首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Experiments dissolving orthopyroxene (En93) in a variety of Si-undersaturated alkaline melts at 1 atmosphere and variable f O2 demonstrate that orthopyroxene dissolves to form olivine, Si-rich melt and clinopyroxene. These phases form a texturally and chemically distinct boundary layer around the partly dissolved orthopyroxene crystals. The occurrence of clinopyroxene in the boundary layer is due to inward diffusion of Ca from the solvent melt to the boundary layer causing clinopyroxene saturation. Compositional profiles through the solvent and the boundary layer for a number of experiments demonstrate rapid diffusion of cations across the boundary layer – solvent interface. SiO2 diffuses outward from the boundary layer whereas CaO and Al2O3 diffuse toward the Si-enriched boundary layer melt. The rate of Al diffusion is slower under reducing conditions compared to the rates in experiments performed in air. Concentrations of FeO and MgO in the boundary layer and solvent are approximately equal indicating rapid diffusion and attainment of equilibrium despite ongoing crystallisation of clinopyroxene within the boundary layer. The behaviour of Na2O and K2O is strongly affected by f O2. Under reducing conditions Na2O and K2O concentrations are approximately equal in the boundary layer and solvent indicating normal diffusion down the concentration gradient and attainment of equilibrium. Under oxidising conditions, K2O and to a lesser extent Na2O, have compositional profiles indicative of uphill diffusion likely due to their preference for more polymerised Si- and Al-rich melts. Under reduced conditions Al-enrichment in the boundary layer melt is not as extreme and uphill diffusion did not occur. The composition of the solvent melt after the experiments indicates that it was contaminated by the boundary layer by convective mixing due to the onset of hydrodynamic instabilities brought on by density and viscosity contrasts between the two melts. Despite using a wide variety of solvent melt compositions we find that the boundary layer melts converge toward a common composition at high SiO2 contents. The composition of glass generated by orthopyroxene dissolution at 1 atmosphere is similar in many respects to Si-rich glass found in many orthopyroxene-rich mantle xenoliths that have been attributed to high pressure in situ processes including mantle metasomatism. The results of this study suggest that at least some Si-rich melts are likely to have formed by dissolution of xenolith orthopyroxene at low pressure possibly by their Si-undersaturated host magmas. Received: 30 August 1996 / Accepted: 15 April 1998  相似文献   

2.
The dissolution rate of quartz in melts of the CMAS and CAS systems at 1,600°C and 1.5 GPa is a function of both the silica activity of the melt and its viscosity. In melts with low silica activity quartz dissolves more quickly than in higher aSiO2 melts regardless of viscosity. For melts with equal aSiO2, dissolution is faster in the low viscosity melt. Quartz dissolution is controlled by interface kinetics in three of the four melts used in this study for times much greater than predicted by the model of Zhang et al. (in Contrib Mineral Petrol 102:492–513 1989). One melt which was previously shown to adhere to the predicted behaviour at lower temperature shows a significant activation time at higher temperature. All the dissolution data indicate that there are likely to be three distinct domains of dissolution behaviour, although the details of why a particular melt falls in any one domain require further study. Although the current database is small, the relationship between quartz solubility and the dissolution constant indicate that solubility may be a useful parameter for predicting dissolution rates, particularly if silica activity and melt viscosity are also known.  相似文献   

3.
《Geochimica et cosmochimica acta》1999,63(23-24):3983-3995
Exact solutions to equations governing isothermal diffusive dissolution of a crystalline slab in a ternary liquid were obtained to include the effect of coupled chemical diffusion in the liquid. These analytical results, supplemented by approximate solutions valid for slow dissolving, provide new insights into the characteristics of diffusive dissolution in ternary systems. Dissolution rate is proportional to square root of time in diffusive dissolution. The coefficient of proportionality is a function of diffusion coefficients, liquidus relation, melt composition at the crystal–melt interface, and compositions of the dissolving crystal and starting melt. In the limit of slow dissolving, the dissolution rate can be written in terms of three dimensionless parameters that are functions of the aforementioned parameters. Dissolution rate is proportional to the diffusion rate of the slow eigen component in the melt when the diffusion rate of the minor eigen component is much slower than the diffusion rate of the major eigen component.Laboratory experiments of diffusive dissolution of single crystals and polycrystalline aggregates of quartz in a haplodacitic melt (25 wt.% CaO, 15 wt.% Al2O3, and 60 wt.% SiO2) were conducted at 1500°C and 1 GPa. Measured dissolution distances (Xb, in microns) are proportional to the square root of experimental run time (t, in seconds), Xb = −0.620 (±0.019) √t. Chemical concentration profiles measured from quenched melts are invariant with time when displayed against the distance (measured from the crystal–melt interface) normalized by the square root of time. The melt compositions at the crystal–melt interface, extrapolated from the measured diffusion profiles in the quenched melts, are within 0.2 wt.% of the independently measured quartz liquidus in the ternary CaO–Al2O3–SiO2 at 1500°C and 1 GPa. These results suggest that crystal and melt are in chemical equilibrium at their interface shortly after the onset of dissolution. Diffusive dissolution of quartz and quartzite is characterized by slow dissolving. Using quartz liquidus as one of the boundary conditions, it has been shown that the calculated dissolution distances and concentration profiles are in good agreement with the experimentally measured ones. Coupled diffusion played an essential role in quartz and quartzite dissolution in haplodacitic to haplobasaltic melts, and is likely to play an important role in diffusion-limited kinetic processes such as crystal growth and dissolution in natural melts of basaltic–rhyolitic compositions.  相似文献   

4.
Mineral dissolution is an important factor in many magmatic processes such as melting, assimilation and magma mixing. Since it is not possible to determine dissolution rates or mechanisms from natural samples, experimental measurements are very useful. However, the geometry of the crystal–melt system can have a large effect on the measured rate, depending on whether the contaminated melt formed during dissolution is gravitationally stable or unstable. This study examines the effects of the crystal–melt geometry on the dissolution rate and mechanism. The experiments were performed using basanite melt and cylinders and spheres prepared from a single crystal of natural quartz. All of the experiments were performed in the piston cylinder apparatus at 0.5 GPa and 1350 °C. Four crystal–melt geometries were used: (1) quartz cylinders on top of a column of melt; (2) quartz cylinders beneath a column of basanite melt; (3) quartz cylinders in the middle of column of melt; (4) quartz spheres on top of a column of basanite melt. These geometries allow an examination of non-convective, convective and mixed non-convective/convective dissolution. Sphere experiments were included, as this has been the most commonly used geometry in previous experimental studies. In all of the experiments quartz dissolves directly into the basanite without formation of cristobalite or tridymite. Quartz on top of a column of melt dissolves at a rate almost proportional to the square root of time and forms a silica-rich compositional boundary layer that is gravitationally stable. All of the samples show well-defined compositional gradients in the boundary layer; however, the melt at the interface varies in composition with time and plots of concentration as a function of distance normalized to time show that the diffusion rate of SiO2 increases with time. These data suggest that the rate-controlling step during quartz dissolution is interface reaction rather than cation diffusion. Quartz on the bottom of a column of basanite dissolves much more quickly than in the quartz-on-top experiments and the dissolution rate is linear, due to the periodic gravitational instability and resultant convection of the boundary layer. Even though interface kinetics are the rate-controlling step in quartz dissolution, convection causes an increase in dissolution rate because it replenishes the boundary layer with new, silica-undersaturated melt, which dissolves the quartz more quickly than the contaminated melt. These data suggest that the interface reaction rate is controlled by the degree of undersaturation of the solvent melt in the dissolving component. Both quartz-in-middle and quartz sphere experiments dissolve at a rate intermediate between the two extremes and both show a power law rate. Both dissolve by a combination of convective and non-convective dissolution but the sphere experiments are affected by an additional factor. During the experiment the sphere can sink through the capsule causing forced convection which adds another complication to the interpretation of the dissolution rate data. The results of this study indicate that the choice of experiment geometry plays a major role in determining the observed dissolution rate. Mineral spheres, which have been widely used in the past, are not ideal for dissolution studies. Instead, dissolution rates and mechanisms are best determined in the absence of convection. These experiments have an additional advantage in that for diffusion-controlled dissolution, they allow determination of cation diffusivity. Received: 2 March 2000 / Accepted: 11 April 2000  相似文献   

5.
The solubility and dissolution kinetics of apatite in felsic melts at 850°–1500°C have been examined experimentally by allowing apatite crystals to partially dissolve into apatite-undersaturated melts containing 0–10 wt% water. Analysis of P and Ca gradients in the crystal/melt interfacial region enables determination of both the diffusivities and the saturation levels of these components in the melt. Phosphorus diffusion was identified as the rate-limiting factor in apatite dissolution. Results of four experiments at 8 kbar run in the virtual absence of water yield an activation energy (E) for P diffusion of 143.6 ± 2.8 kcal-mol?1 and frequency factor (D0) of 2.23+2.88?1.26 × 109cm2-sec?1. The addition of water causes dramatic and systematic reduction of both E and D0 such that at 6 wt% H2O the values are ~25 kcal-mol?1 and 10?5 cm2-sec?1, respectively. At 1300°C, the diffusivity of P increases by a factor of 50 over the first 2% of water added to the melt, but rises by a factor of only two between 2 and 6%, perhaps reflecting the effect of a concentration-dependent mechanism of H2O solution. Calcium diffusion gradients do not conform well to simple diffusion theory because the release of calcium at the dissolving crystal surface is linked to the transport rate of phosphorus in the melt, which is typically two orders of magnitude slower than Ca. Calcium chemical diffusion rates calculated from the observed gradients are about 50 times slower than calcium tracer diffusion.Apatite solubilities obtained from these experiments, together with previous results, can be described as a function of absolute temperature (T) and melt composition by the expression: In Dapatite/meltP = [(8400 + ((SiO2 ? 0.5)2.64 × 104))/T] ? [3.1 + (12.4(SiO2 ? 0.5))] where SiO2 is the weight fraction of silica in the melt. This model appears to be valid between 45% and 75% SiO2, 0 and 10% water, and for the range of pressures expected in the crust.The diffusivity information extracted from the experiments can be directly applied to several problems of geochemical interest, including I) dissolution times for apatite during crustal anatexis, and 2) pileup of P, and consequent local saturation in apatite, at the surfaces of growing major-mineral phases.  相似文献   

6.
A large body of recent work has linked the origin of Si-Al-rich alkaline glass inclusions to metasomatic processes in the upper mantle. This study examines one possible origin for these glass inclusions, i.e., the dissolution of orthopyroxene in Si-poor alkaline (basanitic) melt. Equilibrium dissolution experiments between 0.4 and 2 GPa show that secondary glass compositions are only slightly Si enriched and are alkali poor relative to natural glass inclusions. However, disequilibrium experiments designed to examine dissolution of orthopyroxene by a basanitic melt under anhydrous, hydrous and CO2-bearing conditions show complex reaction zones consisting of olivine, ± clinopyroxene and Si-rich alkaline glass similar in composition to that seen in mantle xenoliths. Dissolution rates are rapid and dependent on volatile content. Experiments using an anhydrous solvent show time dependent dissolution rates that are related to variable diffusion rates caused by the saturation of clinopyroxene in experiments longer than 10 minutes. The reaction zone glass shows a close compositional correspondence with natural Si-rich alkaline glass in mantle-derived xenoliths. The most Si-and alkali-rich melts are restricted to pressures of 1 GPa and below under anhydrous and CO2-bearing conditions. At 2 GPa glass in hydrous experiments is still Si-␣and alkali-rich whereas glass in the anhydrous and CO2-bearing experiments is only slightly enriched in SiO2 and alkalis compared with the original solvent. In the low pressure region, anhydrous and hydrous solvent melts yield glass of similar composition whereas the glass from CO2-bearing experiments is less SiO2 rich. The mechanism of dissolution of orthopyroxene is complex involving rapid incongruent breakdown of the orthopyroxene, combined with olivine saturation in the reaction zone forming up to 60% olivine. Inward diffusion of CaO causes clinopyroxene saturation and uphill diffusion of Na and K give the glasses their strongly alkaline characteristics. Addition of Na and K also causes minor SiO2 enrichment of the reaction glass by increasing the phase volume of olivine. Olivine and clinopyroxene are transiently stable phases within the reaction zone. Clinopyroxene is precipitated from the reaction zone melt near the orthopyroxene crystal and redissolved in the outer part of the reaction zone. Olivine defines the thickness of the reaction zone and is progressively dissolved in the solvent as the orthopyroxene continues to dissolve. Although there are compelling reasons for supporting the hypothesis that Si-rich alkaline melts are produced in the mantle by orthopyroxene – melt reaction in the mantle, there are several complications particularly regarding quenching in of disequilibrium reaction zone compositions and the mobility of highly polymerized melts in the upper mantle. It is considered likely that formation of veins and pools of Si-rich alkaline glass by orthopyroxene – melt reaction is a common process during the ascent of xenoliths. However, reaction in situ within the mantle will lead to equilibration and therefore secondary melts will be only moderately siliceous and alkali poor. Received: 24 August 1998 / Accepted: 2 December 1998  相似文献   

7.
Melt-rock reaction in the upper mantle is recorded in a variety of ultramafic rocks and is an important process in modifying melt composition on its way from the source region towards the surface. This experimental study evaluates the compositional variability of tholeiitic basalts upon reaction with depleted peridotite at uppermost-mantle conditions. Infiltration-reaction processes are simulated by employing a three-layered set-up: primitive basaltic powder (‘melt layer’) is overlain by a ‘peridotite layer’ and a layer of vitreous carbon spheres (‘melt trap’). Melt from the melt layer is forced to move through the peridotite layer into the melt trap. Experiments were conducted at 0.65 and 0.8 GPa in the temperature range 1,170–1,290°C. In this P-T range, representing conditions encountered in the transition zone (thermal boundary layer) between the asthenosphere and the lithosphere underneath oceanic spreading centres, the melt is subjected to fractionation, and the peridotite is partially melting (T s ~ 1,260°C). The effect of reaction between melt and peridotite on the melt composition was investigated across each experimental charge. Quenched melts in the peridotite layers display larger compositional variations than melt layer glasses. A difference between glasses in the melt and peridotite layer becomes more important at decreasing temperature through a combination of enrichment in incompatible elements in the melt layer and less efficient diffusive equilibration in the melt phase. At 1,290°C, preferential dissolution of pyroxenes enriches the melt in silica and dilutes it in incompatible elements. Moreover, liquids become increasingly enriched in Cr2O3 at higher temperatures due to the dissolution of spinel. Silica contents of liquids decrease at 1,260°C, whereas incompatible elements start to concentrate in the melt due to increasing levels of crystallization. At the lowest temperatures investigated, increasing alkali contents cause silica to increase as a consequence of reactive fractionation. Pervasive percolation of tholeiitic basalt through an upper-mantle thermal boundary layer can thus impose a high-Si ‘low-pressure’ signature on MORB. This could explain opx + plag enrichment in shallow plagioclase peridotites and prolonged formation of olivine gabbros.  相似文献   

8.
The experimental dissolution of zircon into a zircon-undersaturated felsic melt of variable water content at high pressure in the temperature range 1,020° to 1,500° C provides information related to 1) the solubility of zircon, 2) the diffusion kinetics of Zr in an obsidian melt, and 3) the rate of zircon dissolution. Zirconium concentration profiles observed by electron microprobe in the obsidian glass adjacent to a large, polished zircon face provide sufficient information to calculate model diffusion coefficients. Results of dissolution experiments conducted in the virtual absence of water (<0.2% H2O) yield an activation energy (E) for Zr transport in a melt ofM=1.3 [whereM is the cation ratio (Na+K+2Ca)/(Al·Si)] of 97.7±2.8 kcal-mol?1, and a frequency factor (D 0) of 980 ?580 +1,390 cm2-sec?1. Hydrothermal experiments provide an E=47.3±1.9 kcal-mol?1 andD 0=0.030 ?0.015 +0.030 cm2-sec?1. Both of these results plot close to a previously defined diffusion compensation line for cations in obsidian. The diffusivity of Zr at 1,200° C increases by a factor of 100 over the first 2% of water introduced into the melt, but subsequently rises by only a factor of five to an apparent plateau value of ~2×10?9 cm2-sec?1 by ~6% total water content. The remarkable contrast between the wet and dry diffusivities, which limits the rate of zircon dissolution into granitic melt, indicates that a 50 μm diameter zircon crystal would dissolve in a 3 to 6% water-bearing melt at 750° C in about 100 years, but would require in excess of 200 Ma to dissolve in an equivalent dry system. From this calculation we conclude that zircon dissolution proceeds geologically instantaneously in an undersaturated, water-bearing granite. Estimates of zircon solubility in the obsidian melt in the temperature range of 1,020° C to 1,500° C confirm and extend an existing model of zircon solubility to these higher temperatures in hydrous melts. However, this model does not well describe zircon saturation behavior in systems with less than about 2% water.  相似文献   

9.
The dissolution rate of minerals in silicate melts is generally assumed to be a function of the rate of mass transport of the released cations in the solvent. While this appears to be the case in moderately to highly viscous solvents, there is some evidence that the rate-controlling step may be different in very fluid, highly silica undersaturated melts such as basanites. In this study, convection-free experiments using solvent melts with silica activity from 0.185–0.56 and viscosity from 0.03–4.6 Pa s show that the dissolution rate is strongly dependent on the degree of superheating, silica activity and the viscosity of the solvent. Dissolution rates increase with increasing melt temperature and decreasing silica activity and viscosity. Quartz dissolution in melts with viscosity <0.59–1.9 Pa s and silica activity <0.47 is controlled by the rate of interface reaction as shown by the absence of steady state composition and silica saturation in the interface melts. Only in the most viscous melt with the highest silica activity is quartz dissolution controlled by the rate of diffusion in the melt and only after a long initiation time. The results of this study indicate that although a diffusion-based model may be applicable to dissolution in viscous magmas, a different approach that combines the interplay between the degree of undersaturation of the melt and its viscosity is required in very fluid melts.This revised version was published online September 2004 with a correction to Figure 8.  相似文献   

10.
Phase relations were investigated in the model water-saturated system Si-Al-Na-Li-F-O at high fluorine contents, a temperature of 800°C, and a pressure of 1 kbar. The obtained aluminosilicate melts are widely variable from quartz- to nepheline-normative compositions with agpaitic indexes both higher and lower than one. Various fluoride, aluminofluoride, and oxide phases were observed in the equilibrium assemblage depending on the melt composition: quartz and cryolite associate with the silica richest aluminosilicate melts, topaz and corundum coexist with peraluminous melts, and villiaumite was observed in highly peralkaline melts. Extensive immiscibility between aluminosilicate and aluminofluoride melts was observed in the system. Aluminofluoride melt coexists with quartz- and nepheline-normative aluminosilicate melts with agpaitic indexes (K a) of 0.7–1.4. The composition of aluminosilicate melt in equilibrium with aluminofluoride melt ranges from 33 to 70 wt % SiO2, from 12 to 24 wt % Al2O3, and from 5 to 16 wt % alkalis. The aluminofluoride melt is variable in composition, its Al/Na ratio ranges from 20/80 to 40/60 depending on the composition of the equilibrium aluminosilicate melt. The experimental aluminosilicate melts equilibrated with cryolite, topaz, and aluminofluoride melt coincide in major component proportions with the bulk compositions of cryolite- and topaz-bearing granites and melt inclusions in minerals.  相似文献   

11.
The speciation of water in silicate melts   总被引:1,自引:0,他引:1  
Previous models of water solubility in silicate melts generally assume essentially complete reaction of water molecules to hydroxyl groups. In this paper a new model is proposed that is based on the hypothesis that the observed concentrations of molecular water and hydroxyl groups in hydrous silicate glasses reflect those of the melts from which they were quenched. The new model relates the proportions of molecular water and hydroxyl groups in melts via the following reaction describing the homogeneous equilibrium between melt species: H2Omolecular (melt) + oxygen (melt) = 2OH (melt). An equilibrium constant has been formulated for this reaction and species are assumed to mix ideally. Given an equilibrium constant for this reaction of 0.1–0.3, the proposed model can account for variations in the concentrations of molecular water and hydroxyl groups in melts as functions of the total dissolved water content that are similar to those observed in glasses. The solubility of molecular water in melt is described by the following reaction: H2O (vapor) = H2Omolecular (melt).These reactions describing the homogeneous and heterogeneous equilibria of hydrous silicate melts can account for the following observations: the linearity between fH2O and the square of the mole fraction of dissolved water at low total water contents and deviations from linearity at high total water contents; the difference between the partial molar volume of water in melts at low total water contents and at high total water contents; the similarity between water contents of vapor-saturated melts of significantly different compositions at high pressures versus the dependence on melt composition of water solubility in silicate melts at low pressures; and the variations of viscosity, electrical conductivity, the diffusivity of “water,” the diffusivity of cesium, and phase relationships with the total dissolved water contents of melts.This model is thus consistent with available observations on hydrous melt systems and available data on the species concentrations of hydrous glasses and is easily tested, since measurements of the concentrations of molecular water and hydroxyl groups in silicate glasses quenched from melts equilibrated over a range of conditions and total dissolved water contents are readily obtainable.  相似文献   

12.
I. A. Andreeva 《Petrology》2016,24(5):462-476
Melt inclusions were studied by various methods, including electron and ion microprobe analysis, to determine the compositions of melts and mechanisms of formation of rare-metal peralkaline granites of the Khaldzan Buregtey massif in Mongolia. Primary crystalline and coexisting melt inclusions were found in quartz from the rare-metal granites of intrusive phase V. Among the crystalline inclusions, we identified potassium feldspar, albite, tuhualite, titanite, fluorite, and diverse rare-metal phases, including minerals of zirconium (zircon and gittinsite), niobium (pyrochlore), and rare earth elements (parisite). The observed crystalline inclusions reproduce almost the whole suite of major and accessory minerals of the rare-metal granites, which supports the possibility of their crystallization from a magmatic melt. Melt inclusions in quartz from these rocks are completely crystallized. Their daughter mineral assemblage includes quartz, microcline, aegirine, arfvedsonite, polylithionite, a zirconosilicate, pyrochlore, and a rare-earth fluorocarbonate. The melt inclusions were homogenized in an internally heated gas vessel at a temperature of 850°C and a pressure of 3 kbar. After the experiments, many inclusions were homogeneous and consisted of silicate glass. In addition to silicate glass, some inclusions contained tiny quench zircon crystals confined to the boundary of inclusions, which indicates that the melts were saturated in zircon. In a few inclusions, glass coexisted with a CO2 phase. This allowed us to estimate the content of CO2 in the inclusion as 1.5 wt %. The composition of glasses from the homogeneous melt inclusions is similar to the composition of the rare-metal granites, in particular, with respect to SiO2 (68–74 wt %), TiO2 (0.5–0.9 wt %), FeO (2.2–4.6 wt %), MgO (0.02 wt %), and Na2O + K2O (up to 8.5 wt %). On the other hand, the glasses of melt inclusions appeared to be strongly depleted compared with the rocks in CaO (0.22 and 4 wt %, respectively) and Al2O3 (5.5–7.0 and 9.6 wt %, respectively). The agpaitic index is 1.1–1.7. The melts contain up to 3 wt % H2O and 2–4 wt % F. The trace element analysis of glasses from homogenized melt inclusions in quartz showed that the rare-metal granites were formed from extensively evolved rare-metal alkaline melts with high contents of Zr, Nb, Th, U, Ta, Hf, Rb, Pb, Y, and REE, which reflects the metallogenic signature of the Khaldzan Buregtey deposit. The development of unique rare metal Zr–Nb–REE mineralization in these rocks is related to the prolonged crystallization differentiation of melts and assimilation of enclosing carbonate rocks.  相似文献   

13.
We report new experimental data of Cu diffusivity in granite porphyry melts with 0.01 and 3.9 wt% H2O at 0.15–1.0 GPa and 973–1523 K. A diffusion couple method was used for the nominally anhydrous granitic melt, whereas a Cu diffusion-in method using Pt95Cu5 as the source of Cu was applied to the hydrous granitic melt. The diffusion couple experiments also generate Cu diffusion-out profiles due to Cu loss to Pt capsule walls. Cu diffusivities were extracted from error function fits of the Cu concentration profiles measured by LA-ICP-MS. At 1 GPa, we obtain \({D_{{\text{Cu, dry, 1 GPa}}}}=\exp \left[ {( - {\text{13.89}} \pm {\text{0.42}}) - \frac{{{\text{12878}} \pm {\text{540}}}}{T}} \right],\) and \({D_{{\text{Cu, 3}}{\text{.9 wt\% }}{{\text{H}}_{\text{2}}}{\text{O}},{\text{ 1 GPa}}}}=\exp \left[ {( - 16.31 \pm 1.30) - \frac{{{\text{8148}} \pm {\text{1670}}}}{T}} \right],\) where D is Cu diffusivity in m2/s and T is temperature in K. The above expressions are in good agreement with a recent study on Cu diffusion in rhyolitic melt using the approach of Cu2S dissolution. The observed pressure effect over 0.15–1.0 GPa can be described by an activation volume of 5.9 cm3/mol for Cu diffusion. Comparison of Cu diffusivity to alkali diffusivity and its variation with melt composition implies fourfold-coordinated Cu+ in silicate melts. Our experimental results indicate that in the formation of porphyry Cu deposits, the diffusive transport of magmatic Cu to sulfide liquids or fluid bubbles is highly efficient. The obtained Cu diffusivity data can also be used to assess whether equilibrium Cu partitioning can be reached within certain experimental durations.  相似文献   

14.
A. A. Borisov 《Petrology》2007,15(6):523-529
The solubility of cobalt and iron in silicate melts with variable SiO2 content was experimentally determined under controlled oxygen fugacity. It was shown that, independent of temperature and oxygen fugacity, the solubility of the two metals reaches a maximum (minimum of CoO and FeO activity coefficients) in melts of intermediate compositions. The analysis of available published data demonstrated that the γMeO values of at least four metals (Ni, Co, Fe, and Cr) dissolving in melts as divalent oxides show a minimum in melts with \(X_{SiO_2 } \) ≈ 57 ± 2 mol %. The position of the minimum is essentially independent of the element, melt temperature, and oxide concentration (from a few ppm to 13 wt%). The extremes of iron solubility (γFeO) in Fe-rich MgO-free melts may shift toward significantly lower \(X_{SiO_2 } \) values, although this inference requires additional experimental verification. Using a numerical example, some problems were discussed in the use of experimental data obtained in different laboratories for the development of a general model for the γMeO dependence on melt composition.  相似文献   

15.
We have compiled water solubility data for a wide range of natural and synthetic aluminosilicate melts in a search for correlations between melt composition and solubility. The published data reveal some interesting systematics. For example, molar water solubility increases with decreasing silica content in binary and pseudobinary silicates, and much higher solubilities are associated with alkali systems compared to alkaline earth silicate melts. Water solubility increases regularly with decreasing silica content along the silica-nepheline join. From the limited data available for potassium and calcium aluminosilicate melts, these systems appear to behave differently to sodium aluminosilicates. The compiled data are not nearly extensive enough to begin to understand the effects of melt composition on solubility. We suggest that many more systematic studies for a wide range of aluminosilicate melts will be necessary before we can systematize and understand the compositional dependence of water solubility. We have also examined results of experiments designed to probe the details of the water dissolution mechanism, and discuss the present state of interpretation of these data. We conclude that although considerable progress has been made, the water dissolution process is still not well understood at the molecular level, and remains an important research problem.  相似文献   

16.
Thermodynamic modeling of the SiO2–TiO2–Al2O3–Fe2O3–MnO–MgO–CaO–Na2O–K2O–P2O5–H2O (STAFMMCNKPOH) system at 600°C, 5 kbar has been applied to investigate dissolution and re-precipitation of quartz. Comparing silica molality in the STAFMMCNKPOH and SiO2–H2O systems, there is seen to be no effect of mineral assemblage on quartz solubility. From quantitatively estimated water/rock ratio required to dissolve quartz completely, one can deduce that the segregation of quartz appears to be due to diffusive transport of silica in inner pore fluid rather than to advective transport (in fluid flow).  相似文献   

17.
Consideration of experimental data on the distribution of Mg2+ between olivine and silicate liquid clearly demonstrates that the distribution coefficient (KMg) is dependent upon variations in temperature, pressure and melt composition, largely because these variables control the solubility of Mg2+ in the melt phase. Attempts to minimize composition dependence of KMg, utilizing various activity-composition models for silicate melts, have been partially successful. Composition-related effects do not appear to be large, however, for melts of restricted range in composition (e.g., tholeiitic or lunar basalts) as long as the contents of alkalis and the alkali/alumina ratio are relatively small (on a molar basis). For such melts, KMg may be used as a reliable geothermometer. By analogy, these conclusions can be extended to the distribution of other divalent cation such as Fe2+, Mn2+, Ni2+ and Co2+.  相似文献   

18.
The fidelity of melt inclusions as records of melt composition   总被引:5,自引:5,他引:0  
A series of experiments created melt inclusions in plagioclase and pyroxene crystals grown from a basaltic melt at 1,150°C, 1.0 GPa to investigate diffusive fractionation during melt inclusion formation; additionally, P diffusion in a basaltic melt was measured at 1.0 GPa. Melt inclusions and melts within a few 100 microns of plagioclase–melt interfaces were analyzed for comparison with melt compositions far from the crystals. Melt inclusions and melt compositions in the boundary layer close to the crystal–melt interface were similar, but both differ significantly in incompatible element concentrations from melt found greater than approximately 200 microns away from the crystals. The compositional profiles of S, Cl, P, Fe, and Al in the boundary layers were successfully reproduced by a two-step model of rapid crystal growth followed by diffusive relaxation toward equilibrium after termination of crystal growth. Applying this model to investigate possible incompatible element enrichment in natural melt inclusions demonstrated that at growth rates high enough to create the conditions for melt inclusion formation, ∼10−9–10−8 m s−1, the concentration of water in the boundary layer near the crystal was similar to that of the bulk melt because of its high diffusion coefficient, but sulfur, with a diffusivity similar to major elements and CO2, was somewhat enriched in the boundary layer melt, and phosphorus, with its low diffusion coefficient similar to other high-field strength elements and rare earth elements, was significantly enriched. Thus, the concentrations of sulfur and phosphorus in melt inclusions may over-estimate their values in the bulk melt, and other elements with similar diffusion coefficients may also be enriched in melt inclusions relative to the bulk melt. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
In order to investigate directly the structure and properties of grain boundaries in silicate materials undergoing pressure solution, in situ measurements of these properties are required. We report electrical impedance spectroscopy measurements, performed, under hydrothermal conditions, on individual glass–glass and glass-quartz contacts undergoing pressure solution. Resulting estimates of the average grain boundary diffusivity product ( Z = Dd\textav C* Z = D\delta_{\text{av}} C^{*} ) for silica transport and of the average grain boundary fluid film thickness ( d\textav \delta_{\text{av}} ) fall in the ranges 6.3 ± 1.4 × 10−18 ms−1 and 350 ± 210 nm, respectively. However, the average values for Z and d\textav \delta_{\text{av}} obtained were likely influenced by cracking and irregular dissolution of the dissolving contact surfaces, rather than representing uniformly wetted grain boundary properties. Post-mortem SEM observations indicate that the contact surfaces were internally rough. Taken together, our data support the notion that during pressure solution of quartz, grain boundary diffusion is rapid, and interface processes (dissolution and precipitation) are more likely to be rate-limiting than diffusion.  相似文献   

20.
The behaviour of niobium and tantalum in magmatic processes has been investigated by conducting MnNb2O6 and MnTa2O6 solubility experiments in nominally dry to water-saturated peralkaline (aluminium saturation index, A.S.I. 0.64) to peraluminous (A.S.I. 1.22) granitic melts at 800 to 1035 °C and 800 to 5000 bars. The attainment of equilibrium is demonstrated by the concurrence of the solubility products from dissolution, crystallization, Mn-doped and Nb- or Ta-doped experiments at the same pressure and temperature. The solubility products of MnNb2O6 (Ksp Nb) and MnTa2O6 (Ksp Ta) at 800 °C and 2 kbar both increase dramatically with alkali contents in water-saturated peralkaline melts. They range from 1.2 × 10−4 and 2.6 × 10−4 mol2/kg2, respectively, in subaluminous melt (A.S.I. 1.02) to 202 × 10−4 and 255 × 10−4 mol2/kg2, respectively, in peralkaline melt (A.S.I. 0.64). This increase from the subaluminous composition can be explained by five non-bridging oxygens being required for each excess atom of Nb5+ or Ta5+ that is dissolved into the melt. The Ksp Nb and Ksp Ta also increase weakly with Al content in peraluminous melts, ranging up to 1.7 × 10−4 and 4.6 × 10−4 mol2/kg2, respectively, in the A.S.I. 1.22 composition. Columbite-tantalite solubilities in subaluminous and peraluminous melts (A.S.I. 1.02 and 1.22) are strongly temperature dependent, increasing by a factor of 10 to 20 from 800 to 1035 °C. By contrast columbite-tantalite solubility in the peralkaline composition (A.S.I. 0.64) is only weakly temperature dependent, increasing by a factor of less than 3 over the same temperature range. Similarly, Ksp Nb and Ksp Ta increase by more than two orders of magnitude with the first 3 wt% H2O added to the A.S.I. 1.02 and 1.22 compositions, whereas there is no detectable change in solubility for the A.S.I. 0.64 composition over the same range of water contents. Solubilities are only slightly dependent on pressure over the range 800 to 5000 bars. The data for water-saturated sub- and peraluminous granites have been extrapolated to 600 °C, conditions at which pegmatites and highly evolved granites may crystallize. Using a melt concentration of 0.05 wt% MnO, 70 to 100 ppm Nb or 500 to 1400 ppm Ta are required for manganocolumbite and manganotantalite saturation, respectively. The solubility data are also used to model the fractionation of Nb and Ta between rutile and silicate melts. Predicted rutile/melt partition coefficients increase by about two orders of magnitude from peralkaline to peraluminous granitic compositions. It is demonstrated that the γNb2O5/γTa2O5 activity coefficient ratio in the melt phase depends on melt composition. This ratio is estimated to decrease by a factor of 4 to 5 from andesitic to peraluminous granitic melt compositions. Accordingly, all the relevant accessory phases in subaluminous to peraluminous granites are predicted to incorporate Nb preferentially over Ta. This explains the enrichment of Ta over Nb observed in highly fractionated granitic rocks, and in the continental crust in general. Received: 9 August 1996 / Accepted: 26 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号