首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solar soft X-rays have historically been inaccurately modeled in both relative variations and absolute magnitudes by empirical solar extreme ultraviolet (EUV) irradiance models. This is a result of the use of a limited number of rocket data sets which were primarily associated with the calibration of the AE-E satellite EUV data set. In this work, the EUV91 solar EUV irradiance model has been upgraded to improve the accuracy of the 3.0 to 5.0 nm relative irradiance variations. The absolute magnitude estimate of the flux in this wavelength range has also been revised upwards. The upgrade was accomplished by first digitizing the SOLRAD 11 satellite 4.4 to 6.0 nm measured energy flux data set, then extracting and extrapolating a derived 3.0 to 5.0 nm photon flux from these data, and finally by performing a correlation between these derived data and the daily and 81-day mean 10.7 cm radio flux emission using a multiple linear regression technique. A correlation coefficient of greater than 0.9 was obtained between the dependent and independent data sets. The derived and modeled 3.0 to 5.0 nm flux varies by more than an order of magnitude over a solar cycle, ranging from a flux below 1×108 to a flux greater than 1×109 photons cm–2 s–1. Solar rotational (27-day) variations in the flux magnitude are a factor of 2. The derived and modeled irradiance absolute values are an order of magnitude greater than previous values from rocket data sets related to the calibration of the AE-E satellite.  相似文献   

2.
The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 s cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1–50.0 nm) by the flare soft X‐ray and EUV flux. The first order EUV channel (26–34 nm) is not saturated by the flare flux because of its limited bandwidth, but it is sensitive to the arrival of Solar Energetic Particles (SEP). While both channels detect nearly equal SEP fluxes, their contributions to the count rate is sensibly negligible in the zero order channel but must be accounted for and removed from the first channel count rate. SEP contribution to the measured SEM signals usually follows the EUV peak for the gradual solar flare events. Correcting the extreme solar flare SEMEUV measurements may reveal currently unclear relations between the flare magnitude, dynamics observed in different EUV spectral bands, and the measured Earth atmosphere response. A simple and effective correction technique based on analysis of SEM count‐rate profiles, GOES X‐ray, and GOES proton data has been developed and used for correcting EUV measurements for the five extreme solar flare events of July 14, 2000, October 28, November 2, November 4, 2003, and January 20, 2005. Although none of the 2000 and 2003 flare peaks were contaminated by the presence of SEPs, the January 20, 2005 SEPs were unusually prompt and contaminated the peak. The estimated accuracy of the correction is about ±7.5% for large X‐class events. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
EUV97 is a solar EUV empirical model that incorporates revised soft X-ray fluxes from the SOLRAD-11 satellite (1976–1979) and uses Lα recently recalibrated to the UARS satellite (1991–present) SOLSTICE Lα. The soft X-ray data have been revised from the original flux values using Mewe's spectral fits to the data. The recalibrated AE-E and SME Lα datasets use UARS Lα for absolute flux values to provide two solar cycles of Lα irradiance extending back to 1977. Lα is used by EUV97 as a proxy for chromospheric EUV irradiances. The EUV97 empirical solar model takes its heritage from the EUV91 model based on a multiple linear regression technique that fits soft X-ray and EUV irradiances to 10.7 cm flux for transition region and coronal emissions or to Lα and Hei 10830 Ú EW for chromospheric emissions.  相似文献   

4.
Broadband sensors aboard the Naval Research Laboratory's SOLRAD 11 satellites measured solar emission in the 0.5 to 3 Å, 1 to 8 Å, 8 to 20 Å, 100 to 500 Å, 500 to 800 Å, and 700 to 1030 Å bands between March 1976 and October 1979. Measurements of EUV and soft X-ray emission from a large number of solar flares were obtained. Although solar flare measurements in the soft X-ray bands are continuously made and used as a standard of a flare's geophysical significance, direct measurements of flare EUV emission are quite rare. We present measurements of the X-ray and EUV emission from several flares with special emphasis on the relative EUV response associated with flares in different categories determined by 1 to 8 Å soft X-ray flux. An example of a flare exhibiting an impulsive (nonthermal) phase is included.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 Semptember 1980, Scheveningen, The Netherlands.  相似文献   

5.
The influence of solar EUV and solar wind conditions on ion escape at Mars is investigated using ion data from the Aspera-3 instrument on Mars Express, combined with solar wind proxy data obtained from the Mars Global Surveyor (MGS) spacecraft. A solar EUV flux proxy based on data from the Earth position, scaled and shifted in time for Mars, is used to study relatively long time scale changes related to solar EUV variability. Data from May 2004 until November 2005 has been used. A clear dependence on the strength of the subsolar magnetic field as inferred from MGS measurements is seen in the ion data. The region of significant heavy ion flows is compressed and the heavy ion flux density is higher for high subsolar magnetic field strength. Because of the difference in outflow area, the difference in estimated total outflow is somewhat less than the difference in average flux density. We confirm previous findings that escaping planetary ions are mainly seen in the hemisphere into which the solar wind electric field is pointed. The effect is more pronounced for the high subsolar magnetic field case.The average ion motion has a consistent bias towards the direction of the solar wind electric field, but the main motion is in the antisunward direction. The antisunward flow velocity increases with tailward distance, reaching above at 2 to 3 martian radii downtail from Mars for O+ ions. Different ion species reach approximately the same bulk flow energy. We did not find any clear correlation between the solar EUV flux and the ion escape distribution or rate, probably because the variation of the solar EUV flux over our study interval was too small. The results indicate that the solar wind and its magnetic field directly interacts with the ionosphere of Mars, removing more ions for high subsolar magnetic field strength. The interaction region and the tail heavy ion flow region are not perfectly shielded from the solar wind electric field, which accelerates particles over relatively large tail distances.  相似文献   

6.
In this paper we compute the rate of solar EUV heating in the upper atmosphere by photo-dissociation and photo-ionization, taking care to include properly the effects of oblique incidence of solar flux, sphericity of the atmosphere and ellipticity of the Earth's orbit. The time and latitudinal variations of the computed heat function are revealed by numerical Fourier analysis of the heat function into harmonics of the yearly cycle. It is shown that EUV absorption contains a ‘latitude independent’ semi-annual component of heating with the ‘proper phase’ to account for the semi-annual density variations. Further, the annual component of the heat function predicts the existence of ‘summer polar’ density increases in the northern and southern hemispheres.  相似文献   

7.
Long-term data on the evolution of the parameters of motion of 15 artificial satellites of the Earth in orbits with minimal heights of 400–1100 km were used to study the density variations in the upper atmosphere at minimums of four cycles of solar activity. It was found that the density at these heights considered increased by about 7% at the minimum of solar cycle 20 as compared to solar cycle 19. Later, the density fell rather linearly at the minimums of cycles 21 and 22. The statistical processing of the data for solar cycles 20–22 demonstrated that the density decreased by 4.6% over ten years and by 9.9% over 20 years. Analyzing the density variations during the four cycles of solar activity, we found that the long-term decrease in density observed at the minimums of cycles 20–22 is caused mainly by specific variations of the solar activity parameters (namely, the solar radio flux and the level of geomagnetic disturbance).__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 2, 2005, pp. 177–183.Original Russian Text Copyright © 2005 by Volkov, Suevalov.  相似文献   

8.
Several progressions in the temporal characteristics of full-disk solar UV and EUV fluxes have been identified that raise many questions about the solar physics involved. The collective effect of numerous enhancements smaller than scaled plages contribute significantly to the solar cycle variations, especially for emissions from the cooler portions of the corona and the chromosphere. Active-region remnants are suggested to have a strong role even in solar-rotation induced variations late in an episode of major activity. Although cool coronal EUV emissions are long lasting, the persistence of the solar-rotation induced variations is even greater at photospheric UV wavelengths. Gyroresonance and possibly nonthermal radio emission at centimeter wavelengths are suggested to be particularly important during the first solar rotation of an episode of major activity.  相似文献   

9.
Several progressions in the temporal characteristics of full-disk solar UV and EUV fluxes have been identified that raise many questions about the solar physics involved. The collective effect of numerous enhancements smaller than scaled plages contribute significantly to the solar cycle variations, especially for emissions from the cooler portions of the corona and the chromosphere. Active-region remnants are suggested to have a strong role even in solar-rotation induced variations late in an episode of major activity. Although cool coronal EUV emissions are long lasting, the persistence of the solar-rotation induced variations is even greater at photospheric UV wavelengths. Gyroresonance and possibly nonthermal radio emission at centimeter wavelengths are suggested to be particularly important during the first solar rotation of an episode of major activity.  相似文献   

10.
Benevolenskaya  Elena E. 《Solar physics》2003,216(1-2):325-341
Extreme-ultraviolet data from EIT/SOHO (1996–2002), soft X-ray data from Yohkoh (1991–2001), and magnetic field data from MDI/SOHO (1996–2002) and Kitt Peak Observatory, NSO/NOAO (1991–2002) are analyzed together in the form of synoptic maps for the investigation of solar cycle variations of the corona and their relation to the magnetic field. These results show new interesting relations between the evolution of the topological structure of the corona, coronal heating and the large-scale magnetic field. The long-lived coronal structures are related to complexes of solar activity and display quasi-periodic behavior (in the form of impulses of coronal activity) with periods of 1.0–1.5 year, in the axisymmetric distribution of EUV and X-ray fluxes during the current solar cycle 23. In particular, during the second maximum of this cycle the solar corona became somewhat hotter than it was in the period of the first maximum.  相似文献   

11.
R. H. Dicke 《Solar physics》1988,115(1):171-181
It has previously been shown that the statistics of the phase fluctuation of the sunspot cycle are compatible with the assumption that the solar magnetic field is generated deep in the Sun by a frequency stable oscillator and that the observed substantial phase fluctuation in the sunspot cycle is due to variation in the time required for the magnetic field to move to the solar surface (Dicke, 1978, 1979). It was shown that the observed phase shifts are strongly correlated with the amplitude of the solar cycle. It is shown here that of two empirical models for the transport of magnetic flux to the surface, the best fit to the data is obtained with a model for which the magnetic flux is carried to the surface by convection with the convection velocity proportional to a function of the solar cycle amplitude. The best fit of this model to the data is obtained for a 12-yr transit time. The period obtained for the solar cycle is T = 22.219 ± 0.032 yr. It is shown that the great solar anomaly of 1760–1800 is most likely real and not due to poor data.  相似文献   

12.
Tsap  Y. T.  Filippov  B. P.  Kopylova  Y. G. 《Solar physics》2019,294(3):1-14

We investigate the coronal imaging capabilities of the Solar UltraViolet Imager (SUVI) on board the Geostationary Operational Environmental Satellite-R series spacecraft. Nominally Sun-pointed, SUVI provides solar images in six extreme ultraviolet (EUV) wavelengths. On-orbit data indicated that SUVI had sufficient dynamic range and sensitivity to image the corona to the largest heights above the Sun to date while simultaneously imaging the Sun. We undertook a campaign to investigate the existence of the EUV signal well beyond the nominal Sun-centered imaging area of the solar EUV imagers. We off-pointed the SUVI line of sight by almost one imaging area around the Sun. We present the details of the campaign we conducted when the solar cycle was at near the minimum and some results that confirm that EUV emission is present to beyond three solar radii.

  相似文献   

13.
Understanding the magnitude and temporal structure of variations in solar ultraviolet and extreme ultraviolet irradiance is critical to understanding solar forcing of the Earth's upper and middle atmosphere and hence to assessing the relative impact of natural and anthropogenic influences on Earth's atmospheric environment. Satellite based measurements of such variations are limited to recent times, are short in duration and subject to gaps making necessary ground-based surrogates with longer and more continuous coverage. Using indices derived from synoptic solar magnetograms taken at the Mount Wilson 150-foot solar tower, we have constructed models of several UV and near EUV lines and fluxes which correlate strongly (r > 0.90) with satellite data. These lines and fluxes include the Mgii h and k core-to-wing ratio, the Lα line and the 200–205 nm flux.  相似文献   

14.
The Pioneer Venus Orbiter (PVO) had on board the electron temperature probe experiment which measured temperature and concentration of electrons in the ionosphere of Venus. When the probe was outside the Venus ionosphere and was in the solar wind, the probe current was entirely due to solar photons striking the probe surface. This probe thus measured integrated solar EUV flux (Ipe) over a 13-year period from January 1979 to December 1991, thereby covering the declining phase of solar cycle 21 and the rising phase of solar cycle 22. In this paper, we examine the behavior of Ipe translated to the solar longitude of Earth (to be called EIpe) during the two solar cycles. We find that total EUV flux changed by about 60% during solar cycle 21 and by about 100% in solar cycle 22. We also compare this flux with other solar activity indicators such as F_10.7 , Lα, and the solar magnetic field. We find that while the daily values of EIpe are highly correlated with F_10.7 (correlation coefficient 0.87), there is a large scatter in EIpe for any value of this Earth-based index. A comparison of EIpe with SME and UARS SOLSTICE Lα measurements taken during the same period shows that EIpe tracks Lα quite faithfully with a correlation coefficient of 0.94. Similar comparison with the solar magnetic field (Bs) shows that EIpe correlates better with Bs than with F_10.7 . We also compare EIpe with total solar irradiance measured during the same period.  相似文献   

15.
The Solar Dynamics Observatory provides multiwavelength imagery from extreme ultraviolet (EUV) to visible light as well as magnetic-field measurements. These data enable us to study the nature of solar activity in different regions of the Sun, from the interior to the corona. For solar-cycle studies, synoptic maps provide a useful way to represent global activity and evolution by extracting a central meridian band from sequences of full-disk images over a full solar Carrington rotation (≈?27.3 days). We present the global evolution during Solar Cycle 24 from 20 May 2010 to 31 August 2013 (CR?2097?–?CR?2140), using synoptic maps constructed from full-disk, line-of-sight magnetic-field imagery and EUV imagery (171 Å, 193 Å, 211 Å, 304 Å, and 335 Å). The synoptic maps have a resolution of 0.1 degree in longitude and steps of 0.001 in sine of latitude. We studied the axisymmetric and non-axisymmetric structures of solar activity using these synoptic maps. To visualize the axisymmetric development of Cycle 24, we generated time–latitude (also called butterfly) images of the solar cycle in all of the wavelengths, by averaging each synoptic map over all longitudes, thus compressing it to a single vertical strip, and then assembling these strips in time order. From these time–latitude images we observe that during the ascending phase of Cycle 24 there is a very good relationship between the integrated magnetic flux and the EUV intensity inside the zone of sunspot activities. We observe a North–South asymmetry of the EUV intensity in high-latitudes. The North–South asymmetry of the emerging magnetic flux developed and resulted in a consequential asymmetry in the timing of the polar magnetic-field reversals.  相似文献   

16.
Variations of solar emission in the spectral ranges corresponding to the transition region (304 Å) and corona (175 Å) and their relation to solar wind parameters are investigated for the maximum and declining phase of solar cycle 23 (2001–2004) based on the CORONAS-F/SPIRIT data. It is shown that the variations of solar flux in both ranges are similar and demonstrate a high correlation for long data series. Meanwhile, some time intervals were registered when the intensity variations at 304 Å are delayed with respect to those in 175 Å by, on average, two days. For long periods, the spectra of the full-disk flux at 175 Å and of the solar wind density are close to each other; the same is true for the solar flux spectrum in the 304-Å range and the spectrum of the solar wind velocity. The assumption is made that active processes in the lower corona mainly affect long-period density variations, while the velocity characterizes the kinetics of the total stream of the outflowing matter and its long-term variations are considerably related to the physics of processes occurring deeper in the Sun.  相似文献   

17.
Fabry-Perot interferometer measurements of the Doppler shifts and widths of the nightglow 630.0 nm line at Laurel Ridge Observatory, Pennsylvania are presented for the period 1975 to 1979, covering both solar minimum and solar maximum conditions. The F-region neutral wind vectors vn and temperatures Tn deduced from these measurements show both day-to-day changes and overall seasonal patterns in the nocturnal variations during geomagnetically quiet conditions. Divergence in both the meridional and zonal horizontal flow is noted on occasion. The vn results are compared with models including only solar EUV heating and those with EUV plus a high latitude heat source. The aggregate vn data for solar cycle minimum conditions agree best with model predictions for winter zonal and equinoctal meridional winds and worst for winter meridional and summer zonal winds. At solar cycle maximum the predicted, rapid transition at equinox from summer to winter wind patterns and vice-versa is observed. The Tn data are in reasonable agreement with the MSIS model predictions.  相似文献   

18.
It is suggested that the experimental data on the solar neutrino flux as measured by Davis and his collaborators from 1970 to 1982 vary with the solar activity cycle to a very high level of statistical significance for all the available tests of the hypothesis (e.g., (t-test, 2-test, run test, Wilcoxon-Mann-Whitney test) when the solar neutrino flux data are computed from the weighted moving averages of order 5. The above tests have also been applied to the data that have been generated by the Monte Carlo simulation with production rate and background rate parameters that are typical of those in the actual experiment. It is shown that the Monte Carlo simulated data do not indicate a variation within the solar cycle. Thus the moving average data strongly favours the variation within the solar activity cycle.  相似文献   

19.
As an important measurement parameter, global total electron content (TEC) is appropriate for the study of the Sun–Earth connection. In this paper, the wavelet technique is employed to investigate the periodicities in global mean TEC during 1995–2008. Analysis results show several remarkable components (including 27-day, semiannual and annual cycles) existing in global mean TEC with obvious time-variable characteristics, besides 11-year cycle. After analyzing sunspot numbers and solar extreme ultra-violet (EUV) radiation variations during this time period, except for semiannual variations, close correlation between global mean TEC and solar variations is found, especially, a strong resemblance of the 27-day fluctuation exists in global mean TEC, sunspot and solar EUV radiation variations.  相似文献   

20.
Since 1958 it is known that there exists a response time of the upper atmosphere to changes in solar activity. This response time is best described as the lag between the 27-day variation of solar decimeter flux and the observed density changes of the upper atmosphere. Roemer obtained as a mean observational value for this lag 1.0 ± 0.12 days. Volland's simplified version of the Harris-Priester model of the upper atmosphere is used to calculate the delay which can be expected from theory. Only the effect of solar EUV radiation is taken into account. A possible influence of the corpuscular component of the solar radiation is not included in our estimate.

The calculations are carried out for the Harris-Priester model with solar activity index and a variation of . The resulting delay is 0.6 days. The calculated amplitude of the variations of the diurnal average temperatures during the solar 27-days cycle is in very good agreement with Jacchia's empirical formula.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号