. The F and NO3 contents show a clear increase trend from the upstream to downstream, reflecting the contribution of pesticides and fertilizers in the Chuan Jiang section and the middle and lower reaches. The DSi shows a decrease trend from the upstream to downstream, reflecting the effect of rice and grass growth along the Chuan Jiang section and the middle and lower reaches. The dissolved Cu, Zn and Cd in the Yangtze water are all higher than those in world large rivers, reflecting the effect of intensive mining activity along the Yangtze drainage area. The Yangtze water generally shows similar REE distribution pattern to the global shale. The δ30SiDiss values of the dissolved silicon vary from 0.5‰ to 3.7‰, which is the highest among those of the rivers studied. The δ30SiDiss values of the water in the Yangtze mainsteam show an increase trend from the upper stream to downstream. Its DSi and δ30SiDiss are influenced by multiple processes, such as weathering process, phytolith growth in plants, evaporation, phytolith dissolution, growth of fresh water diatom, adsorption and desorption of aqueous monosilicic acid on iron oxide, precipitation of silcretes and formation of clays coatings in aquifers, and human activity. The δ34SSO4 values of the Yangtze water range from 1.7‰ to 9.0‰. The SO4 in the Yangtze water are mainly from the SO4 in meteoric water, the dissolved sulfate from evaporite, and oxidation of sulfide in rocks, coal and ore deposits. The sulfate reduction and precipitation process can also affect the sulfur isotope composition of the Yangtze water. The87Sr/86Sr ratios of the Yangtze water range from 0.70823 to 0.71590, with an average value of 0.71084. The87Sr/86Sr ratio and Sr concentration are primary controlled by mixing of various sources with different87Sr/86Sr ratios and Sr contents, including the limestone, evaporite and the silicate rocks. The atmospheric precipitation and anthropogenic inputs can also contribute some Sr to the river. The δ11B values of the dissolved B in the Yangtze water range from 2.0‰ to 18.3‰, which is affected by multifactors, such as silicate weathering, carbonate weathering, evaporite dissolution, atmospheric deposition, and anthropogenic inputs.  相似文献   

11.
Concentration and isotope ratios (δ34SSO4 and δ18OSO4) of dissolved sulfate of groundwater were analyzed in a very large anaerobic aquifer system under the Lower Central Plain (LCP) (25,000 km2) in Thailand. Groundwater samples were collected in two different kinds of aquifers; type 1 with a saline water contribution and type 2 lateritic aquifers with no saline water contribution. Two different isotopic compositional trends were observed: in type 1 aquifers sulfate isotope ratios range from low values (+2.2‰ for δ34SSO4 and +8.0‰ for δ18OSO4) to high values (+49.9‰ for δ34SSO4 and +17.9‰ for δ18OSO4); in type 2 aquifers sulfate isotope ratios range from low values (−0.1‰ for δ34SSO4 and +12.2‰ for δ18OSO4) to high δ18OSO4 ratios (+18.4‰) but with low δ34SSO4 ratios (<+12.9‰). Isotopic comparison with possible source materials and theoretical geochemical models suggests that the sulfate isotope variation for type 1 aquifer groundwater can be explained by two main processes. One is the contribution of remnant seawater, which has experienced dissimilatory sulfate reduction in the marine clay, into recharge water of freshwater origin. This process accounts for the high salinity groundwater. The other process, explaining for the modest salinity groundwater, is the bacterial sulfate reduction of the mixture water between high salinity water and fresh groundwater. Isotopic variation of type 2 aquifer groundwater may also be explained by bacterial sulfate reduction, with slower reduction rate than that of the groundwater with saline water effect. The origin of groundwater sulfate with low δ34SSO4 but high δ18OSO4 is recognized as an important topic to be examined in a future investigation.  相似文献   

12.
Li  Bin-Kai  He  Mao-Yong  Ma  Hai-Zhou  Cheng  Huai-De  Ji  Lian-Min 《中国地球化学学报》2022,41(5):731-740

Boron is an essential, widely used, micronutrient element and is abundant in salt lakes on the Qinghai-Tibet Plateau. The origin and distribution of boron brine deposits on the Qinghai-Tibet Plateau is an important foundation for B resource formation, evolution, and enrichment, which have long been the subject of debate. The boron isotope system is a sensitive geochemical tracer, making it useful for effectively and precisely tracking a wide range of geological processes and sources. This study investigates the major cations, [B], and δ11B values of samples (lake brine, river waters, and cold spring water) from the Bangor Co Lake which is a typical salt lake rich in boron in Tibet, China. There are magnitude-scale differences in [B] among different sample types: river samples < cold spring water < < brine lakes. [B] values vary from 0.73 to ~ 1113 mg/L. Similar to [B], the δ11B values of the samples exhibit magnitude-scale variations as [B], ranging from − 7.35‰ to + 7.66‰. There are also magnitude-scale differences in δ11B among different sample types. The δ11B values of cold spring water are relatively low, and the values range from − 1.26‰ to -7.75‰. However, the river water samples and saline lakes have higher values, from 0.38‰ to 4.62‰, and the δ11B values of river water samples are basically in the distribution range of those of Bangor Co Lake. This indicates that the sources of boron in Bangor Co Lake are mainly the recharge water with higher δ11B values and spring water with lower δ11B values, and the boron sources and the uneven mixing of lake water are two reasons that account for the large change in the δ11B value of Bangor Co Lake.

  相似文献   

13.
岩浆去气作用碳硫同位素效应   总被引:6,自引:0,他引:6       下载免费PDF全文
 根据开放体系条件下的瑞利分馏原理,并考虑岩浆中可能溶解的合碳和含硫组分,从理论上定量模式了岩浆去气作用对火成岩碳、硫同位素组成的影响。结果表明,岩浆CO2去气作用能够导致岩石中碳酸盐显着亏损13C,其δ13C值能够从原始-5‰变化到-20‰(PDB);岩浆CH4去气作用则导致岩石中碳酸盐相对富集13C,其δ13C值能够从原始-5‰变化到+4‰。岩浆SO2去气作用可以导致岩石中硫化物显着亏损34S,其δ34S值能够从0‰变化到-8‰(CDT);岩浆H2S去气作用则导致岩石中的硫化物相对富集4S,其δ34S值能够从0‰变化到+6‰。因此,除源岩原始同位素不均一性和地壳物质混染能引起火成岩的碳、硫同位素组成发生较大变化外,岩浆去气作用也是重要原因之一。  相似文献   

14.
喀斯特地表水和地下水的交换活跃,地下水系统容易受到地表污染物的污染。为了解喀斯特城市地表水—地下水系统污染特征和污染物质来源,对贵阳市地表水、地下水、雨水和城市排污污水的硫同位素和氯同位素组成变化进行了研究。贵阳市不同类型水体的δ37Cl值在-4.07‰~+2.03‰之间变化,δ34SSO4值变化为-20.4‰~+20.9‰。大气输入物质和城市排污污水的δ37Cl、δ34S及Cl-/SO42-比值与地表水和地下水的不同,稳定硫和氯同位素的结合研究为示踪地下水污染物来源提供了有效研究手段。贵阳市地下水中的Cl-和SO42-至少有4种来源,人为活动通过城市排污和大气输入向地下水系统大量输入了硫酸盐和氯离子。   相似文献   

15.
Groundwater from karst subterranean streams is among the world’s most important sources of drinking water supplies, and the hydrochemical characteristics of karst water are affected by both natural environment and people. Therefore, the study of karst groundwater hydrochemistry and its solutes’ sources is very important to ensure the normal function of life support systems. This paper focused on the major ion chemistry and sulfate isotope of karst groundwater in Chongqing for tracing the sulfate sources and related hydrochemical processes. Hydrochemical types of karst groundwater in Chongqing were mainly of the Ca-HCO3 type or Ca(Mg)-HCO3 type. However, some hydrochemical types were the K + Na + Ca-SO4 type (G25 site) or Ca-HCO3 + SO4 type (G26 and G14 sites), indicating that the hydrochemistry of these sites may be strongly influenced by anthropogenic activities or unique geological characteristics. The δ34S-SO4 2? of collected karst groundwater sample fell into a range of ?6.8 to 21.5 ‰, with a mean value of 5.6 ‰. In dolomite aquifer, the δ34S-SO4 2? value ranges from ?4.3 to 11.0 ‰, and in limestone aquifer, it ranged from ?6.8 to 21.5 ‰. The groundwater samples from different land use types showed distinctive δ34S-SO4 2? value. The δ34S-SO4 2? value of groundwater samples had range of ?6.8 to 16.7 ‰ (mean 4.0 ‰, n = 11) in cultivated land areas, 1.5–21.5 ‰ (mean 7.2 ‰, n = 20) in forested land areas, and ?4.3 to 0.8 ‰ (mean ?1.7 ‰, n = 2) in coalmine areas. The δ34S-SO4 2? values of groundwater samples collected from factory area and town area were 2.2 and 9.9 ‰, respectively. According to the δ34S information of potential sulfate sources, this paper discussed the possible sulfate sources of collected karst groundwater samples in Chongqing. The variations of both δ34S and 1/SO4 2? values of the groundwater samples indicated that the atmospheric acid deposition (AAD), dissolution of gypsum (GD), oxidation of sulfide mineral (OS) or anthropogenic inputs (SF: sewage or fertilizer) contributed to sulfate in karst groundwater. The influence of oxidation of sulfide mineral, atmospheric acid deposit and anthropogenic inputs to groundwater in Chongqing karst areas was much widespread. For protecting, sustaining, and utilizing the groundwater resources, the sewage possibly originating from urban, mine or industrial area must be controlled and treated, and the use of fertilizer should be limited.  相似文献   

16.
The source of sulfur in giant Norilsk-type sulfide deposits is discussed. A review of the state of the problem and a critical analysis of existing hypotheses are made. The distribution of δ34S in sulfides of ore occurrences and small and large deposits and in normal sedimentary, metamorphogenic, and hypogene sulfates is considered. A large number of new δ34S data for sulfides and sulfates in various deposits, volcanic and terrigenous rocks, coals, graphites, and metasomatites are presented. The main attention is focused on the objects of the Norilsk and Kureika ore districts. The δ34S value varies from -14 to + 22.5‰ in sulfides of rocks and ores and from 15.3 to 33‰ in anhydrites. In sulfide-sulfate intergrowths and assemblages, δ34S is within 4.2-14.6‰ in sulfides and within 15.3-21.3‰ in anhydrites. The most isotopically heavy sulfur was found in pyrrhotite veins in basalts (δ34S = 21.6‰), in sulfate veins cutting dolomites (δ34S = 33‰), and in subsidence caldera sulfates in basalts (δ34S = 23.2-25.2‰). Sulfide ores of the Tsentral’naya Shilki intrusion have a heavy sulfur isotope composition (δ34S = + 17.7‰ (n = 15)). Thermobarogeochemical studies of anhydrites have revealed inclusions of different types with homogenization temperatures ranging from 685 °C to 80 °C. Metamorphogenic and hypogene anhydrites are associated with a carbonaceous substance, and hypogene anhydrites have inclusions of chloride-containing salt melts. We assume that sulfur in the trap sulfide deposits was introduced with sulfates of sedimentary rocks (δ34S = 22-24‰). No assimilation of sulfates by basaltic melt took place. The sedimentary anhydrites were “steamed” by hydrocarbons, which led to sulfate reduction and δ34S fractionation. As a result, isotopically light sulfur accumulated in sulfides and hydrogen sulfide, isotopically heavy sulfur was removed by aqueous calcium sulfate solution, and “residual” metamorphogenic anhydrite acquired a lighter sulfur isotope composition as compared with the sedimentary one. The wide variations in δ34S in sulfides and sulfates are due to changes in the physicochemical parameters of the ore-forming system (first of all, temperature and Pch4) during the sulfate reduction. The regional hydrocarbon resources were sufficient for large-scale ore formation.  相似文献   

17.
The Deer Lake Complex, located in north-central Minnesota, consists of a series of layered peridotite-pyroxenite-gabbro sills. Sulfide minerals occur as fine disseminations throughout pyroxenite and gabbro units, and occur more sporadically in peridotite and basal chilled margin units. Sulfide volume percentage rarely exceeds 0.5. A distinct zonation in sulfide mineralogy and sulfur isotopic composition characterizes the sills. Cobaltian pentlandite is the dominant sulfide mineral in peridotite (pd) units, with Ni-enrichment most likely linked to the serpentinization process. δ34Spd values are variable, ranging from ?3.5 to +2.8‰. Sulfide assemblages in pyroxenite (px) and lower gabbro units consist of chalcopyrite, pyrrhotite, and minor pentlandite. δ34Spx values range from ?1 to +1 ‰. Pyrite is the principal sulfide mineral in upper gabbro (μg) units. Its origin may be related to increased f02 conditions of the remaining melt and to reaction between a S-bearing volatile phase and mafic silicates. δ34Sug values range from 1 to 3.5 ‰. Sulfur isotopic values of chilled margin (2–9 ‰) and peridotite units, together with the erratic spatial distribution of sulfide minerals in these zones, suggests that the parent magma was not initially saturated with sulfur, and that local sulfide concentrations are the result of incorporation of sulfur derived from metasedimentary country rocks. Sulfide saturation was more uniformly reached during pyroxenite formation, with contained sulfur being of magmatic origin. Enrichment in 34S of pyrite from upper gabbro may be explained by buildup of isotopically heavy sulfur following a Rayleigh process, coupled with possible involvement of a SO2-rich fluid phase during hydrothermal alteration.  相似文献   

18.
The Palinuro volcanic complex and the Panarea hydrothermal field, both located in the Tyrrhenian Sea (Italy), are associated with island arc magmatism and characterized by polymetallic sulfide mineralization. Dissolved sulfide concentrations, pH, and Eh measured in porewaters at both sites reveal a variable hydrothermal influence on porewater chemistry.Multiple sulfur isotopic measurements for disseminated sulfides (CRS: chromium reducible sulfur) extracted from sediments at Palinuro yielded a broad range in δ34S range between ?29.8 and + 10.2‰ and Δ33S values between + 0.015 and + 0.134‰. In contrast, sediments at Panarea exhibit a much smaller range in δ34SCRS with less negative values between ?11.3 and ?1.8‰. The sulfur isotope signatures are interpreted to reflect a mixture between hydrothermal and biogenic sulfide, with a more substantial biogenic contribution at Panarea.Multiple sulfur isotope measurements were performed on sulfides and elemental sulfur from drill core material from the Palinuro massive sulfide complex. δ34S and Δ33S values for pyrite between ?32.8 and ?1.1‰ and between ?0.012 to + 0.042‰, respectively, as well as for elemental sulfur with δ34S and Δ33S values between ?26.7 and ?2.1‰ and between + 0.035 and + 0.109‰, respectively, point to a microbial origin for much of the sulfide and elemental sulfur studied. Moreover, data suggest a coupling of bacterial sulfate reduction, sulfide oxidation and sulfur disproportionation. In addition, δ34S values for barite between + 25.0 and + 63.6‰ are also in agreement with high microbial turnover of sulfate at Palinuro.Although a magmatic SO2 contribution towards the formation of the Palinuro massive sulfide complex is very likely, the activity of different sulfur utilizing microorganisms played a fundamental role during its formation. Thus, porewater and multiple sulfur isotope data reveal differences in the hydrothermal activity at Palinuro and Panarea drill sites and underline the importance of microbial communities for the origin of massive sulfide mineralizations in the hydrothermal subsurface.  相似文献   

19.
《Sedimentary Geology》1999,123(3-4):255-273
This study investigates the sulphur source of gypsum sulphate and dissolved groundwater sulphate in the Central Namib Desert, home to one of Africa's most extensive gypsum (CaSO4·2H2O) accumulations. It investigates previously suggested sulphate precursors such as bedrock sulphides and decompositional marine biogenic H2S and studies the importance of other potential sources in order to determine the origin of gypsum and dissolved sulphate in the region. An attempt has been made to sample all possible sulphur sources, pathways and types of gypsum accumulations in the Central Namib Desert. We have subjected those samples to sulphur isotopic analyses and have compiled existing results. In addition, ionic ratios of Cl/SO4 are used to determine the presence of non-sea-salt (NSS) sulphur in groundwater and to investigate processes affecting groundwater sulphate. In contrast to previous work, this study proposes that the sulphur cycle, and the formation of gypsum, in the Namib Desert appears to be dominated by the deposition of atmospheric sulphates of phytoplanktonic origin, part of the primary marine production of the Benguela upwelling cells. The aerosol sulphates are subjected to terrestrial storage within the gypsum deposits on the hyper-arid gravel plain and are traceable in groundwater including coastal sabkhas. The hypothesis of decompositional marine biogenic H2S or bedrock sulphide sources, as considered previously for the Namib Desert, cannot account for the widespread accumulation of gypsum in the region. The study area in the Central Namib Desert, between the Kuiseb and Omaruru rivers, features extensive gypsum accumulations in a ca. 50–70 km wide band, parallel to the shore. They consist of surficial or shallow pedogenic gypsum crusts in the desert pavement, hydromorphic playa or sabkha gypsum, as thin isolated pockets on bedrock ridges and as discrete masses of gypsum selenite along some faults. The sulphur isotopic values (δ34S ‰CDT) of these occurrences are between δ34S +13.0 and +18.8‰, with lower values in proximity to sulphuric ore bodies (δ34S +3.1 and +3.4‰). Damaran bedrock sulphides have a wide range from δ34S −4.1 to +13.8‰ but seem to be significant sources on a local scale at the most. Dissolved sulphate at playas, sabkhas, springs, boreholes and ephemeral rivers have an overall range between δ34S +9.8 and +20.8‰. However, they do not show a systematic geographical trend. The Kalahari waters have lower values, between δ34S +5.9 and +12.3‰. Authigenic gypsum from submarine sediments in the upwelling zone of the Benguela Current between Oranjemund and Walvis Bay ranges between δ34S −34.6 to −4.6‰. A single dry atmospheric deposition sample produced a value of δ34S +15.9‰. These sulphur isotopic results, complemented by meteorological, hydrological and geological information, suggest that sulphate in the Namib Desert is mainly derived from NSS sulphur, in particular oxidation products of marine dimethyl sulphide CH3SCH3 (DMS). The hyper-arid conditions prevailing along the Namibian coast since Miocene times favour the overall preservation of the sulphate minerals. However, sporadic and relatively wetter periods have promoted gypsum formation: the segregation of sulphates from the more soluble halite, and the gradual seaward redistribution of sulphate. This study suggests that the extreme productivity of the Benguela Current contributes towards the sulphur budget in the adjacent Namib Desert.  相似文献   

20.
Thirty-five S isotope analyses obtained from six carbonatite complexes from the Superior Province, Canadian Shield, ranging in age from 1,897 Ma to 1,093 Ma, have δ34SCDT values of between ?4.5‰ and +3.4‰. Pyrrhotite, chalcopyrite and pyrite mineral separates were used. Each complex possesses its own distinct range and mean S isotope composition. The range for Schryburt Lake is: ?4.5‰ to ?3.4‰ ( mean?=??3.9‰), for Big Beaver House: ?3.6‰ to ?1.5‰ (mean?=??2.2‰), for Cargill: ?1.5‰–+0.5‰ (mean?=??0.7‰), for Spanish River: ?0.1‰–+0.1‰ (mean?=?0.0‰), and for Firesand River: +1.3‰–+3.4‰ (mean?=?+1.7‰). A single sample from Carb Lake yielded a δ34SCDT value of +2.8‰. Differences in isotope compositions can be related to isotope effects brought about during melt generation and emplacment, such as variations in fo2 and temperature. The different S and C isotope data for most complexes, however, suggest that the parental melts could have been generated from a heterogeneous mantle source, although process-driven changes cannot be completely ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号