首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phanerozoic chronostratigraphic units can only be defined through their lower boundary stratotypes.The lowermost stage of the Paleocene of China,which mainly consists of terrestrial deposits,can only be defined through its lower boundary stratotype,i.e.the continental Cretaceous/Paleogene boundary stratotype.There is no section yet found which contains continuous terrestrial deposits and biostratigraphic records of the Cretaceous-Paleogene transition in Nanxiong,Guangdong and Jiayin,Heilongjiang,there is no evidence for establishing the continental stratotype of the Cretaceous/Paleogene boundary in either area.Therefore,both the"Shanghuan stage"and"Furaoan stage"are not good candidates for the lowermost stage of the Paleocene of China.From the viewpoint of charophytes,the outcrop section of the Dangyang,Hubei Province(Central China)contains the most continuous,abundant and diverse terrestrial biostratigraphic records of the Cretaceous-Paleogene transition,in particular the early Paleocene,known so far in the world.The biostratigraphic records of ostracods in the transition are also continuous,rich,and diverse.The Dangyang outcrop section is the only section known so far in China that is a possible candidate for a continental stratotype of the Cretaceous/Paleogene boundary in China and the section is the only potential section identified to date for establishing the regional lowermost stage of the Paleocene,Paleogene and Cenozoic in China or stratotype section for the stage.  相似文献   

2.
The steps and methods for the establishment of the global boundary stratotype section and point (GSSP) are summed up briefly as follows. (i) Select rock sequences of approximately the same age duration in a region, make a thorough study of their properties or attributes in order to establish the high-resolution stratigraphic units reflecting the natural rhythms in Earth's history, and proceed by multidisciplinary comprehensive studies to reveal the relationship, including time-space relation and possible mutual causality, among the various stratigraphic units and the different natural rhythms established. (ii) Seek for the "natural break" that represents the "major natural changes in the historical development of the Earth" in shallow marine facies areas, which is frequently the third-order sequence boundaries. (iii) Trace from shallow marine facies areas toward the continental slope and bathyal areas to seek for a continuous depositional sequence that corresponds in time span to the "natural break" of shallow marine facies areas. (iv) Seek for a horizon within the continuous depositional sequence that approximately coincides with the maximum regressive point in the "natural break". This horizon is commonly within a lowerstand systems tract (LST) or a shelf margin systems tract (SMST) of the relevant third-order sequence. (v) Seek immediately above this horizon of maximum marine regression for an organic radiation or explosion event closely related to the natural boundary, which is generally the first flooding surface (FFS) of the relevant third-order sequence. (vi) Select within the organic event deposits closely related to the FFS the base boundary of a fossil taxon with widest geographical range as the Leading Group biozone for designation of the stratigraphic boundary. (vii) Select from among the sections with continuous depositional sequence formed under similar sedimentary palaeogeographic background (in general continental slope or bathyal environments) the section which possesses the shortest distance between the base boundary of the Leading Group biozone and the immediately underlying FFS of the relevant third-order sequence as the global stratotype section. The first appearance datum (FAD) of the Leading Group biozone species in the section may be regarded as the ideal GSSP. The steps suggested above are a supplement and improvement of the currently used procedures and methods for establishing GSSP. The GSSP established by using the steps and methods suggested here would make the stratigraphic boundaries better reflect the "major natural changes in the historical development of the Earth", more readily distinguishable and easily operable in recognition and correlation, and at the same time also make the designation of boundaries more objective.  相似文献   

3.
A candidate of the Induan-Olenekian boundary stratotype in the Tethyan region   总被引:10,自引:0,他引:10  
The Olenekian Stage was proposed by Kiparisova and Popov[1] based on the type section along the lower reaches of the Olenek River, Siberia. Later research showed that this section con-tains only the Olenikites spiniplicatus Zone of the Upper Olenekian Sta…  相似文献   

4.
Review of the literature on Ordovician conodont diversification in palaeoplates of North and Western China reveals that four diversity peaks are present in North China, occurring in the middle Tremadocian, early Floian, late Floian, and late Darriwilian, with three of these peaks (excepting that in the late Floian) also being recorded in Tarim. Three diversification intervals are present in North China, during the Tremadocian, late Floian, early and middle Darriwilian; comparable intervals are observed in the early and late Tremadocian, early Floian, and the Middle Ordovician in Tarim. The main conodont diversification episode in both palaeoplates took place in the Darriwilian, at the time of the Great Ordovician Biodiversification Event. A comparison of conodont diversity patterns in different palaeoplates (North China, Tarim, and South China) demonstrates that conodont radiation events mainly occurred within the Tremadocian, Floian, and Darriwilian. Conodont diversifications in these paleoplates also display some differences. In contrasting with Tarim and South China, North China witnessed a rapid conodont diversification during late Floian time. Conodont diversity in North China and Tarim increased continually and reached a peak in the late Darriwilian, concurrent with a prominent decreasing trend in South China. Differences of conodont diversification in these three palaeoplates may be related to their palaeogeography and tectonic history. When conodont diversifications in North China and Tarim are analysed on the background of palaeoenvironments, the main episodes are seen to be partly coincident with second order sea-level changes, particularly in North China. In general, conodont radiation correlates with large scale transgressions.  相似文献   

5.
The age of the Permian-Triassic boundary   总被引:1,自引:0,他引:1  
The 5 cm boundary clay bed in the Chinese stratotype section through the Permian-Triassic boundary has been recognised as a bentonite. SHRIMP ion microprobe dating of zircons in the bentonite indicates a magmatic age of 251.2 ± 3.4 Ma (2σ); this is the first direct constraint on the numerical age of the Permian-Triassic boundary.Future refinements of ages at this important, but poorly constrained, level of the Phanerozoic timescale may depend on re-analysis of this uniquely placed volcanic horizon, and other bentonites in the fossiliferous Chinese Upper Permian and Lower Triassic. The utility of defining the Permian-Triassic boundary in the Chinese stratotype section, in the vicinity of known dateable horizons, should be considered.  相似文献   

6.
A Permian-Triassic (P-Tr) boundary section of continuous carbonate facies, which well recorded the biotic and environmental processes through the great P-Tr transition in the shallow non-microbialite carbonate facies, has been studied in Yangou, Leping County, Jiangxi Province. The P-Tr sequence is well correlated with the Meishan section according to the conodont biostratigraphy and the excursion of carbon isotopes. A series of high-resolution thin-sections from the P-Tr boundary carbonate rocks at the Yangou section are studied to explore the interrelation between environmental change and biological evolution during the transitional time. Six microfacies have been identified based upon the observation of the thin-sections under a microscope on the grains and matrix and their interrelation. Combined with the data of fossils and carbon isotopes, Microfacies 4 (MF-4), coated-grain-bearing foraminifer oolitic sparitic limestone, and Microfacies 6 (MF-6), dark shelly micritic limestone, should be the different responses to the two episodes of mass extinction and environmental events that can be correlated throughout South China and even over the world. The oolitic limestone of MF-4 is the first finding from the latest Permian strata in South China and it might be a proxy of an unusual environmental condition of high pCO2, low sulfate concentration and of microbial blooming in the aftermath of the latest Permian mass extinction. The micritic limestone of MF-6 containing rich micro-gastropods and ostracods probably represents the blooming event of disaster taxa in the earliest Triassic environment. The microfacies analysis at the Yangou section can well reveal the episodic process of the biological evolution and environmental change in the shallow non-microbialite carbonate facies throughout the great P-Tr transition, thus the Yangou section becomes an important complement to the Meishan section.  相似文献   

7.
This paper systematically investigated the conodonts from the uppermost Permian to the Lower Triassic at the Dongpan Section, Southern Guangxi, South China, and obtained abundant Late Permian conodonts from the syndepositional limestone lenses of beds 3 and 5-2 at this section. One genus and eight species of conodont P1 element including one new species, Neogondolella dongpanensis sp. nov., have been identified. The feature of conodont fauna indicates that conodonts collected from beds 3 and 5 at the Dongpan Section belong to the Neogondolella yini conodont zone, and correspond to bed 24 at the Meishan Section. Based on these conodont data, we suggest that the Neoalbaillella optima radiolarian zone at the Dongpan Section at least extended to the upper part of the N. yini conodont zone.  相似文献   

8.
The hierarchically organized laminae, bundles, bundlesets and superbundlesets which correspond to a sub-Milankovitch, obliquity or precession, eccentricity and long eccentricity cyclothems, respectively, have been distinguished from the Upper Devonian Fras-nian-Famennian (F-F) transitional carbonate successions deposited in the carbonate-basin and slope facies of Guangxi, South China. The durations of cyclothems are 8000-10000a, 16667a or 33333a, 100000a and 400000a, respectively. The ratio of eccentricity to precession, eccentricity to obliquity, and long eccentricity to eccentricity is 1 : 6, 1 : 3 and 1 : 4 in the Devonian, respectively. Orbital cyclostratigraphical studies show that the durations of the conodont falsio-valis Zone, transitans Zone, punctate Zone, Lower hassi Zone, Upper hassi Zone, jamieae Zone, Lower rhenana Zone, Upper rhenana Zone, linguiformis Zone, Lower triangularis Zone, Middle triangularis Zone and Upper triangularis Zone are 0.4, 0.4, 0.4, 0.3, 0.4, 0.2, 0.8, 0.6, 0.8, 0.3, 0  相似文献   

9.
华南二叠系卡匹敦阶高分辨率浮点年代标尺   总被引:1,自引:0,他引:1       下载免费PDF全文
基于详细的生物地层学研究,以磁化率为古气候替代指标,对广西来宾铁桥剖面卡匹敦阶地层开展时间序列分析,建立高分辨率浮点年代标尺(FPTS).结果表明,磁化率记录了铁桥剖面中二叠世晚期沉积序列中的米兰科维奇旋回,卡匹敦阶上部磁化率突然增加与峨眉山玄武岩喷发和卡匹敦晚期全球性海退有关,这些事件导致同期沉积物中碎屑物质增加.铁桥剖面瓜德鲁普—乐平统界线附近磁化率和蓬莱滩剖面(乐平统底界GSSP)表现出一致的变化趋势,具可对比性.利用多窗谱法(MTM)和傅里叶变换(FT)从磁化率序列中识别出五个米兰科维奇周期:长偏心率周期(E2,405ka)、短偏心率周期(E1,100ka)、长地轴斜率周期(O2,44.1ka)、长岁差周期(P2,20.95ka)和短岁差周期(P1,17.7ka).对比基于E2周期建立的磁性地层磁化率(MSS)带和标准参考带(SRZ),建立整个沉积序列的高分辨率(200ka)FPTS,提出卡匹敦阶的时限为3.85 Ma(存在+0~0.28 Ma误差),整段沉积序列的平均沉积速率为2.91cm·ka-1.同时计算出卡匹敦阶内部七个牙形石带的时限,从最短26.6ka到最长2.3 Ma.另外,估算出峨眉山大火成岩省喷发启动时间为262.67 Ma,位于瓜德鲁普—乐平统界线之下1.42 Ma.  相似文献   

10.
Division and correlation of terrestrial J-K bound are a knotty-argued problem. The key to solving the problem is to find a deposition-continuous section. Owing to stratigraphic hiatus and organism-phylogeny break, we have been discussing the problem without any unitary criterion for several decades. Tectonic ac-tivities occurring strongly in the J-K transitional pe-riod caused commonly sedimentary omissions and frequently volcanic eruptions in northern Hebei Prov-ince, western Liaoning Prov…  相似文献   

11.
Exposed in natural outcrops near the Duibian Village, Jiangshan County, Zhejiang Province, China, the Duibian B section is proposed as the boundary stratotype for the base of an unnamed stage termed provisionally Cambrian Stage 9. The proposed position of the GSSP is 108.12 m above the base of the Huayansi Formation, at a horizon coinciding with the first appearance of the cosmopolitan agnostoid trilobite Agnostotes orientalis. This horizon coincides also with the first appearance of the cosmopoli-tan polym...  相似文献   

12.
The Givetian-Frasnian boundary at Liujing, Guangxi, South China is for the first time recognized and correlated in high resolution using characteristic chemocycles of element abundance fluctuation integrated with conodont biostratignphy. The first appearance of Ancyrodella rotundiloba early form is as a biomarker, and the boundary of lowering fluctuation of element abundance followed by a sequence of characteristic chemocycles with a sequence of cmodonts is as an abiotic auxiliary marker. The error is not more than 0.10 Ma. The study indicates that in a quiet interval, characteristic chemocycles integrated with biomarkers can be used for boundary recognition and regional cormlation in high resolution, and this method has potential for intercontinental correlation  相似文献   

13.
Low temperature eclogite facies metamorphism in Western Tianshan, Xinjiang   总被引:3,自引:0,他引:3  
According to the field occurrences and petrological study, the low temperature eclogite facies metamorphic rocks in Western Tianshan of Xinjiang can be divided into five types: (i) massive glaucophane-epidote eclogites and glaucophane-paragonite eclogites; (ii) schistose or gneissic mica eclogites; (iii) banded calcite eclogites; (iv) pillow glaucophane eclogites; (v) garnet-omphacite quartzites. Their eclogite facies metamorphism has undergone four stages of evolution: (i) pre-peak lawsonite-blueschist facies stage,T = 350–4000°C,P = 0.7–0.9 GPa; (ii) peak eclogite facies stage,T = 530 ± 20°C,P = 1.6–1.9 GPa; (iii) retrograde epidote-blueschist facies stage, T=500–530°C,P = 0.9–1.2 GPa and (iv) retrograde blueschist-greenschist facies stage,T= 450–550°C,P= 0.7–0.8 GPa. The metamorphic PT path of Western Tianshan eclogites is characterized by clockwise ITD resulting from the subduction of Tarim plate northward to Yili-Central Tianshan plate followed by fast uplift to the surface. But there were at least two stages of blueschist facies retrograde metamorphism overprinted during their uplift.  相似文献   

14.
Abundant perfectly-preserved phosphatic microspherules have been discovered across the Frasnian-Famennian(F-F)transition from the Yangdi section in Guilin,Guangxi,South China.They are mostly spherical or elliptical in shape and about 150μm in diameter with smooth exterior surfaces.Each microspherule consistently possesses a small dimple on the surface.The internal texture of microspherules consists of concentric light-colored apatite and dark-colored organic matter bands alternating around a central core.Conodonts have also been found preserved together with phosphatic microspherules in the same horizon,and the abundance of the former is obviously higher than that of the latter.Laser Raman spectral studies show close similarities in spectral patterns between the outer shells of phosphatic microspherules and the blade of the conodont genus Palmatolepis sp.,as well as between the microspherule nucleus and the platform of the same conodont genus.Furthermore,the statistical results and geochemical data demonstrate that the elevated abundance of phosphatic microspherules roughly coincides with the blooms of bacteria and algae,but is later than the sharp increase of oceanic nutrients.The phosphatic microspherules are interpreted here to be the‘otoliths’secreted by conodont animals based on the compositional similarities between phosphatic microspherules and conodonts and their interrelated abundances.In addition,an analogous study reveals morphological and textural similarities between fish otoliths and phosphatic microspherules.The formation of phosphatic microspherules is probably related to seawater eutrophication.We speculate that the explosive growth of bacteria and algae is probably caused by the enrichment of nutrients that is most likely associated with the increase of terrestrial inputs,submarine hydrothermal activities or the upwelling anoxic bottom waters in the late Devonian,which would stimulate the conodont animals to secrete phosphatic microspherules—the‘otoliths’of conodont animals.This study reveals the coupling relationship between organisms and environments from the perspective of phosphatic microspherules and provides new evidence for the cause of faunal crisis during the Late Devonian F-F transition.  相似文献   

15.
A suite of event deposits, isochronous and interrelated in origin, occurs widely near the Frasnian- Famennian boundary in Guangxi, South China. It is mainly distributed in the facies areas of the platform-margin slope and inter-platform rift-trough. The rudstone or calcirudite occur in the Liujing section of Hengxian and Luoxiu and Baqi sections of Xiangzhou in the facies area of platform-margin slope. The turbidites are observed in the sections of Yangdi and Baisha of Guilin, Du'an of Debao, Nandong and Sanli of Wuxuan, Xiangtian, Ma'anshan of Xiangzhou, Nayi of Chongzuo, Yunpan of Shanglin in the facies area of inter-platform rift-trough. The massive homogenites occur in sections of Mangchang, Luofu and Road from Nandan to Tian'e and Ma'anshan etc in the facies area of inter-platform rift-trough. Herein event deposits can be correlated in stratohorizon to the turbidite in the bottom of the Lower triangularis Zone in Hony railroad cut of Belgium, Devils Gate of Nevada, USA, Atrous of Morocco, South Urals and Fore-Kolyma of northeastern Siberia of Russia, and erosional discontinuities and brecciation in the Frasnian-Famennian boundary in South Polish-Moravian shelf. The event deposits could be caused by a violent tsunami related to bolide impacts into ocean.  相似文献   

16.
Tong  Jinnan  Chu  Daoliang  Liang  Lei  Shu  Wenchao  Song  Haijun  Song  Ting  Song  Huyue  Wu  Yuyang 《中国科学:地球科学(英文版)》2019,62(1):189-222
The Triassic rocks are widespread in China, and both marine and terrestrial strata are well developed. The Triassic stratigraphic architecture of China is very complex in both spatial variation of the so-called "South Marine and North Continental", i.e. the southern areas of China occupied mostly by marine facies while the northern China by terrestrial facies during the Triassic Period, and temporal transition of the "Lower Marine and Upper Continental", i.e. the lower part of the Triassic System composed mainly of marine facies and the upper part of terrestrial strata especially in South China. Although the Global Stratotype Section and Point(GSSP) of the Permian-Triassic boundary is located in South China, the Triassic of China except for some marine Lower-Middle Triassic depositions shows significantly local characteristics and is hardly correlated with the global chronostratigraphic chart. Consequently, the Triassic of China contains not only the international research hotspots but also difficult points in stratigraphic study. This paper aims to present a brief review of the Triassic in China, including chronostratigraphy, biostratigraphy, magnetostratigraphy and chemostratigraphy, and summarize an integrated Triassic stratigraphic framework of China. Accordingly, a stratigraphic correlation is proposed for the lithostratigraphic sequences among the three tectono-paleogeographic stratigraphic regions. The comprehensive study indicates that ammonoids are the classic index fossils in Triassic biostratigraphy but conodonts are more advantageous in the study and definition of the Triassic chronostratigraphic boundaries. China still has the potential to optimize the GSSPs of the Induan-Olenekian boundary and Olenekian-Anisian boundary. The correlation of the Permian-Triassic boundary between marine and terrestrial facies might be achieved with the help of the Permian-Triassic "transitional bed" and its related biotic and environmental events in association with the biostratigraphic study of conchostracan, vertebrate and plant fossils. In addition, the carbon isotopes have been proved to be one of the powerful methods in marine Triassic stratigraphic study, whereas the oxygen and strontium isotopes may be additional important bridges to establish the correlation between the marine and terrestrial strata, but as yet lacking of relevant studies in terrestrial strata. Considering the most stratigraphic intervals of the Triassic and the terrestrial Triassic in China are difficult to be correlated to the global chart, the proposed Chinese(regional) Triassic chronostratigraphic chart of marine and terrestrial stages would be of importance to the study of Chinese Triassic stratigraphy and related aspects, but the stages must be conceptually in line with international standards and studied as soon as possible in order to finalize the definition.  相似文献   

17.
Garnet grains in Sanbagawa quartz eclogites from the Besshi region, central Shikoku commonly show a zoning pattern consisting of core and mantle/rim that formed during two prograde stages of eclogite and subsequent epidote–amphibolite facies metamorphism, respectively. Garnet grains in the quartz eclogites are grouped into four types (I, II, III, and IV) according to the compositional trends of their cores. Type I garnet is most common and sometimes coexists with other types of garnet in a thin section. Type I core formed with epidote and kyanite during the prograde eclogite facies stage. The inner cores of types II and III crystallized within different whole‐rock compositions of epidote‐free and kyanite‐bearing eclogite and epidote‐ and kyanite‐free eclogite at the earlier prograde stage, respectively. The inner core of type IV probably formed during the pre‐eclogite facies stage. The inner cores of types II, III, and IV, which formed under different P–T conditions of prograde metamorphism and/or whole‐rock compositions, were juxtaposed with the core of type I, probably due to tectonic mixing of rocks at various points during the prograde eclogite facies stage. After these processes, they have shared the following same growth history: (i) successive crystal growth during the later stage of prograde eclogite facies metamorphism that formed the margin of the type I core and the outer cores of types II, III, and IV; (ii) partial resorption of the core during exhumation and hydration stage; and (iii) subsequent formation of mantle zones during prograde metamorphism of the epidote–amphibolite facies. The prograde metamorphic reactions may not have progressed under an isochemical condition in some Sanbagawa metamorphic rocks, at least at the hand specimen scale. This interpretation suggests that, in some cases, material interaction promoted by mechanical mixing and fluid‐assisted diffusive mass transfer probably influences mineral reactions and paragenesis of high‐pressure metamorphic rocks.  相似文献   

18.
Microspherules are found in different facies at the Lower-Middle Devonian boundary, Guangxi, South China. There are more than 20 grains per kilogram rock sample. Composition and form of the microspherules are very similar to those of the microtektites from modern deposits of South Pacific Ocean and F-F boundary (Devonian). This may indicate that the microspherules from Guangxi are most likely the products of an extraterrestrial impact event that occurred at the end of Early Devonian Epoch. The event may be responsible for the biomass reduction and extinction of benthic organisms at the end of Early Devonian. The impact products (ejecta) can be used as a potential tool for stratigraphic correlation.  相似文献   

19.
Detailed correlations of magnetostratigraphy, biostratigraphy and lithostratigraphy reveal that the basal Pliocene is equally complete in the Eraclea Minoa and Capo Rossello sections (Sicily) and the Singa section (Calabria), and that, in accordance with the model of the Pliocene flooding event in the Mediterranean, the deposition of the pelagic marls of the Trubi Formation started synchronously on Sicily and in adjacent Calabria. In addition, the data obtained from the Trubi in the Eraclea Minoa section allows the age of the Miocene-Pliocene boundary to be adjusted slightly from 4.83–4.84 [1] to 4.86 Ma because downward extrapolation of both sedimentation rate and average duration of small-scale sedimentary cycles in the Trubi yields this age for the boundary in this section. Linearly interpolated ages for the top of the Sphaeroidinellopsis acme and the first substantial increase in Globorotalia margaritae (the FOD of this species is non-existent in the Mediterranean Pliocene) at Eraclea Minoa arrive at 4.74 and 4.63 Ma respectively.Because of the detailed magnetostratigraphy and the very accurate dating of the Miocene-Pliocene boundary, it is preferable to select the Eraclea Minoa section as the boundary stratotype rather than the Capo Rossello section.Finally, this age of 4.86 Ma for the Miocene-Pliocene boundary suggests that the beginning of the Pliocene is connected with the termination of a series of latest Miocene glaciations and that the re-establishment of open marine conditions in the Mediterranean might be of glacio-eustatic origin.  相似文献   

20.
The Taho Formation in western Shikoku Island, Japan, consists of Triassic carbonates that formed on a seamount in the Panthalassic Ocean. In order to investigate the stratigraphy and paleoceanography of this carbonate succession, we analyzed the biostratigraphy and chemostratigraphy of a 17.6 m-thick section of the upper Taho Formation at the stratotype area in Tahokamigumi, Seiyo City. This section comprises bioclastic limestone containing Triassic bivalves, ammonoids, and conodonts. We recognized six conodont zones (in ascending order): the Novispathodus pingdingshanensis, Novispathodus brevissimus, Triassospathodus symmetricus, Triassospathodus homeri, Chiosella timorensis, and Magnigondolella cf. alexanderi zones. Thus, the studied carbonate succession is latest Smithian to Aegean in age. A δ13C profile of this section shows elevated values during the lowest Spathian followed by a gradual negative excursion, a subsequent positive excursion near the Spathian–Aegean boundary, and relatively constant values during the Aegean. The characteristic series of negative and positive excursions correlates with other δ13C records for this period, including the peak of the upper Smithian–lowest Spathian positive excursion (P3), lower to middle Spathian negative excursion (N4), and middle Spathian–lowest Aegean positive excursion (P4). This represents a new high-resolution Spathian–Aegean δ13C record of the Panthalassic Ocean, for which ages are constrained by conodont biostratigraphy. The Taho δ13C profile exhibits a consistent positive offset of ~2 ‰ as compared with those from other regions (i.e., mostly in the Tethyan Ocean). This can be explained by preferential removal of 12C from seawater during photosynthesis and calcification by marine organisms over the platform, and/or the relatively high δ13C values of dissolved inorganic carbon in the Panthalassic Ocean due to less influence of 12C-enriched terrestrial waters and high marine organic production/burial as compared with the more restricted Tethyan Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号