首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cylindrical Korteweg-de Vries-Burgers (cKdVB) equation for magnetoacoustic wave is derived for dissipative magneto plasmas. Two fluid collisionless electromagnetic model is considered and reductive perturbation method is employed to study the propagation of magnetoacoustic shock waves in cylindrical geometry. Two level finite difference method is employed by using Runge-Kutta method to solve cKdVB equation numerically. The effects of nonplanar geometry, plasma density, magnetic field strength, temperature dependence and kinematic viscosity on magnetoacoustic shocks are investigated. The numerical results are also presented for illustration.  相似文献   

2.
The damping of MHD waves in solar coronal magnetic field is studied taking into account thermal conduction and compressive viscosity as dissipative mechanisms. We consider viscous homogeneous unbounded solar coronal plasma permeated by a uniform magnetic field. A general fifth-order dispersion relation for MHD waves has been derived and solved numerically for different solar coronal regimes. The dispersion relation results three wave modes: slow, fast, and thermal modes. Damping time and damping per periods for slow- and fast-mode waves determined from dispersion relation show that the slow-mode waves are heavily damped in comparison with fast-mode waves in prominences, prominence–corona transition regions (PCTR), and corona. In PCTRs and coronal active regions, wave instabilities appear for considered heating mechanisms. For same heating mechanisms in different prominences the behavior of damping time and damping per period changes significantly from small to large wavenumbers. In all PCTRs and corona, damping time always decreases linearly with increase in wavenumber indicate sharp damping of slow- and fast-mode waves.  相似文献   

3.
The resonant absorption of small amplitude surface Alfvén waves is studied in nonlinear incompressible MHD for a viscous and resistive plasma. The reductive perturbation method is used to obtain the equation that governs the spatial and temporal behaviour of small amplitude nonlinear surface Alfvén waves. Numerical solutions to this equation are obtained under the initial condition that att = 0 the spatial variation is purely sinusoidal. The numerical results show that nonlinearity accelerates the wave damping due to resonant absorption. Resonant absorption is a more efficient wave damping mechanism than can be anticipated on the basis of linear theory.  相似文献   

4.
The nonlinear propagation of ion-acoustic solitary and shock waves in a dissipative, nonplanar quantum plasma comprised of electrons, positrons, and ions are studied. A modified Korteweg-de Vries Burgers equation is derived in the limit of low frequency and long wavelength by taking into account the kinematic viscosity among the plasma constituents. It is shown that this plasma system supports the propagation of both compressive and rarefactive nonlinear waves. The effects of variation of various plasma parameters on the time evolution of nonplanar solitary waves, the profile of shock waves, and the nonlinear structure induced by the collision of solitary waves are discussed. It is found that these parameters have significant effects on the properties of nonlinear waves in cylindrical and spherical geometries, and these effects for compressive and rarefactive nonlinear waves are obviously different.  相似文献   

5.
A rigorous theoretical investigation on the characteristics of dust-ion-acoustic (DIA) shock waves in an unmagnetized multi component electron-positron-ion dusty plasma (consisting of inertial ions, electrons of two distinct temperatures referred to as low and high temperature superthermal electrons where superthermality is introduced via the κ-type of nonthermal distribution, Boltzmann distributed positrons, and negatively charged immobile dust grains) has been made both theoretically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The influence of superthermal electrons, Maxwellian positrons and ion kinematic viscosity, which are found in this investigation, significantly modify the basic features of DIA shock waves, are briefly discussed. The present investigation can be very effective for studying and understanding the basic characteristics of shock wave propagation through different astrophysical situations where distinct temperature superthermal electrons dominate the wave dynamics.  相似文献   

6.
Ion acoustic shock waves (IASWs) are studied in a plasma consisting of electrons, positrons and ions. Boltzmann distributed positrons and superthermal electrons are considered in the plasma. The dissipation is taken into account the kinematic viscosity among the plasma constituents. The Korteweg–de Vries–Burgers (KdV–Burgers) equation is derived by reductive perturbation method. Shock waves are solutions of KdV–Burgers equation. It is observed that an increasing positron concentration decreases the amplitude of the waves. Furthermore, in the existence of the kinematic viscosity among the plasma, the shock wave structure appears. The effects of ion kinematic viscosity (η 0) and the superthermal parameter (k) on the ion acoustic waves are found.  相似文献   

7.
We study the propagation and dissipation of slow magnetoacoustic waves in an inhomogeneous viscous coronal loop plasma permeated by uniform magnetic field. Only viscosity and thermal conductivity are taken into account as dissipative processes in the coronal loop. The damping length of slow-mode waves exhibit varying behaviour depending upon the physical parameters of the loop in an active region AR8270 observed by TRACE. The wave energy flux associated with slow magnetoacoustic waves turns out to be of the order of 106 erg cm?2 s?1 which is high enough to replace the energy lost through optically thin coronal emission and the thermal conduction below to the transition region. It is also found that only those slow-mode waves which have periods more than 240s provide the required heating rate to balance the energy losses in the solar corona. Our calculated wave periods for slow-mode waves nearly match with the oscillation periods of loop observed by TRACE.  相似文献   

8.
Jonas Lundberg 《Solar physics》1994,154(2):215-230
The weakly nonlinear wave propagation of a slow sausage surface wave traveling along a magnetized slab with a thin nonuniform boundary layer is considered. The ideal incompressible MHD equations are used and the nonlinearities are assumed to be due to second harmonic generation. A nonlinear dispersion relation and the related nonlinear Schrödinger equation is derived. The existence of a continuous thin interface leads to sharply peaked field amplitudes due to resonant interaction with local Alfvén waves. It is shown that the nonlinear effects from processes within the thin layer are much more important than those from the main slab. Furthermore, the nonlinear interaction with local Alfvén waves yields a nonlinear damping rate of the wave that is much larger than the linear damping rate when the transition layer is sufficiently thin.  相似文献   

9.
Dwivedi  B.N.  Pandey  V.S. 《Solar physics》2003,216(1-2):59-77
Heating of the solar corona by MHD waves has been investigated. Taking account of dissipation mechanisms self-consistently, a new general dispersion relation has been derived for waves propagating in a homogeneous plasma. Solution of this sixth-order dispersion relation provides information on how the damping of both slow and fast mode waves depends upon the plasma density, temperature, field strength, and angle of propagation relative to the background magnetic field. Wave quantities with and without dissipation are presented. In particular, we consider one of the most important clues from space observations that viscosity of coronal plasma may be orders of magnitude different from its classical value in heating of the corona by MHD waves.  相似文献   

10.
We investigate the propagation of MHD waves in a magnetised plasma in a weakly stratified atmosphere, representative of hot coronal loops. In most earlier studies, a time-independent equilibrium was considered. Here we abandon this restriction and allow the equilibrium to develop as a function of time. In particular, the background plasma is assumed to be cooling due to thermal conduction. The cooling is assumed to occur on a time scale greater than the characteristic travel times of the perturbations. We investigate the influence of cooling of the background plasma on the properties of magneto–acoustic waves. The MHD equations are reduced to a 1D system modelling magneto–acoustic modes propagating along a dynamically cooling coronal loop. A time-dependent dispersion relation that describes the propagation of the magneto–acoustic waves is derived using the WKB theory. An analytic solution for the time-dependent amplitude of waves is obtained, and the method of characteristics is used to find an approximate analytical solution. Numerical calculations of the analytically derived solutions are obtained to give further insight into the behaviour of the MHD waves in a system with a variable, time-dependent background. The results show that there is a strong damping of MHD waves and the damping also appears to be independent of the position along the loop. Studies of MHD wave behaviour in a time-dependent backgrounds seem to be a fundamental and very important next step in the development of MHD wave theory that is applicable to a wide range of situations in solar physics.  相似文献   

11.
The gravitational stability of magnetized self-gravitating two-component plasma of finite conductivity flowing through porous medium is studied. Effect of magnetic field, porosity, viscosity, finite conductivity, and neutral gas friction is considered on the stability of the system. Dispersion relations are derived from linearized equations using normal mode analysis. Longitudinal and transverse wave propagations are discussed. On the basis of Hurwitz criterion, the stability of the system is discussed. It is found that Jeans's criterion determines the stability of the system. Jeans's expression depends on the sonic speeds in both the components. For transverse wave propagation in perfectly conducting plasma. Jeans's expression is modified due to magnetic field and porosity but in case of finitely conducting plasma the Jeans's expression remains unaltered. Collisional frequency, viscosity, permeability of the porous medium have damping effect.  相似文献   

12.
Inertial Alfvén waves are investigated using Maxwell-Boltzmann-Vlasov equation to evaluate the dispersion relation and growth/damping rate in inhomogeneous plasma. Expressions for the dispersion relation and growth/damping rate are evaluated in inhomogeneous plasma. The effects of density, temperature and velocity gradient are included in the analysis. The results are interpreted for the space plasma parameters appropriate to the plasma sheet boundary layer. It is found that the inhomogeneities of plasma contribute significantly to enhance the growth rate of inertial Alfvén wave. The applicability of this model is assumed for auroral acceleration region and plasma sheet boundary layer.  相似文献   

13.
A Korteweg-de Vries (KdV) equation with a linear Landau damping term describing weakly nonlinear and weakly dispersive ion-acoustic waves in an electron-positron-ion plasma is derived. It is found that the Landau damping causes the solitary wave amplitude to decay with time. It is also found that in absence of Landau damping, both linear wave phase velocity and solitary wave amplitude decrease with the increase of positron density, whereas, both increase with the increase of positron temperature. On the other hand, the Landau damping rate decreases with the increase of both positron density and temperature.  相似文献   

14.
The modulational instability of the weakly nonlinear longitudinal Langmuir as well as the transverse electromagnetic waves, propagation in the relativistic plasma without the static fields is described. The nonlinear Schrödinger equation taking account of the nonlinear Landau damping for these waves has been derived by means of the relativistic Vlasov and Maxwell equations. The plasma with the weakly relativistic temperature and that with an ultrarelativistic one has been investigated. In the first case, for the electron-proton plasma with the temperature more than 2.3 KeV we found the regional change of the wave numbers for which the soliton of two types, subsonic and supersonic, can exist. The soliton of the transverse waves can exist when the group velocity of the waves is between the thermal velocity of the electron and ion and the length of the linear waves is less than 2c/ pi .In the second case the regions of the wave numbers, with the solitons of the Langmuir and transverse waves have been determined.The nonlinear waves in the electron-positron plasma and the waves with the phase velocity, which is about the light one, are also considered in the following paper.  相似文献   

15.
An attempt to give theoretical foundation for understanding the origin of electrostatic waves at electron gyrofrequency in the magnetosphere is presented. The electrostatic dispersion equation describ- ing wave propagation at electron gyrofrequency is investigated in different limiting cases. It is pointed out that this equation can describe weakly damped waves when the electron plasma frequency is above electron gyrofrequency.  相似文献   

16.
By employing the anisotropic plasma distribution function, the stability of circularly polarized electromagnetic (EM) waves is studied in a relativistically hot electron-positron-ion (e-p-i) plasma, investigating two specific scenarios. First, linear dispersion relations associated with the transverse EM waves are analyzed in different possible frequency regimes. The expression of the aperiodic hydrodynamic instability is obtained and numerically the transverse EM modes are shown to grow exponentially. Secondly, we have found that the transverse electromagnetic wave interact with a collisionless anisotropic e-p-i plasma and damp through the nonlinear Landau damping phenomena. Taking the effects of the latter into consideration, a kinetic nonlinear Schrödinger equation is derived with local and nonlocal nonlinearities, computing the damping rates. The present work should be helpful to understand the linear and nonlinear properties of the intense EM waves in hot relativistically astrophysical plasmas, e.g., pulsars, black holes, neutron stars, etc.  相似文献   

17.
Solar coronal heating by magnetohydrodynamic (MHD) waves is investigated. ultraviolet (UV) and X-ray emission lines of the corona show non-thermal broadenings. The wave rms velocities inferred from these observations are of the order of 25–60 km s−1 . Assuming that these values are not negligible, we solved MHD equations in a quasi-linear approximation, by retaining the lowest order non-linear term in rms velocity. Plasma density distribution in the solar corona is assumed to be inhomogeneous. This plasma is also assumed to be permeated by dipole-like magnetic loops. Wave propagation is considered along the magnetic field lines. As dissipative processes, only the viscosity and parallel (to the local magnetic field lines) heat conduction are assumed to be important. Two wave modes emerged from the solution of the dispersion relation. The fast mode magneto-acoustic wave, if originated from the coronal base can propagate upwards into the corona and dissipate its mechanical energy as heat. The damping length-scale of the fast mode is of the order of 500 km. The wave energy flux associated with these waves turned out to be of the order of 2.5×105 ergs cm−2 s−1 which is high enough to replace the energy lost by thermal conduction to the transition region and by optically thin coronal emission. The fast magneto-acoustic waves prove to be a likely candidate to heat the solar corona. The slow mode is absent, in other words cannot propagate in the solar corona.  相似文献   

18.
Kumar  Nagendra  Roberts  B. 《Solar physics》2003,214(2):241-266
The effect of ion–neutral collisions on the propagation of MHD waves and surface waves at a single magnetic interface is investigated. The dispersion equations for MHD waves in a partially ionized medium are derived. There are three damped propagating modes in a uniform unbounded medium: an Alfvén mode, and fast and slow modes. The damping of waves depends on both the collisional frequency and the ionization fraction. Wave damping increases as ionization fraction decreases. Surface waves are discussed in three cases: (a) the incompressible limit, (b) the low plasma, and (c) for parallel propagation. The incompressible limit leads to Alfvén surface waves in a partially ionized medium and the dispersion characteristics are similar to those obtained by Uberoi and Datta. In the low plasma of the Earth's auroral F region there are two damped propagating magnetoacoustic surface waves for =/3. There is only one damped surface mode for =/2, but no surface wave is able to propagate for =0°. For the case of parallel propagation (=0°) the results obtained in the absence of ion-neutral collisions are consistent with the results of Jain and Roberts. It is found that a three-mode structure of damped propagating waves occurs owing to ion–neutral collisions for a comparatively high ionization fraction. For the case of the solar photosphere, where the ionization fraction is low, two weakly damped surface waves are found, though the damping is almost negligible. The pattern of propagation is similar to that found in the case discussed by Jain and Roberts, but the wave speeds are lower due to ion–neutral collisions. The strong collisions tie the ion–neutral species together and reduce the damping.  相似文献   

19.
《Planetary and Space Science》2007,55(10):1358-1367
Propagation of plasma-acoustic wave has been studied in magnetized plasma contaminated with dust charged grains. It has shown that, because of the configuration of magnetized plasma contaminated with dust charge fluctuation, pseudopotential method fails to derive nonlinear wave equation. We thus exercise an alternate approach to yield wave equation in the form of Sagdeev-like potential equation which enables the success to study the nonlinear waves. Again a modified mathematical formalism known as tanh-method has the merit to evaluate the soliton features in relation to its expectation in space. The method has its success in finding the solitary waves along with other exciting formation of shock-like wave, soliton radiation in soliton propagation. The results have more realistic interpretation in showing explicitly the interaction of magnetic field and impurity caused by dust charge variation.  相似文献   

20.
The formation and propagation of dust-acoustic (DA) solitary and rogue waves are studied in a non-relativistic degenerate Thomas-Fermi thermal dusty plasma incorporating transverse velocity perturbation effects. The electrons and ions are described by the Thomas-Fermi density distributions, whereas the dust grains are taken as dynamic and classical. By using the reductive perturbation technique, the cylindrical Kadomtsev-Petviashvili (CKP) equation is derived, which is then transformed into a Korteweg-deVries (KdV) equation by using appropriate variable transformations. The latter admits a solitary wave solution. However, when the carrier waves frequency is much smaller than the dust plasma frequency, the DA waves evolve into the nonlinear modulation instability, generating modulated wave packets in the form of Rogue waves. For the study of DA-rogue waves, the KdV equation is transformed into a self-focusing nonlinear Schrödinger equation. The variation of dust temperature and the electron density affects the nonlinearity and dispersion coefficients which suppress the amplitudes of the DA solitary and rogue waves. The present results aim to describe the nonlinear electrostatic excitations in astrophysical degenerate dense plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号