首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Geochemistry》2001,16(3):323-338
Chemical and isotopic compositions are reported for water, and CO2 and noble gases in groundwater and soda springs from Bioko, Principé, São Tomé and Annobon, all islands located in the off-shore part of the Cameroon Volcanic Line in West Africa. The soda spring waters are of Ca–Mg–HCO3 type, with δD and δ18O values that range from −20 to −8‰ and −5.4 to −2.7‰ respectively, indicative of a meteoric origin. CO2 is the main gas species in the springs. δ13C–CO2 values vary from −2.8 to −5.0‰, overlapping the observed mantle C range (−3 to −8‰). CO2/3He ratios (3–9×109) suggest that most C (∼90%) in the samples is derived from the mantle. Neon has atmospheric isotopic compositions, while Ar is slightly enriched in radiogenic 40Ar. 3He/4He ratios (3.0 to 10.1×10−6 or 2.1 to 7.2Ra, where Ra is the atmospheric ratio of 1.4×10−6) are much higher than those for typical crustal fluids (∼10−8) but lower than those expected for fluids derived from ‘high-3He/4He’ hotspots like Loihi and Iceland. This precludes significant contributions of such fluids in the source regions of the gases, and by inference, in the magmatism of these oceanic islands. Alternatively, approximately 90% of the He in São Tomé gases is inferred to be derived from a source similar to the MORB source. The 3He/4He ratio for the Bioko gas (6.6×10−6) may be derived from a source with a higher time integrated (U+Th)/3He ratio than the MORB source.  相似文献   

2.
《Applied Geochemistry》2004,19(6):937-946
Analysis of stable isotopes and major ions in groundwater and surface waters in Belize, Central America was carried out to identify processes that may affect drinking water quality. Belize has a subtropical rainforest/savannah climate with a varied landscape composed predominantly of carbonate rocks and clastic sediments. Stable oxygen (δ18O) and hydrogen (δD) isotope ratios for surface and groundwater have a similar range and show high d-excess (10–40.8‰). The high d-excess in water samples suggest secondary continental vapor flux mixing with incoming vapor from the Caribbean Sea. Model calculations indicate that moisture derived from continental evaporation contributes 13% to overhead vapor load. In surface and groundwater, concentrations of dissolved inorganic carbon (DIC) ranged from 5.4 to 112.9 mg C/l and δ13CDIC ranged from −7.4 to −17.4‰. SO42, Ca2+ and Mg2+ in the water samples ranged from 2–163, 2–6593 and 2–90 mg/l, respectively. The DIC and δ13CDIC indicate both open and closed system carbonate evolution. Combined δ13CDIC and Ca2+, Mg2+, and SO42− suggest additional groundwater evolution by gypsum dissolution and calcite precipitation. The high SO42−content of some water samples indicates regional geologic control on water quality. Similarity in the range of δ18O, δD and δ13CDIC for surface waters and groundwater used for drinking water supply is probably due to high hydraulic conductivities of the karstic aquifers. The results of this study indicate rapid recharge of groundwater aquifers, groundwater influence on surface water chemistry and the potential of surface water to impact groundwater quality and vise versa.  相似文献   

3.
Hydraulic fracturing of shale deposits has greatly increased the productivity of the natural gas industry by allowing it to exploit previously inaccessible reservoirs. Previous research has demonstrated that this practice has the potential to contaminate shallow aquifers with methane (CH4) from deeper formations. This study compares concentrations and isotopic compositions of CH4 sampled from domestic groundwater wells in Letcher County, Eastern Kentucky in order to characterize its occurrence and origins in relation to both neighboring hydraulically fractured natural gas wells and surface coal mines. The studied groundwater showed concentrations of CH4 ranging from 0.05 mg/L to 10 mg/L, thus, no immediate remediation is required. The δ13C values of CH4 ranged from −66‰ to −16‰, and δ2H values ranged from −286‰ to −86‰, suggesting an immature thermogenic and mixed biogenic/thermogenic origin. The occurrence of CH4 was not correlated with proximity to hydraulically fractured natural gas wells. Generally, CH4 occurrence corresponded with groundwater abundant in Na+, Cl, and HCO3, and with low concentrations of SO42−. The CH4 and SO42−concentrations were best predicted by the oxidation/reduction potential of the studied groundwater. CH4 was abundant in more reducing waters, and SO42− was abundant in more oxidizing waters. Additionally, groundwater in greater proximity to surface mining was more likely to be oxidized. This, in turn, might have increased the likelihood of CH4 oxidation in shallow groundwater.  相似文献   

4.
《Applied Geochemistry》2001,16(4):475-488
The usefulness of stable isotopes of dissolved SO434S and δ18O) to study recharge processes and to identify areas of significant inter-aquifer mixing was evaluated in a large, semi-arid groundwater basin in south-eastern Australia (the Murray Basin). The distinct isotopic signatures in the oxidizing unconfined Murray Group Aquifer and the deeper reducing Renmark Group confined aquifer may be more sensitive than conventional chemical tracers in establishing aquifer connections. δ34S values in the unconfined Murray Group Aquifer in the south and central part of the study area decrease along the hydraulic gradient from 20.8 to 0.3‰. The concomitant increasing SO4/Cl ratios, as well as relatively low δ18OSO4 values, suggest that vertical input of biogenically derived SO4 via diffuse recharge is the predominant source of dissolved SO4 to the aquifer. Further along the hydraulic gradient towards the discharge area near the River Murray, δ34S values in the unconfined Murray Group Aquifer increase, and SO4/Cl ratios decrease, due to upward leakage of waters from the confined Renmark Group Aquifer which has a distinctly low SO4/Cl and high δ34S (14.9–56.4‰). Relatively positive δ34S and δ18OSO4 values, and low SO4/Cl in the Renmark Group Aquifer is typical of SO4 removal by bacterial reduction. The S isotope fractionation between SO4 and HS of ∼24‰ estimated for the confined aquifer is similar to the experimentally determined chemical fractionation factor for the reduction process but much lower than the equilibrium fractionation (∼70‰) even though the confined groundwater residence time is >300 Ka years. Mapping the spatial distribution of δ34S and SO4/Cl of the unconfined Murray Group Aquifer provides an indicative tool for identifying the approximate extent of mixing, however the poorly defined end-member isotopic signatures precludes quantitative estimates of mixing fractions.  相似文献   

5.
The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ13CDIC) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO3-rich, SO42−-rich and Cl-rich. The HCO3-rich groundwater is undergoing closed system carbonate evolution from soil CO2(g) and weathering of aquifer carbonates. The SO42−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ13CDIC of the HCO3-rich groundwater was controlled by nearly equal contribution of carbon from soil CO2(g) and the aquifer carbonates, such that the δ13C of carbon added to the groundwater was −11.6‰. In the SO42−-rich groundwater, gypsum induced dedolomitization increased the 13C such that the δ13C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl-rich groundwater, common ion induced precipitation of calcite depleted the 13C such that the δ13C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution.  相似文献   

6.
《Applied Geochemistry》1998,13(2):185-195
The occurrence and significance of aqueous flow through fractures in unsaturated tuff was investigated at the Apache Leap Research Site near Superior, Arizona. Water samples for geochemical and isotopic analysis were collected from water seeping from fractures in a mine haulage tunnel, from the saturated zone in a vertical borehole (USW UZP-4), and from both the unsaturated and saturated zones in an angled borehole (DSB). The geochemistry and14C activity of water samples from the DSB suggest that most of the recharge to the saturated zone has occurred through fractures, especially beneath the ephemeral streams. Evidence of substantial recent recharge through fractures was found in saturated-zone samples from the mine haulage tunnel using 3H, δ34S and SO42−/Cl analyses. Evidence of partial imbibition of fracture flow into the rock matrix was found at multiple depths throughout the 147 m unsaturated zone at the DSB using geophysical measurements from the borehole, water-content analyses from core samples, and 14C and 3H analyses from pore water extracted from preserved core samples. Post-bomb 14C activity was measured in pore water near fractures just above the saturated zone.  相似文献   

7.
《Applied Geochemistry》1995,10(4):447-460
Brines in the Miocene formations of the Upper Silesian Coal Basin have isotopic composition close to SMOW, which identifies them as the connate marine water. However, controversies exist on the origin of brines in the Carboniferous formations. Isotopic and hydrochemical data exclude any relationship to marine water and enrichment by evaporation. The most common brine which occurs at great depths can be identified as the oldest infiltration in a very hot climate (δ18O ⋟ −2‰, δD ⋟ −20‰, Cl content 34 to 140 g/L). This brine is free of SO42− and U, and rich in Ba2+ and226Ra. Its salinity is probably related to the leaching of evaporites and intensive weathering of rocks during the Rotliegendes.Other brines are difficult to identify because their isotopic contents are within the range of mixing between the oldest brine and the Quaternary waters (δ18O ⋟ 10‰, δD ⋟ 70‰). Isotopic and hydrochemical data allow identification of several occurrences of brine formed by meteoric water of a warm Tertiary climate, after the last marine transgression in the Tortonian. That brine is rich in SO42− and contains moderate contents of226Ra and U. Its salinity is thought to result from leaching of Miocene evaporites. Two other identified types of brines can be related to some infiltration periods before the last marine transgression. The sources in salinity of these 2 types remain unknown. Mining activity results in a common occurrence of mixed brines. When the Quaternary component dominates, its identification is easy from the isotopic composition, whereas the end brine component can ususally be identified by chosen ion ratios and the presence or lack of sulphates.  相似文献   

8.
The geochemical and isotopic composition of surface waters and groundwater in the Velenje Basin, Slovenia, was investigated seasonally to determine the relationship between major aquifers and surface waters, water–rock reactions, relative ages of groundwater, and biogeochemical processes. Groundwater in the Triassic aquifer is dominated by HCO3 , Ca2+, Mg2+ and δ13CDIC indicating degradation of soil organic matter and dissolution of carbonate minerals, similar to surface waters. In addition, groundwater in the Triassic aquifer has δ18O and δD values that plot near surface waters on the local and global meteoric water lines, and detectable tritium, likely reflecting recent (<50 years) recharge. In contrast, groundwater in the Pliocene aquifers is enriched in Mg2+, Na+, Ca2+, K+, and Si, and has high alkalinity and δ13CDIC values, with low SO4 2– and NO3 concentrations. These waters have likely been influenced by sulfate reduction and microbial methanogenesis associated with coal seams and dissolution of feldspars and Mg-rich clay minerals. Pliocene aquifer waters are also depleted in 18O and 2H, and have 3H concentrations near the detection limit, suggesting these waters are older, had a different recharge source, and have not mixed extensively with groundwater in the Triassic aquifer.  相似文献   

9.
Six gas samples were collected from five thermal springs in the Semail Nappe ophiolite and the calcareous (calcite and dolomite) Hajar Formation, northern Oman. The3He/4He,4He/20Ne,40Ar/36Ar and38Ar/36Ar ratios, chemical compositions (H2, N2, CO2, CH4, O2, Ar and He), and stable isotope compositions (δDH2, δDH2O, δ13CCO2, δ13CCH4, and δ15NN2) are reported. Samples from the ophiolite region are significantly anoxic with major constituents of H2, CH4 and N2, while those from calcite and dolomite regions are ordinary gas seeps, consisting of N2, CO2 and/or O2. The former H2-rich gas is characterized by relatively high3He/4He ratio (0.4–0.8 Ratm) with low He content (<5 ppm), atmospheric40Ar/36Ar ratio, low N2/Ar ratio (<55) and high δ15NN2 value (∼1 ‰). On the other hand, the latter N2-rich gas shows relatively low3He/4He ratio (0.1–0.4 Ratm) with high He concentration (>300 ppm), slight radiogenic40Ar/36Ar ratio, high N2/Ar ratio (77–97) and low δ15NN2 value (<0‰). Observed δDH2 value of −536‰ in H2-rich gas is distinguished from the literature value of −699‰ in the ophiolite region, giving discrepant isotope formation temperatures.  相似文献   

10.
Using hydrogeological data, historical chemical data and the results of studies in adjacent aquifers, an interpretation of the water chemistry from a sparse network of boreholes is presented for the Liverpool area. The chemistry of the fresh groundwater samples is influenced by geology, pollution and pumping history. The oldest waters, present where the sandstone is covered by Quaternary deposits, are calcite-saturated, contain little NO3 and have low SO2−4 and Cl concentrations. However, water from the Collyhurst Sandstone are depleted in HCO3 whatever the concentrations of the other anions. Samples from boreholes in areas where the sandstones are not covered by Quaternary deposits are characterized by very low alkalinity and pH, and by high NO3, SO2−4, and Cl. In the regions of the aquifer close to sandstone outcrop, or where the Quaternary deposits are thin, the water samples have higher alkalinity and pH, and lower anion concentrations. Scattered throughout the region are boreholes yielding waters with very high SO2−4 concentrations: where associated with industrial sites, these waters also have high NO3 concentrations and industrial pollution is suspected. In rural areas the high SO2−4 concentrations are derived from leakage through the sulphur-bearing tills in response to pumping-induced lowering of the piezometric surface. The distribution of borehole water types can be described with the help of a set of rules relating water type to hydrogeological features; these rules allow a map of hydrochemical distributions to be constructed. Saline groundwaters occur in the aquifer adjacent to the Mersey Estuary and have chemistry compositions equivalent to slightly modified, diluted Estuary water. With the exception of a single deep borehole sample, there is no indication of the widespread presence of ancient saline groundwaters in the base of the sandstone sequences as is found in the sandstones to the east of the study area. However, slightly saline, reduced waters occur below the Mercia Mudstone Group in the north of the area. Historical records give some indication of the changes in water chemistry distributions through time.  相似文献   

11.
《Applied Geochemistry》1996,11(3):433-445
Twenty-seven samples from a confined Lower-Middle Jurassic aquifer and an unconfined Oxfordian aquifer of the North Aquitaine Basin (France) have been analysed for their major elements, Br,18O,2H,13C and14C contents. Hydrochemistry indicates (1) a dissolution of carbonate and anhydrite near the recharge zone and (2) a dilution of a saline water derived from a seawater/halite mixing in the deeper part of the aquifer. The mixing is also visible in a δ18O vs Cl diagram in which two different groups appear: recent waters and old waters indicating a mixing process between fresh and saline groundwaters. The composition of the saline water is likely to be 34,100±11,200 ppm in Cl, 70±20 ppm in Br and more than −3.5±07‰ vs SMOW in18O.13C contents indicate (1) a C exchange with CaCO3 matrix for groundwaters near the recharge zone and (2) a participation of organic matter in the deep part of the aquifer.Residence times for waters near the area of the aquifer outcrop correspond to Holocene and Late Pleistocene periods. The depletion in stable isotopes of 10 to 15,000 y B.P. waters show a late glacial period infiltration to the aquifer. After a distance of about 10 km in the aquifer, the14C activities are 0 pmc showing the presence of ‘old’ groundwaters.  相似文献   

12.
《Applied Geochemistry》1999,14(3):333-363
The hydrochemical, radiochemical, stable isotope, 14C and dissolved noble gas composition of groundwaters has been determined along two profiles across the confined, fissured Chalk aquifer of the London Basin of southern England, and for selected sites in the adjacent Berkshire Basin. During downgradient flow in the London Basin aquifer, the groundwater chemistry is modified by water–rock interactions: congruent and incongruent reaction of the carbonate lithology resulting in enhanced Mg/Ca and Sr/Ca ratios and 13C contents with increased residence times; redox and ion exchange reactions; and towards the centre of the Basin, mixing with a residual saline connate water stored in the Chalk matrix. There is evidence from anomalous water chemistries for a component of vertical leakage from overlying Tertiary beds into the confined aquifer as a result of historical dewatering of the aquifer. Dissolved noble gas contents indicate the climate was up to 4.5°C cooler than at present during recharge of the waters now found in the centres of both Basins; stable isotope (2H and 18O) depletions correspond to this recharge temperature change. For evolved waters having δ13C > −8‰ PDB a negative linear correlation is demonstrated between derived recharge temperatures and δ13C values, which is interpreted as mixing between relatively warm, light isotopic, fracture-borne waters and cooler stored waters of the matrix having a 13C signature more or less equilibrated with the Chalk. From geochemical (14C, 4He) age estimates, the abstracted water is interpreted as being either of wholly Holocene/post-Devensian glacial origin, or an admixture of Holocene and Late Pleistocene pre-glacial (cold stage interstadial) recharge. Devensian pleniglacial stage waters of the Last Glacial Maximum are not represented.  相似文献   

13.
Ayadi  Rahma  Trabelsi  Rim  Zouari  Kamel  Saibi  Hakim  Itoi  Ryuichi  Khanfir  Hafedh 《Hydrogeology Journal》2018,26(4):983-1007

Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water–rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  相似文献   

14.
Geothermal resources are very rich in Yunnan, China. However, source of dissolved solutes in geothermal water and chemical evolution processes remain unclear. Geochemical and isotopic studies on geothermal springs and river waters were conducted in different petrological-tectonic units of western Yunnan, China. Geothermal waters contain Ca–HCO3, Na–HCO3, and Na (Ca)–SO4 type, and demonstrate strong rock-related trace elemental distributions. Enhanced water–rock interaction increases the concentration of major and trace elements of geothermal waters. The chemical compositions of geothermal waters in the Rehai geothermal field are very complicated and different because of the magma chamber developed at the shallow depth in this area. In this geothermal field, neutral-alkaline geothermal waters with high Cl, B, Li, Rb Cs, As, Sb, and Tl contents and acid–sulfate waters with high Al, Mn, Fe, and Pb contents are both controlled by magma degassing and water–rock interaction. Geothermal waters from metamorphic, granite, and sedimentary regions (except in the Rehai area) exhibit varying B contents ranging from 3.31 mg/L to 4.49 mg/L, 0.23 mg/L to 1.24 mg/L, and <0.07 mg/L, respectively, and their corresponding δ11B values range from −4.95‰ to −9.45‰, −2.57‰ to −8.85‰, and −4.02‰ to +0.06‰. The B contents of these geothermal waters are mainly controlled by leaching host rocks in the reservoir, and their δ11B values usually decrease and achieve further equilibrium with its surrounding rocks, which can also be proven by the positive δ18O-shift. In addition to fluid–rock reactions, the geothermal waters from Rehai hot springs exhibit higher δ11B values (−3.43‰ to +1.54‰) than those yielded from other areas because mixing with the magmatic fluids from the shallow magma. The highest δ11B of steam–heated waters (pH 3.25) from the Zhenzhu spring in Rehai is caused by the fractionation induced by pH and the phase separation of coexisting steam and fluids. Given the strong water–rock interaction, some geothermal springs in western Yunnan show reservoir temperatures higher than 180 °C, which demonstrate potential for electricity generation and direct-use applications. The most potential geothermal field in western Yunnan is located in the Rehai area because of the heat transfer from the shallow magma chamber.  相似文献   

15.
The Shimen realgar deposit is characterized by the pipi-shaped orebody and the development of silica sinter and hydrothermal explosive breccia which are typical of hot spring activity.Very similar trace-element associations are noticed between the silica cap and the breccia and modern hot spring waters in the area.The chemistr of ore-forming solutions is also well comparable with that of modern hot spring.,The spring system that gave rise to the mineralization was charged by ground waters heated through thermal conducting systems in the deep crust and,to a lesser extent,by geothermal gradient.ΔD,δ^18O,δ^13CCH4andδ^13CH4andδ^13CCO2values and ^40Ar/^36Ar and 3^He/^4He ratios indicate that the spring system is of crustal derivation.The ore-forming metals were supplied by surrounding strata,particularly those underlying the ore deposits.The mechanim of ore deposition is thought to be hydrothermal explosion and accompanying boiling and abrupt changes in pH and Eh.Located in northwest Hunan,the Shimen realgar deposit is the leading arsenic producer in the country,However,regardless of its long mining history,the genesis of this deposit has long been a puzzle.It was considered to be postmagmatic epithermal in the leading arsenic producer in the puzzle.It Was considered to be postmagmatic epithermal in origin,but this is trongly challenged by filling(metasomatism)in karst environment proposed later by Zhou Zhiquan(1986)also encounters a number of difficulties.For example,why can the pipi-shaped orebody vertically extend up to several hundreds meters without any compatible development in the lateral dimension? A hot spring genesis is suggested in the present paper based on geological observations and laboratory studies conducted by the authors in recent years.  相似文献   

16.
The Silurian bedrock aquifer constitutes a major aquifer system for groundwater supply across the Ontario province in Canada. The application of natural and industrial fertilizers near urban centers has led to groundwater NO3-N concentrations that sometimes have exceeded the drinking water limit, posing a threat to the usage of groundwater for the human consumption. Therefore, there is a growing interest and concern about how nitrate is being leached, transported and potentially attenuated in bedrock aquifers. This study assesses the local distribution of groundwater NO3 in the up-gradient area of two historically impacted municipal wells, called Carter Wells, in the City of Guelph, Canada, in order to evaluate the potential nitrate attenuation mechanisms, using both groundwater geochemical and isotopic analysis (3H, δ15N-NO3, δ18O-NO3, δ18O-SO4, δ34S-SO4) and a detailed vertical hydrogeological and geochemical bedrock characterization. The results indicate that probably the main source of nitrate to the Carter Wells is the up-gradient Arkell Research Station (ARS), an agricultural research facility where manure has been historically applied. The overburden and bedrock groundwater with high NO3 concentrations at the ARS exhibits a manure-related δ15N and δ18O signature, isotopically similar to the high nitrate in the down-gradient groundwater from domestic wells and from the Carter Wells. The nitrate spatial distribution appears to be influenced and controlled by the geology, in which more permeable rock is found in the Guelph Formation which in turn is related to most of the high NO3 groundwater. The presence of an underlying low permeability Eramosa Formation favors the development of oxygen-depleted conditions, a key factor for the occurrence of denitrification. Groundwater with low NO3-N concentrations associated with more oxygen-limited conditions and coincident with high SO42− concentrations are related to more enriched δ15N and δ18O values in NO3 and to more depleted δ34S and δ18O values in SO42−, suggesting that denitrification coupled with pyrite oxidation is taking place. The presence of macro crystalized and disseminated pyrite especially in the Eramosa Formation, can support the occurrence of this attenuation process. Moreover, based on tritium analysis, some denitrification can occur in shallow bedrock and within relatively short residence times, associated with less permeable conditions in depth which facilitates oxygen consumption through sulfide oxidation. The role of denitrification mediated by organic carbon cannot be discarded at the study site. This study suggests that the geological configuration and particularly the presence of low permeability Eramosa Formation can play an important role on nitrate natural attenuation, which may serve as a decision factor on defining the bedrock water supply system for both domestic and municipal purposes.  相似文献   

17.
The isotopic composition of water and dissolved Sr as well as other geochemical parameters at the 2516 m deep Outokumpu Deep Drill Hole, Finland were determined. The drill hole is hosted by Palaeoproterozoic turbiditic metasediments, ophiolite-derived altered ultramafic rocks and pegmatitic granitoids. Sodium–Ca–Cl and Ca–Na–Cl-rich waters (total dissolved solids up to ca. 70 g L−1) containing significant amounts of gas, mainly CH4 (up to 32 mmol L−1), N2 (up to 10 mmol L−1), H2 (up to 3.1 mmol L−1) and He (up to 1.1 mmol L−1) discharge from fracture zones into the drill hole. This water is distinct from the shallow fresh groundwater of the area, and has an isotopic composition typical of shield brines that have been modified during long-term water–rock interaction. Based on water stable isotopes and geochemistry, the drill hole water profile can be divided into five water types, each discharging from separate fracture systems and affected by the surrounding rocks. The δ2H varies from −90‰ to −56‰ (VSMOW) and δ18O from −13.5‰ to −10.4‰ (VSMOW), plotting clearly above the Global and Local Meteoric Water Lines on a δ2H vs. δ18O diagram. The 87Sr/86Sr ratios range between 0.72423 and 0.73668. Simple two-component mixing between 2H and 18O rich end-member brine and meteoric water cannot explain the water stable isotopic composition and trends observed. Instead, hydration of silicates by ancient groundwaters recharged under different climatic conditions, warmer than at present, is the most likely mechanism to have caused the variation of the δ2H and δ18O values. Water types correlate with changes in microbial communities implying that different ecosystems occur at different depths. The different water types and microbial populations have remained isolated from each other and from the surface for long periods of time, probably tens of millions of years.  相似文献   

18.
《Applied Geochemistry》1996,11(3):471-479
Thermal waters with discharge temperatures ranging from 32 to 70°C are being discharged along the Gulf of Suez (Egypt) from springs and shallow artesian wells. A comprehensive chemical and isotopic study of these waters supports previous suggestions that the waters are paleometeoric waters from the Nubian sandstone aquifer. The chemical and isotopic compositions of solutes indicate possible contributions from Tertiary sedimentary aquifer rocks and windblown deposits (marine aerosols and/or evaporite dust) in the recharge area. There is no chemical or isotopic evidence for mixing with Red Sea water. Gas effervescence from the Hammam Faraoun thermal water contains about 4% CH413C = −32.6‰) and 0.03% He having an isotopic ratio consistent with a mixture of crustal and magmatic He (3He/4He = 0.26 Re). Geothermometers for the thermal waters indicate maximum equilibration temperatures near 100°C. The waters could have been heated by percolation to a depth of several km along the regional geothermal gradient.  相似文献   

19.
《Applied Geochemistry》2000,15(2):157-169
Ground-water chemistry and the stable C isotope composition (δ13CDIC) of dissolved inorganic C (DIC) were measured in a sand aquifer contaminated with JP–4 fuel hydrocarbons. Results show that ground water in the upgradient zone was characterized by DIC content of 14–20 mg C/L and δ13CDIC values of −11.3‰ to −13.0‰. The contaminant source zone was characterized by an increase in DIC content (12.5 mg C/L to 54 mg C/L), Ca, and alkalinity, with a significant depletion of 13C in δ13CDIC (−11.9‰ to −19.2‰). The source zone of the contaminant plume was also characterized by elevated levels of aromatic hydrocarbons (0 μg/L to 1490 μg/L) and microbial metabolites (aromatic acids, 0 μg/L to 2277 μg/L), non-detectable dissolved O2, NO3 and SO4. Phospholipid ester-linked fatty acid analyses suggest the presence of viable SO4-reducing bacteria in ground water at the time of sampling. The ground-water chemistry and stable C isotope composition of ground-water DIC are interpreted using a chemical reaction model involving rainwater recharge, contributions of CO2 from soil gas and biodegradation of hydrocarbons, and carbonate dissolution. The major-ion chemistry and δ13CDIC were reconciled, and the model predictions were in good agreement with field measurements. It was concluded that stable C isotope measurements, combined with other biogeochemical measures can be a useful tool to monitor the dominant terminal electron-accepting processes in contaminated aquifers and to identify mineralogical, hydrological, and microbiological factors that affect δ13C of dissolved inorganic C.  相似文献   

20.
《Applied Geochemistry》1997,12(4):483-496
The34S-to-32S ratio in dissolved SO4 has been studied in the Kalix River, Northern Sweden, and its catchment. Weekly sampling over 17 months revealed temporal variations from +5.3‰ up to +7.4‰ in the δ34S values in the river. Snow and rain samples showed lower δ34S values (average +5.6‰ and +5.0‰, respectively). The atmosphere is the major source for S in surface waters in the catchment, and the heavier δ34S values in the river are a result of SO4 reduction within the catchment.Most of the temporal variations in the δ34S value in the river are caused by a mixing of water from the mountain areas (relatively light δ34S) and the woodland. The δ34S value is relatively heavy in the woodland tributaries because of bacterial SO4 reduction in peatland areas influenced by groundwater.The highest δ34S values were measured during the spring flood, in June and in November. These heavy δ34S values are related to different types of water with diverse origins.The heavy δ34S values coinciding with the early spring flood originate from peatland areas in the woodland. Relatively heavy δ34S values (up to +14.4‰) were registered in mire water. Smaller variations of the δ34S value during summer and early autumn most likely were caused by the input of ground-mire water during heavy rains. A correlation between increased TOC concentrations and increased δ34S values was observed.The heavy δ34S values in June and November probably originate from SO4 reduction in bottom water and sediments in lakes within the catchment. Bottom water, enriched in34SSO4, was transported in the river during the spring and autumn overturn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号