首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The results of JHKLM photometry for Nova Delphini 2013 obtained in the first sixty days after its outburst are analyzed. Analysis of the energy distribution in a wide spectral range (0.36–5 µm) has shown that the source mimics the emission of normal supergiants of spectral types B5 and A0 for two dates near its optical brightness maximum, August 15.94 UT and August 16.86 UT, respectively. The distance to the nova has been estimated to be D ≈ 3 kpc. For these dates, the following parameters have been estimated: the source’s bolometric fluxes ~9 × 10?7 and ~7.2 × 10?7 erg s?1 cm?2, luminosities L ≈ 2.5 × 105 L and ≈2 × 105 L , and radii R ≈ 6.3 × 1012 and ≈1.2 × 1013 cm. The nova’s expansion velocity near its optical brightness maximum was ~700 km s?1. An infrared (IR) excess associated with the formation of a dust shell is shown to have appeared in the energy distribution one month after the optical brightness maximum. The parameters of the dust component have been estimated for two dates of observations, JD2456557.28 (September 21, 2013) and JD2456577.18 (October 11, 2013). For these dates, the dust shell parameters have been estimated: the color temperatures ≈1500 and ≈1200 K, radii ≈6.5 × 1013 and 1.7 × 1014 cm, luminosities ~4 × 103 L and ~1.1 × 104 L , and the dust mass ~1.6 × 1024 and ~1025 g. The total mass of the material ejected in twenty days (gas + dust) could reach ~1.1 × 10?6 M . The rate of dust supply to the nova shell was ~8 × 10?8 M yr?1. The expansion velocity of the dust shell was about 600 km s?1.  相似文献   

2.
By means of the virial theorem we derive the dependence of the mass of an oblate spheroid in solid body rotation from the velocity dispersion and the space light density. The latter is obtained from a calibrated and seeing deconvolved brightness profile as numerical and stable solution of the Abel integral equation. The application of the nucleus of M32 gives a central density of 2.1×10?5 M pc?3, a nuclear mass of 4.3×10?7 M and a mass-to-light ratio of 4.6 inV-band.  相似文献   

3.
The model of a presupernova’s carbon-oxygen (C-O) core with an initial mass of 1.33 M , an initial carbon abundance X C (0) =0.27, and a mean rate of increase in mass of 5 × 10?7 M yr?1 through accretion in a binary system evolved from the central density and temperature ρc=109 g cm?3 and T c=2.05 × 108K, respectively, by forming a convective core and its subsequent expansion to an explosive fuel ignition at the center. The evolution and explosion equations included only the carbon burning reaction 12C+12C with energy release corresponding to the complete conversion of carbon and oxygen (at the same rate as that of carbon) into 56Ni. The ratio of mixing length to convection-zone size αc was chosen as the parameter. Although the model assumptions were crude, we obtained an acceptable (for the theory of supernovae) pattern of explosion with a strong dependence of its duration on αc. In our calculations with sufficiently large values of this parameter, αc=4.0 × 10?3 and 3.0×10?3, fuel burned in the regime of prompt detonation. In the range 2.0×10?3≥αc≥3.0×10?4, there was initially a deflagration with the generation of model pulsations whose amplitude gradually increased. Eventually, the detonation regime of burning arose, which was triggered from the model surface layers (with m ? 1.33 M ) and propagated deep into the model up to the deflagration front. The generation of model pulsations and the formation of a detonation front are described in detail for αc=1.0 × 10?3.  相似文献   

4.
The neutral hydrogen emission at 21 cm has been investigated with the RATAN-600 radio telescope in the vicinity of the supernova remnant HB9. A clumpyHI shell with radial motions surrounding the remnant has been detected. Its measured parameters contradict the connection with a shock wave from a supernova explosion. The shell formation under the action of a wind from a star that exploded as a supernova at the end of its evolution seems more realistic. The characteristics of the star obtained from the observed shell parameters are the following: a wind power of 0.5 × 1038 erg s?1, a mass-loss rate of 3.7 × 10?5 M yr?1, and an age of 3 × 106 yr. Given the measurement errors, the mass of the star is estimated to be >8M .  相似文献   

5.
We present the results of our hydrodynamic calculations of radial pulsations in helium stars with masses 1 MM ≤ 10 M, luminosity-to-mass ratios 1 × 103L/ML/M ≤ 2 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for mass fractions of helium Y=0.98 and heavy elements Z=0.02. We show that the lower boundary of the pulsation-instability region corresponds to L/M ~ 103L/M and that the instability region for L/M ? 5 × 103L/M is bounded by effective temperatures Teff ? 3 × 104 K. As the luminosity rises, the instability boundary moves into the left part of the Hertzsprung-Russell diagram and radial pulsations can arise in stars with effective temperatures Teff ? 105 K at L/M ? 7 × 103L/M. The velocity amplitude for the outer boundary of the hydrodynamic model increases with L/M and lies within the range 200 ? ΔU ? 700 km s?1 for the models under consideration. The periodic shock waves that accompany radial pulsations cause a significant change of the gas-density distribution in the stellar atmosphere, which is described by a dynamic scale height comparable to the stellar radius. The dynamic instability boundary that corresponds to the separation of the outer stellar atmospheric layers at a superparabolic velocity is roughly determined by a luminosity-to-mass ratio L/M ~ 3 × 104L/M.  相似文献   

6.
This paper presents a new family of interior solutions of Einstein–Maxwell field equations in general relativity for a static spherically symmetric distribution of a charged perfect fluid with a particular form of charge distribution. This solution gives us wide range of parameter, K, for which the solution is well behaved hence, suitable for modeling of superdense star. For this solution the gravitational mass of a star is maximized with all degree of suitability by assuming the surface density equal to normal nuclear density, ρ nm=2.5×1017 kg?m?3. By this model we obtain the mass of the Crab pulsar, M Crab, 1.36M and radius 13.21 km, constraining the moment of inertia >?1.61×1038 kg?m2 for the conservative estimate of Crab nebula mass 2M . And M Crab=1.96M with radius R Crab=14.38 km constraining the moment of inertia >?3.04×1038 kg?m2 for the newest estimate of Crab nebula mass, 4.6M . These results are quite well in agreement with the possible values of mass and radius of Crab pulsar. Besides this, our model yields moments of inertia for PSR J0737-3039A and PSR J0737-3039B, I A =1.4285×1038 kg?m2 and I B =1.3647×1038 kg?m2 respectively. It has been observed that under well behaved conditions this class of solutions gives us the overall maximum gravitational mass of super dense object, M G(max)=4.7487M with radius $R_{M_{\max}}=15.24~\mathrm{km}$ , surface redshift 0.9878, charge 7.47×1020 C, and central density 4.31ρ nm.  相似文献   

7.
We have performed hydrodynamic calculations of the radial pulsations of helium stars with masses 10MM ≤ 50M, luminosity-to-mass ratios 5 × 103L/ML/M ≤ 2.5 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for helium and heavy-element mass fractions of Y=0.98 and Z=0.02, respectively. We show that the high-temperature boundary of the instability region for radial pulsations at L/M ? 104L/M extends to Teff≈105 K. The amplitude of the velocity variations for outer layers is several hundred km s?1, while the brightness variations in the B band of the UBV photometric system are within the range from several hundredths to half a magnitude. At constant luminosity-to-mass ratio, the radial pulsation period is determined only by the effective temperature of the star. In the ranges of luminosity-to-mass ratios 104L/ML/M ≤ 2 × 104L/M and effective temperatures 5 × 104 K ≤ Teff ≤ 9 × 104 K, the periods of the radial modes are within 6 min ?Π?103 min.  相似文献   

8.
This paper is a continuation of our recent paper devoted to refining the parameters of threecomponent (bulge, disk, halo) axisymmetric model Galactic gravitational potentials differing by the expression for the dark matter halo using the velocities of distant objects. In all models the bulge and disk potentials are described by the Miyamoto–Nagai expressions. In our previous paper we used the Allen–Santillán (I), Wilkinson–Evans (II), and Navarro–Frenk–White (III) models to describe the halo. In this paper we use a spherical logarithmic Binney potential (model IV), a Plummer sphere (model V), and a Hernquist potential (model VI) to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of the listed models, which are employed most commonly at present. The model rotation curves are fitted to the observed velocities by taking into account the constraints on the local matter density ρ= 0.1 M pc?3 and the force K z=1.1/2πG = 77M pc?2 acting perpendicularly to the Galactic plane. The Galactic mass within spheres of radius 50 and 200 kpc are shown to be, respectively, M 50 = (0.409 ± 0.020) × 1012 M and M 200 = (1.395 ± 0.082) × 1012 M in model IV, M 50 = (0.417 ± 0.034) × 1012 M and M 200 = (0.469 ± 0.038) × 1012 M in model V, and M 50 = (0.417 ± 0.032) × 1012 M and M 200 = (0.641 ± 0.049)× 1012 M in model VI. Model VI looks best among the three models considered here from the viewpoint of the achieved accuracy of fitting the model rotation curves to the measurements. This model is close to the Navarro–Frenk–White model III refined and considered best in our previous paper, which is shown using the integration of the orbits of two globular clusters, Lynga 7 and NGC 5053, as an example.  相似文献   

9.
Evolutionary tracks from the zero age main sequence to the asymptotic giant branch were computed for stars with initial masses 2 M M ZAMS ≤ 5 M and metallicity Z = 0.02. Some models of evolutionary sequences were used as initial conditions for equations of radiation hydrodynamics and turbulent convection describing radial stellar pulsations. The early asymptotic giant branch stars are shown to pulsate in the fundamental mode with periods 30 day ? Π ? 400day. The rate of period change gradually increases as the star evolves but is too small to be detected (Π?/Π < 10?5 yr?1). Pulsation properties of thermally pulsing AGB stars are investigated on time intervals comprising 17 thermal pulses for evolutionary sequences with initial masses M ZAMS = 2 M and 3 M and 6 thermal pulses for M ZAMS = 4 M and 5 M . Stars with initial masses M ZAMS ≤ 3 M pulsate either in the fundamental mode or in the first overtone, whereas more massive red giants (M ZAMS ≥ 4 M ) pulsate in the fundamental mode with periods Π ? 103 day. Most rapid pulsation period change with rate ?0.02 yr?1 ? Π?/Π ? ?0.01 yr?1 occurs during decrease of the surface luminosity after the maximum of the luminosity in the helium shell source. The rate of subsequent increase of the period is Π?/Π ? 5 × 10?3 yr?1.  相似文献   

10.
We studied the intermediate polar TVCol during and after its flare in November 1982 observed in the ultraviolet range with the International Ultraviolet Explorer. Two spectra revealing the variations of emission lines at different times are presented. We have estimated a new value of the reddening from the 2200 Å absorption feature, E (B ? V ) = 0.12 ± 0.02, and calculated the line fluxes of C IV and He II emission lines produced in the outer accretion disk. The average ultraviolet luminosity of emitting region during and after the flare is approximately 4 × 1032 erg s?1 and 9 × 1030 erg s?1, the corresponding average mass accretion rate is nearly 3 × 1015 erg s?1 (4.76 × 10?11M yr?1) and 5 × 1013 erg s?1 (7.93 × 10?13M yr?1), and the average temperature of the emitting region during and after flare is estimated to be of about 3.5 × 103 K and 2 × 103 K. We attribute this flare to a sudden increase in the mass accretion rate leading to the outburst activity.  相似文献   

11.
Three three-component (bulge, disk, halo) model Galactic gravitational potentials differing by the expression for the dark matter halo are considered. The central (bulge) and disk components are described by the Miyamoto–Nagai expressions. The Allen–Santillán (I), Wilkinson–Evans (II), and Navarro–Frenk–White (III) models are used to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of thesemodels. For the Allen–Santillán model, a dimensionless coefficient γ has been included as a sought-for parameter for the first time. In the traditional and modified versions, γ = 2.0 and 6.3, respectively. Both versions are considered in this paper. The model rotation curves have been fitted to the observed velocities by taking into account the constraints on the local matter density ρ = 0.1 M pc?3 and the force K z =1.1/2πG = 77 M pc?2 acting perpendicularly to the Galactic plane. The Galactic mass within a sphere of radius 50 kpc, M G (R ≤ 50 kpc) ≈ (0.41 ± 0.12) × 1012 M , is shown to satisfy all three models. The differences between the models become increasingly significant with increasing radius R. In model I, the Galactic mass within a sphere of radius 200 kpc at γ = 2.0 turns out to be greatest among the models considered, M G (R ≤ 200 kpc) = (1.45 ±0.30)× 1012 M , M G (R ≤ 200 kpc) = (1.29± 0.14)× 1012 M at γ = 6.3, and the smallest value has been found in model II, M G (R ≤ 200 kpc) = (0.61 ± 0.12) × 1012 M . In our view, model III is the best one among those considered, because it ensures the smallest residual between the data and the constructed model rotation curve provided that the constraints on the local parameters hold with a high accuracy. Here, the Galactic mass is M G (R ≤ 200 kpc) = (0.75 ± 0.19) × 1012 M . A comparative analysis with the models by Irrgang et al. (2013), including those using the integration of orbits for the two globular clusters NGC 104 and NGC 1851 as an example, has been performed. The third model is shown to have subjected to a significant improvement.  相似文献   

12.
We analytically generalize the well-known solution of steady supersonic spherically symmetric gas accretion onto a star (Bondi 1952) for an iron atmosphere with completely degenerate electrons with an arbitrary degree of relativity. This solution is used for typical physical conditions in the vicinity of protoneutron stars produced by gravitational collapse with masses M 0=(1.4?1.8)M and over a wide range of nonzero “iron gas” densities at infinity, ρ=(104?5×106)g cm?3. Under these conditions, we determine all accretion parameters, including the accretion rate, whose value is ~(10?50)M s?1 at M 0=1.8M (it is a factor of 1.7 lower for M 0=1.4M , because the accretion rate is exactly ∝M 0 2 ). We take into account the effect of accreting-gas rotation in a quasi-one-dimensional approximation, which has generally proved to be marginal with respect to the accretion rate.  相似文献   

13.
Evolutionary calculations are presented for spherically symmetric protoplanetary configurations with a homogeneous solar composition and with masses of 10?3, 1.5 × 10?3, 2.85 × 10?4, and 4.2 × 10?4M. Recent improvements in equation-of-state and opacity calculations are incorporated. Sequences start as subcondensations in the solar nebula with densities of ~10?10 to 10?11 g cm?3, evolve through a hydrostatic phase lasting 105 to 107 years, undergo dynamic collapse due to dissociation of molecular hydrogen, and regain hydrostatic equilibrium with densities ~1 g cm?3. The nature of the objects at the onset of the final phase of cooling and contraction is discussed and compared with previous calculations.  相似文献   

14.
The temperatures, radii, and masses of 81 He-rich white dwarfs are calculated from photometric data. It is shown that, on the average, they are less massive than DA white dwarfs: 70% of He-rich white dwarfs have masses<0.55M . Space density and birth-rate for different mass groups of H-rich and He-rich white dwarfs are obtained. Birth-rate is 1×10?12 pc?3 yr?1 and 1.5×10?12pc?3yr?1 for He-rich and H-rich white dwarfs, respectively. The mean mass of nascent white dwarfs is about 0.55M . It is shown thatV Tand its dispersion σ are correlated with the mass of white dwars, and from this progenitors' masses — of different mass groups of white dwarfs are estimated.  相似文献   

15.
Infrared observations of the unique symbiotic system CH Cyg in 2003–2006 are presented. Analysis of the observations has shown that a fairly dense dust structure (a cloud or a shell) appeared on the line of sight in August–November 2006. The dust grains in the new shell are similar in optical properties to graphite ones and their sizes are mostly within the range 0.14–0.16 μm. The dust shell is optically thick and its optical depth at 2.2 μm is τ(2.2) ≈ 0.97. The dust shell mass is M d(06) ≈ 8 × 10−6 M and the rate of matter flow into the shell has reached ∼2 × 10−5 M yr−1. Original Russian Text ? O.G. Taranova, V.I. Shenavrin, 2007, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2007, Vol. 33, No. 8, pp. 598–603.  相似文献   

16.
The paper presents a new class of parametric interior solutions of Einstein–Maxwell field equations in general relativity for a static spherically symmetric distribution of a charged perfect fluid with a particular form of electric field intensity. This solution gives us wide range of parameter, K (0.69≤K≤7.1), for which the solution is well behaved hence, suitable for modeling of superdense star. For this solution the gravitational mass of a superdense object is maximized with all degree of suitability by assuming the surface density of the star equal to the normal nuclear density ρ nm=2.5×1017kg?m?3. By this model we obtain the mass of the Crab pulsar M Crab=1.401M and the radius, R Crab=12.98 km constraining the moment of inertia I NS,38>1.61 for the conservative estimate of Crab nebula mass 2M and M Crab=2.0156M with radius, R Crab=14.07 km constraining the moment of inertia I NS,38>3.04 for the newest estimate of Crab nebula mass 4.6M which are quite well in agreement with the possible values of mass and radius of Crab pulsar. Besides this, our model yields the moments of inertia for PSR J0737-3039A and PSR J0737-3039B are I A,38=1.4624 and I B,38=1.2689 respectively. It has been observed that under well behaved conditions this class of parametric solution gives us the maximum gravitational mass of causal superdense object 2.8020M with radius 14.49 km, surface redshift z R =0.4319, charge Q=4.67×1020 C, and central density ρ c =2.68ρ nm.  相似文献   

17.
Based on data from the Two-Micrometer All-Sky Survey (2MASS), we analyzed the infrared properties of 451 Local-Volume galaxies at distances D ≤ 10 Mpc. We determined the K-band luminosity function of the galaxies in the range of absolute magnitudes from ?25m to ?11m. The local luminosity density within 8 Mpc is 6.8 × 108L Mpc?3, a factor of 1.5 ± 0.1 higher than the global mean K-band luminosity density. We determined the ratios of the virial mass to the K-band luminosity for nearby groups and clusters of galaxies. In the luminosity range from 5 × 1010 to 2 × 1013L, the dependence log(M/LK) ∝ (0.27 ± 0.03) log LK with a dispersion of ~0.1 comparable to the measurement errors of the masses and luminosities of the systems of galaxies holds for the groups and clusters of galaxies. The ensemble-averaged ratio, 〈M/LK〉 ? (20–25) M/L, was found to be much smaller than the expected global ratio, (80–90)M/L, in the standard model with Ωm = 0.27. This discrepancy can be eliminated if the bulk of the dark matter in the Universe is not associated with galaxies and their systems.  相似文献   

18.
Using the technique of determining the sum of the masses of double stars, we have estimated the mass of the central object in the globular cluster M15. The radial velocities of stars at distances up to 1″ from the cluster center have been used. The parameters of circular orbits and the space velocities of 11 selected field stars relative to the cluster center have been determined from the calculated velocity dispersions with respect to the mean radial velocity. Based on the mean space velocity V, 14 km s?1, and using the energy integral, we have estimated the mass of the central object to be within the range (1?9) × 103 M . We have estimated the kinetic power of the outflow of matter from the region surrounding the black hole in M15 and the specific angular momentum of the black hole.  相似文献   

19.
The well-known shell supernova remnant (SNR) HB3 is part of a feature-rich star-forming region together with the nebulae W3, W4, and W5. We study the HI structure around this SNR using five RATAN-600 drift curves obtained at a wavelength of 21 cm with an angular resolution of 2′ in one coordinate over the radial-velocity range ?183 to +60 km s?1 in a wider region of the sky and with a higher sensitivity than in previous works by other authors. The spatial-kinematic distribution of HI features around the SNR clearly shows two concentric expanding shells of gas that surround the SNR and coincide with it in all three coordinates (α, δ, and V). The outer shell has a radius of 133 pc, a thickness of 24 pc, and an expansion velocity of 48 km s?1. The mass of the gas in it is ≈2.3 × 105M. For the inner shell, these parameters are 78 pc, 36 pc, 24 km s? 1, and 0.9 × 105M, respectively. The inner shell is immediately adjacent to the SNR. Assuming that the outer shell was produced by the stellar wind and the inner shell arose from the shock wave of the SNR proper, we estimated the age of the outer shell, ≈1.7 × 106 yr, and the mechanical luminosity of the stellar wind, 1.5 × 1038 erg s?1. The inner shell has an age of ≈106 yr and corresponds to a total supernova explosion energy of ≈1052 erg.  相似文献   

20.
The results of calculations of graphite grain formation in the atmospheres of R CrB stars are given. The parameters for the models wereM=1M ,M bol=?6 mag. The effective temperature ranged from 5300K to 8300K. The chemical composition corresponded to the hydrogen-deficient carbon rich mixture:X=0,Y=0.9,Z c=0.1. The results obtained show the existence of a critical mass loss rate which is ranged fromM *≈10?6 M yr?1 forT eff=5300 K toM *≈10?5 M yr?1 forT eff=8300 K. As soon as the rate of mass loss exceedsM * by 3–5 times the degree of condensation of carbon changes from 0 to 0.7. The finite radii of grains are about from 0.01 μm to 0.6 μm depending on the density near the condensation point, the velocity of matter outflow, and the stellar effective temperature. The duration of grain growth should amount to some dozens of days. It is supposed that the most probable explanation of dust-shell formation around R CrB stars is graphite condensation behind a shock wave arising from nonlinear stellar pulsation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号