首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ~22-m-thick saucer-shaped sill occurs near Mahad and is exposed as a curvilinear, miniature ridge within the Deccan Traps. The sill has variable dips (42–55°). It has a 7.1-km long axis and 5.3 km short axis (aspect ratio of 1.4) and is larger than the MV sill of the Golden Valley sill complex, South Africa and the Panton sill, Australia. The sill has distinct glassy upper and lower chilled margins with a coarse-grained highly jointed core. The samples from the margin are invariably fractured and iron stained because of deuteric alteration. The rock from the sill is plagioclase-phyric basalt. At least three thick sill-like apophyses emanate from the base of the main sill. The apophyses change direction because of bending and thinning from a horizontal concordant sheet at the top to a discordant inclined form that bends again to pass into a lower horizontal concordant sheet. We interpret such features as ‘nascent saucer-shaped sills’ that did not inflate to form nested sills. Geochemically, the sill consists of poorly differentiated tholeiitic basalt that has a restricted geochemical range. Critical trace element ratios and primitive mantle normalised trace and REE patterns indicate that the sills have geochemical affinities to the Poladpur chemical type and that the pahoehoe flow they intrude belongs to the Bushe Formation. Calculated magmatic overpressures during sill emplacement range from 8.4 to 11.3 MPa (for Young’s modulus E?=?5 GPa) and 16.7 to 22.5 MPa (for E=10 GPa) and depth to magma chamber ranges from 8.5 to 11.5 km (E?=?5 GPa) and 17.1 to 22.9 km (E?=?10 GPa), consistent with petrological and gravity modelling. The volume of the Mahad sill is approximately 276 km3 and is constant irrespective of the variations in the values of host-rock Young’s modulus. In 1980, Cox (J Petrol 21:629–650, 1980) proposed a conceptual model of the crust–mantle section beneath the Karoo CFB which is considered as the fundamental model for flood basalt volcanism. Our paper confirms the presence of a sill plus the inferred substructure beneath Mahad that are compatible with predictions of that model. In LIPS, saucer-shaped sills are formed in areas experiencing extensional tectonics where processes such as the Cook–Gordon delamination and Dundurs elastic extensional mismatch between layered sedimentary rocks or lava flows are responsible for the deflection of dykes into sills. A similar process is envisaged for the formation of the Mahad sill.  相似文献   

2.
Three-dimensional seismic data from the Faeroe-Shetland Basin provides detailed information on the relationships between sills, dykes, laccoliths and contemporaneous volcanic activity. The data shows that sills are predominantly concave upwards, being complete or partial versions of radially or bilaterally symmetrical forms that possess flat inner saucers connected to a flat outer rim by a steeply inclined sheet. Such morphologies are only partially modified by pre-existing faults. Sills can be sourced from dykes or the steep climbing portions of deeper sills. Both sills and dykes can provide magma to overlying volcanic fissures and sills can be shown to feed shallow laccoliths. Magma flow patterns, as revealed by opacity rendering, suggest that sills propagate upwards and outwards away from the magma feeder. As an individual sill can consist of several leaves emplaced at different stratigraphic levels, and as a sill or dyke can provide magma to volcanic fissures, other sills and laccoliths, the data suggests that neutral buoyancy concepts may not provide a complete explanation for the mechanism and level of sill emplacement. Instead, the data suggests that the presence of lithological contrasts, particularly ductile horizons such as overpressured shales may permit sill formation at any level below the neutrally buoyant level. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Ken Thomson–deceased, April 2007  相似文献   

3.
Large sand intrusions often exhibit conical morphologies analogous to magmatic intrusions such as saucer-shaped or cup-shaped sills. Whereas some physical processes may be similar, we show with scaled experiments that the formation of conical sand intrusions may be favoured by the pore-pressure gradients prevailing in the host rock before sand injection. Our experiments involve injecting air into a permeable and cohesive analogue material to produce hydraulic fractures while controlling the pore pressure field. We control the state of overpressure in the overburden by applying homogeneous basal pore pressure, and then adding a second local pore pressure field by injecting air via a central injector to initiate hydraulic fractures near the injection point. In experiments involving small vertical effective stresses (small overburden, or high pore fluid overpressure), the fracturing pressure (λfract) is supralithostatic and two dipping fractures are initiated at the injection point forming a conical structure. From theoretical considerations, we predict that high values of λfract are due to strong cohesion or high pore fluid overpressure distributed in the overburden. Such conditions are favoured by the pore pressure/stress coupling induced by both pore pressure fields. The dips of cones can be accounted for elastic-stress rotation occurring around the source. Contrary to magmatic chamber models, the aqueous fluid overpressure developed in a parent sandbody (and prevailing before the formation of injectites) may diffuse into the surrounding overburden, thus favouring stress rotation and the formation of inclined sheets far from the parent source. For experiments involving higher vertical effective stresses (thick overburden or low pore fluid overpressure), the fracturing pressure is lower than the lithostatic stress, and a single fracture is opened in mode I which then grows vertically. At a critical depth, the fracture separates into two dilatant branches forming a flat cone. We make use of a P.I.V. (Particle Imaging Velocimetry) technique to analyse plastic deformation, showing that these inclined fractures are opened in mixed modes. Close to the surface, they change into steep shear bands where fluids can infiltrate. The final morphology of the fracture network is very similar to the common tripartite architecture of various injection complexes, indicating that different mechanisms may be involved in the formation of dykes. Feeder dykes under the sill zones may open as tensile fractures, while overlying dykes may be guided by the deformation induced by the growth of sills. These deformation conditions may also favour the formation of fluid escape structures and pockmarks.  相似文献   

4.
Emplacement and arrest of sheets and dykes in central volcanoes   总被引:1,自引:0,他引:1  
Sheet intrusions are of two main types: local inclined (cone) sheets and regional dykes. In Iceland, the inclined sheets form dense swarms of (mostly) basaltic, 0.5–1 m thick sheets, dipping either at 20–50° or at 75–90° towards the central volcano to which they belong. The regional dykes are (mostly) basaltic, 4–6 m thick, subvertical, subparallel and form swarms, less dense than those of the sheets but tens of kilometres long, in the parts of the volcanic systems that are outside the central volcanoes. In both types of swarms, the intrusion intensity decreases with altitude in the lava pile. Theoretical models generally indicate very high crack-tip stresses for propagating dykes and sheets. Nevertheless, most of these intrusions become arrested at various crustal depths and never reach the surface to supply magma to volcanic eruptions. Two principal mechanisms are proposed to explain arrest of dykes and sheets. One is the generation of stress barriers, that is, layers with local stresses unfavourable for the intrusion propagation. The other is mechanical anisotropy whereby sheet intrusions become arrested at discontinuities. Stress barriers may develop in several ways. First, analytical solutions for a homogeneous and isotropic crust show that the intensity of the tensile stress associated with a pressured magma chamber falls off rapidly with distance from the chamber. Thus, while dyke and sheet injection in the vicinity of a chamber may be favoured, dyke and sheet arrest is encouraged in layers (stress barriers) at a certain distance from the chamber. Second, boundary-element models for magma chambers in a mechanically layered crust indicate abrupt changes in tensile stresses between layers of contrasting Young’s moduli (stiffnesses). Thus, where soft pyroclastic layers alternate with stiff lava flows, as in many volcanoes, sheet and dyke arrest is encouraged. Abrupt changes in stiffness between layers are commonly associated with weak and partly open contacts and other discontinuities. It follows that stress barriers and discontinuities commonly operate together as mechanisms of dyke and sheet arrest in central volcanoes.  相似文献   

5.
Neogene alkaline basaltic rocks in the western Pannonian Basin are eroded remnants of maars, tuff rings, tuff cones, scoria cones and lava fields. The erosion level of these volcanoes is deep enough to expose diatreme zones associated with the phreatomagmatic volcanoes. The erosion level is deeper yet in the west, exposing shallow dyke and sill swarms related to former intra-plate volcanoes. The basanitic sills are irregular in shape and their lateral extent is highly variable. Individual sills reach a thickness of a few tens of metres and they commonly form dome-like structures with rosette-like radial columnar joint patterns. The largest sill system identified in this region is traceable over kilometres, and forms a characteristic ridge running north-east to south-west. Elevation differences in the position of the basanitic sills within an otherwise undisturbed “layer cake-like” siliciclastic succession indicate emplacement of the basanite magma at multiple levels over kilometre-scale distances. The margins of sills in the system are irregular at a dm-to-mm-scale. Undulating contacts of the sills together with gentle thermal alteration in the host sediment over cm-to-dm distances indicate the soft, but not necessarily wet state of the host deposits at the time sills were intruded. Parts of the sill complex show a complicated relationship with the host sediment in form of peperitic zones and irregularly shaped, disrupted, peperite textures. This is interpreted to reflect inhomogenities in water content and rheology of the siliciclastic deposits during intrusion. The current summit of the longest continuous ridge preserves a small diatreme that seems to cut through an otherwise disk-like sill indicating of relationship between sill emplacement and phreatomagmatic explosive eruptions.  相似文献   

6.
The well-exposed Golden Valley Sill Complex, Karoo basin, South Africa, consists of four large sills (ca. 100 m thick; long axes: 13–24 km), one small sill (55–80 m thick; long axis: 4 km; forming an appendix to one of the large sills), and two large dykes (15–20 m thick; 25 and 70 km long), plus some minor intrusions. Field mapping shows physical connections between the small sill and one of the large sills, but no other connection between the large sills, or connections between the sills and the large dykes.  相似文献   

7.
 The geochemistry and the injection mechanism of hypovolcanic ring dykes have been extensively studied, but such is not the case for their internal fabric. The Tertiary Western Red Hills epigranites of the Isle of Skye are a classic example of such intrusions. Using anisotropy of magnetic susceptibility measurements, we present the first structural data of their internal magmatic fabric. The magnetic foliations, equated with the magmatic flow planes, have strikes which roughly follow the walls of the different intrusions. They dip steeply toward the convex wall of each intrusion. The lineations, or maximal magnetic susceptibility axes, generally have shallow plunges, except in the latest granite intrusion. These structures appear to be related to the compressional deformation of each intrusion toward the end of its crystallization. This shortening would be a consequence of a radial and compressive stress field acting after each injection of magma. This radial stress field is interpreted as the effect of high magma pressures originating from the acid magma chamber underlying the ring-dyke complex at a shallow depth. Received: 10 October 1995 / Accepted: 4 June 1997  相似文献   

8.
The Highway–Reward massive sulphide deposit is hosted by a silicic volcanic succession in the Cambro-Ordovician Seventy Mile Range Group, northeastern Australia. Three principal lithofacies associations have been identified in the host succession: the volcanogenic sedimentary facies association, the primary volcanic facies association and the resedimented syn-eruptive facies association. The volcanogenic sedimentary facies association comprises volcanic and non-volcanic siltstone and sandstone turbidites that indicate submarine settings below storm wave base. Lithofacies of the primary volcanic facies association include coherent rhyolite, rhyodacite and dacite, and associated non-stratified breccia facies (autoclastic breccia and peperite). The resedimented volcaniclastic facies association contains clasts that were initially formed and deposited by volcanic processes, but then redeposited by mass-flow processes. Resedimentation was more or less syn-eruptive so that the deposits are essentially monomictic and clast shapes are unmodified. This facies association includes monomictic rhyolitic to dacitic breccia (resedimented autoclastic facies), siltstone-matrix rhyolitic to dacitic breccia (resedimented intrusive hyaloclastite or resedimented peperite) and graded lithic-crystal-pumice breccia and sandstone (pumiceous and crystal-rich turbidites). The graded lithic-crystal-pumice breccia and sandstone facies is the submarine record of a volcanic centre(s) that is not preserved or is located outside the study area. Pumice, shards, and crystals are pyroclasts that reflect the importance of explosive magmatic and/or phreatomagmatic eruptions and suggest that the source vents were in shallow water or subaerial settings.The lithofacies associations at Highway–Reward collectively define a submarine, shallow-intrusion-dominated volcanic centre. Contact relationships and phenocryst populations indicate the presence of more than 13 distinct porphyritic units with a collective volume of 0.5 km3. Single porphyritic units vary from <10 to 350 m in thickness and some are less than 200 m in diameter. Ten of the porphyritic units studied in the immediate host sequence to the Highway–Reward deposit are entirely intrusive. Two of the units lack features diagnostic of their emplacement mechanism and could be either lavas and intrusions. Direct evidence for eruption at the seafloor is limited to a single partly extrusive cryptodome. However, distinctive units of resedimented autoclastic breccia indicate the presence nearby of additional lavas and domes.The size and shape of the lavas and intrusions reflect a restricted supply of magma during eruption/intrusion, the style of emplacement, and the subaqueous emplacement environment. Due to rapid quenching and mixing with unconsolidated clastic facies, the sills and cryptodomes did not spread far from their conduits. The shape and distribution of the lavas and intrusions were further influenced by the positions of previously or concurrently emplaced units. Magma preferentially invaded the sediment, avoiding the older units or conforming to their margins. Large intrusions and their dewatered envelope may have formed a barrier to the lateral progression and ascent of subsequent batches of magma.  相似文献   

9.
沉积盆地岩浆侵入的热模拟   总被引:15,自引:1,他引:15  
沉积盆地中岩浆的侵入会导致盆地地温史的变化,影响烃类成熟度,本文对沉积盆地中岩浆侵入过程进行了热模拟,分析了岩浆侵入对沉积盆地温度结构和成油窗的影响,在计算中,既考虑了岩浆凝固过程释放的潜热,又考虑了岩石比热,热导率随温度的变化对热模拟结果的影响,通过计算认识到:沉积盆地中侵入岩浆在垂直方向上的热扩散比水平方向热扩散更快,几公里大小的侵入体其热影响可以在时间上持续数百万年,在空间上扩散至十数公里,  相似文献   

10.
The stress field in the vicinity of a body of fluid of simple geometry contained within a non-homogeneously stressed solid has been calculated and the result applied to the case of a magma body within a region of the crust subject to triaxial stresses. The types of faulting and minor intrusion which result are described. The theory indicates that the regional stresses in the crust together with the magma pressure control the type of faulting, the form of the minor intrusions and the occurrence of eruptions from the magma body. The stress conditions favouring caldera formation, the intrusion of radial dykes, dyke swarms and cone sheets are described.  相似文献   

11.
A 150-m-long, wedge-shaped unit of folded and faulted marly siltstone crops out between undeformed sedimentary rocks on the north flank of the Coso Range, California. The several-meter-thick blunt end of this wedge abuts the north margin of a basaltic sill of comparable thickness. Chaotically deformed siltstone crops out locally at the margin of this sill, and at one locality breccia pipes about one meter in diameter crosscut the sill. The sill extends about 1 km south up the paleoslope, where it merges through continuous outcrop with a lava flow that in turn extends 1.4 km to a vent area marked by more than 100 m of agglutinate and scoria. Apparently, lava extruded at this vent flowed onto unconsolidated sediments, burrowed into them, and fed a sill at about 40 m depth within the sedimentary sequence. The sill initially propagated by wedging between sedimentary beds, but eventually began to push some beds ahead of itself, forming a remarkable train of folds in the process. The sediments apparently were wet at the time of sill emplacement, because hydrothermal alteration is common near the contact between the two rock types and because the breccia pipes that crosscut the sill apparently resulted from phreatic explosions of pore water heated at the base of the cooling sill. Comparison of deformation of the host material at the Coso locality with that reportedly caused by emplacement of sills elsewhere indicates that the character of deformation differs greatly among the various localities. The specific response of host material depends upon such parameters as initial properties of magma and host material, rate of sill growth and attendant rate of strain of host material, and depth of sill emplacement. Some properties may change considerably during an intrusive-deformational episode, thus complicating accurate reconstruction of such an event.  相似文献   

12.
Igneous intrusions in coal seams are found in 80 % of coal mines in the Huaibei coalfield, China, and coal and gas outburst accidents have occurred 11 times under a 120-m-thick sill in the Haizi mining field. The magma’s heat had a significant controlling effect on coal seam gas occurrence. Based on theoretical analysis, experimental tests and site validation, we analyzed the temperature distribution following magma intrusion into coal measure strata and the variations in multiple physical parameters and adsorption/desorption characteristics between the underlying coal seams beneath the sill in the Haizi mining field and coal seams uninfluenced by magma intrusion in the adjacent Linhuan mining field. The research results show that the main factors controlling the temperature distribution of the magma and surrounding rocks in the cooling process include the cooling time and the thickness and initial temperature of the magmatic rock. As the distance from sill increases, the critical effective temperature and the duration of sustained high temperatures decrease. The sill in the Haizi mining field significantly promoted coal seam secondary hydrocarbon generation in the thermally affected area, which generated approximately 340 m3/t of hydrocarbon. In the magma-affected area, the metamorphic grade, micropore volume, amount of gas adsorption, initial speed of gas desorption, and amount of desorption all increase. Fluid entrapment by sills usually causes the gas pressure and gas content of the underlying coal seams to increase. As a result, the outburst risks from coal seams increases as well.  相似文献   

13.
Doleritic sill complexes, which are an important component of volcanic continental margins, can be imaged using 3D seismic reflection data. This allows unprecedented access to the complete 3D geometry of the bodies and an opportunity to test classic sill emplacement models. The doleritic sills associated with basaltic volcanism in the North Rockall Trough occur in two forms. Radially symmetrical sill complexes consist of a saucer-like inner sill at the base with an arcuate inclined sheet connecting it to a gently inclined, commonly ragged, outer rim. Bilaterally symmetrical sill complexes are sourced by magma diverted from a magma conduit feeding an overlying volcano. With an elongate, concave upwards, trough-like geometry bilaterally symmetrical sills climb away from the magma source from which they originate. Both sill complex types can appear as isolated bodies but commonly occur in close proximity and consequently merge, producing hybrid sill complexes. Radial sill complexes consist of a series of radiating primary flow units. With dimensions up to 3 km, each primary flow unit rises from the inner saucer and is fed by primary magma tube. Primary flow units contain secondary flow units with dimensions up to 2 km, each being fed by a secondary magma tube branching from the primary magma tube. Secondary flow units in turn are composed of 100-m scale tertiary flow units. A similar branching hierarchy of flow units can also be seen in bilaterally symmetrical sill complexes, with their internal architecture resembling an enlarged version of a primary flow unit from a radial sill complex. This branching flow pattern, as well as the interaction between flow units of varying orders, provides new insights into the origin of the structures commonly seen within sill complexes and the hybrid sill bodies produced by their merger. The data demonstrate that each radially symmetrical sill complex is independently fed from a source located beneath the centre of the inner saucer, grows by climbing from the centre outwards and that peripheral dyking from the upper surface is a common feature. These features suggest a laccolith emplacement style involving peripheral fracturing and dyking during inner saucer growth and thickening. The branching hierarchy of flow units within bilaterally symmetrical sill complexes is broadly similar to that of primary flow units within a radially symmetrical sill complex, suggesting that the general features of the laccolith emplacement model also apply.Editorial responsibility: J. Stix  相似文献   

14.
Nearly all eruptions in stratovolcanoes (composite volcanoes, central volcanoes) are supplied with magma through fractures. Consequently, a primary physical condition for an eruption to occur in a stratovolcano is that a magma-driven fracture is able to propagate to the surface. Magma-filled fractures, frozen or fluid, are referred to as sheet intrusions. More specifically, they are named dykes when subvertical, and inclined (or cone) sheets when inclined. Field observations indicate that most sheet intrusions do not reach the surface to feed eruptions but rather become arrested at various crustal depths. For this reason periods of volcanic unrest with sheet injections are much more common than volcanic eruptions. Whether a sheet intrusion becomes arrested or, alternatively, propagates to the surface depends primarily on the stress field in the stratovolcano. A stratovolcano normally consists of layers of contrasting mechanical properties, such as soft (low Youngs modulus) pyroclastic units and stiff (high Youngs modulus) lava flows. We present numerical models indicating that volcanoes composed of such layers commonly develop stress fields encouraging sheet and dyke arrest. The models indicate that a necessary condition for a sheet intrusion to reach the surface and feed a volcanic eruption is that the stress field along the sheet pathway becomes homogenised. We propose that much of the activity in a stratovolcano during a volcanic cycle encourages stress-field homogenisation. Field studies show that the sheet intrusions in individual stratovolcanoes have various dips: some are vertical dykes, others inclined sheets, and still others horizontal sills. Analytical models indicate that the dip of a sheet reaching the surface can have great effects on the magma transport during an eruption. This effect is normally greater for a flat volcano such as a collapse caldera than for a stratovolcano that forms a topographic high. We conclude that the shallower the dip of a sheet intrusion, the less will be its volumetric magma transport to the surface of a stratovolcano.Editorial responsibility: D Dingwell  相似文献   

15.
Two Miocene basaltic andesite pillowed sills in the Shimane Peninsula, SW Japan, were intruded into wet marine sediments, plastically deforming them. The pillows are elongated, constricted, interconnected and relatively closely packed. Individual pillows have a poorly to moderately vesiculated, somewhat crystalline rind thinner than a few centimeters and a moderately to well vesiculated, more crystalline core; contraction cracks and spreading cracks are poorly developed. The pillows in the sills morphologically resemble pillow lava flows, and during sill intrusion, the magma bifurcated into pillow lobes in a manner similar to pillow lavas. Formation of pillows in sill probably occurs when the magma is intruded into wet sediments and protrudes fingers by the instability of the magma-sediment interface with little turbulence of magma flow.  相似文献   

16.
Intrusions of ultramafic bodies into the lower density continental crust are documented for a large variety of tectonic settings spanning continental shields, rift systems, collision orogens and magmatic arcs. The intriguing point is that these intrusive bodies have a density higher by 300-500 kg m−3 than host rocks. Resolving this paradox requires an understanding of the emplacement mechanism. We have employed finite differences and marker-in-cell techniques to carry out a 2D modeling study of intrusion of partly crystallized ultramafic magma from sublithospheric depth to the crust through a pre-existing magmatic channel. By systematically varying the model parameters we document variations in intrusion dynamics and geometry that range from funnel- and finger-shaped bodies (pipes, dikes) to deep seated balloon-shaped intrusions and flattened shallow magmatic sills. Emplacement of ultramafic bodies in the crust lasts from a few kyr to several hundreds kyr depending mainly on the viscosity of the intruding, partly crystallized magma. The positive buoyancy of the sublithospheric magma compared to the overriding, colder mantle lithosphere drives intrusion while the crustal rheology controls the final location and the shape of the ultramafic body. Relatively cold elasto-plastic crust (TMoho = 400 °C) promotes a strong upward propagation of magma due to the significant decrease of plastic strength of the crust with decreasing confining pressure. Emplacement in this case is controlled by crustal faulting and subsequent block displacements. Warmer crust (TMoho = 600 °C) triggers lateral spreading of magma above the Moho, with emplacement being accommodated by coeval viscous deformation of the lower crust and fault tectonics in the upper crust. Strong effects of magma emplacement on surface topography are also documented. Emplacement of high-density, ultramafic magma into low-density rocks is a stable mechanism for a wide range of model parameters that match geological settings in which partially molten mafic-ultramafic rocks are generated below the lithosphere. We expect this process to be particularly active beneath subduction-related magmatic arcs where huge volumes of partially molten rocks produced from hydrous cold plume activity accumulate below the overriding lithosphere.  相似文献   

17.
Many basaltic volcanoes emit a substantial amount of gas over long periods of time while erupting relatively little degassed lava, implying that gas segregation must have occurred in the magmatic system. The geometry and degree of connectivity of the plumbing system of a volcano control the movement of magma in that system and could therefore provide an important control on gas segregation in basaltic magmas. We investigate gas segregation by means of analogue experiments and analytical modelling in a simple geometry consisting of a vertical conduit connected to a horizontal intrusion. In the experiments, degassing is simulated by electrolysis, producing micrometric bubbles in viscous mixtures of water and golden syrup. The presence of exsolved bubbles induces a buoyancy-driven exchange flow between the conduit and the intrusion that leads to gas segregation. Bubbles segregate from the fluid by rising and accumulating as foam at the top of the intrusion, coupled with the accumulation of denser degassed fluid at the base of the intrusion. Steady-state influx of bubbly fluid from the conduit into the intrusion is balanced by outward flux of lighter foam and denser degassed fluid. The length and time scales of this gas segregation are controlled by the rise of bubbles in the horizontal intrusion. Comparison of the gas segregation time scale with that of the cooling and solidification of the intrusion suggests that gas segregation is more efficient in sills (intrusions in a horizontal plane with typical width:length aspect ratio 1:100) than in horizontally-propagating dykes (intrusions in a vertical plane with typical aspect ratio 1:1000), and that this process could be efficient in intermediate as well as basaltic magmas. Our investigation shows that non-vertical elements of the plumbing systems act as strong gas segregators. Gas segregation has also implications for the generation of gas-rich and gas-poor magmas at persistently active basaltic volcanoes. For low magma supply rates, very efficient gas segregation is expected, which induces episodic degassing activity that erupts relatively gas-poor magmas. For higher magma supply rates, gas segregation is expected to be less effective, which leads to stronger explosions that erupt gas-rich as well as gas-poor magmas. These general physical principles can be applied to Stromboli volcano and are shown to be consistent with independent field data. Gas segregation at Stromboli is thought likely to occur in a shallow reservoir of sill-like geometry at 3.5 km depth with exsolved gas bubbles 0.1–1 mm in diameter. Transition between eruptions of gas-poor, high crystallinity magmas and violent explosions that erupt gas-rich, low crystallinity magmas are calculated to occur at a critical magma supply rate of 0.1–1 m3 s− 1.  相似文献   

18.
Structural, geomorphological, geophysical and volcanological data have been processed for the implementation of a dedicated GIS through which the structural evolution of the Pleistocene trachytic Cimini volcano (central Italy) has been reconstructed. The evolution of the Cimini complex includes three main close-in time phases: (1) intrusion of a shallow laccolith, rising along NW and NE trending faults and stagnating at the contact between the Mesozoic-Cenozoic and the Pliocene-Pleistocene sedimentary units constituting the bedrock of the volcano; (2) emplacement of lava domes along radial and tangential fractures formed by the swelling induced by the laccolith growth; (3) ignimbrite eruptions and final effusion of olivine-latitic lavas. Domes are both of Pelean and low lava dome type and their morphology was controlled by the location on the inclined surface of the swelled area. Some domes show to have uplifted upper Pliocene thermally metamorphosed clay sediments, suggesting a cryptodome-like growth. Comparison of the top of the Mesozoic-Cenozoic units with the top of the upper Pliocene-Pleistocene sedimentary complex, suggests that the laccolith emplaced in a graben of the Mesozoic-Cenozoic sedimentary complex filled by the Pliocene–Pleistocene sediments uplifted by the shallow intrusion. Stress patterns acting on the Cimini area have been deduced analysing the drainage network and the morphotectonic lineaments. Rose diagrams show a large dispersion of the lineaments reflecting the local presence of radial and tangential fractures. The most frequent extensional NW and NE trending lineaments have regional significance and controlled the magma uprise leading to the laccolith emplacement.  相似文献   

19.
The basaltic lava flows towards the east of the Girnar Hills are traversed by a number of basic intrusions of both concordant and discordant types. The former is represented by a single sill, which runs in a roughly north-south direction coinciding with the long axis of an ellipsoidal olivine-gabbro mass of the Girnar plutonic igncous complex while the discordant bodies form radial dykes converging at a centre in Girnar. Petrographically, the intrusive rocks are olivine-dolerites exhibiting a little variation in grain size. They show remarkable similarity in mineral and chemical composition to the olivine-gabbro of the main plutonic body, suggesting their consanguinity. The basalts, into which the dolerites are intruded, show much alteration presumably due to the pneumatolytic effect of the solutions and vapours coming from the central volcano. Such alteration is entirely absent in the olivine dolerites indicating that the dykes are younger than the basalts. On the basis of the structural setting of the rocks, it is suggested that tensional fractures were formed in the lava flows due to the effect of laccolithic intrusion of gabbro, and subsequently the fractures have been filled by the same magma giving rise to olivine-dolerites.  相似文献   

20.
Miocene successions in western Turkey are dominated by lacustrine, fluvial and evaporitic sedimentary deposits. These deposits include considerable amounts of volcaniclastic detritus derived from numerous NE-trending volcanic centres in western Turkey as well as in the Bigadiç region. Early Miocene syn-depositional NE-trending olivine basalt and trachyandesite bodies that formed as intrusions and lava flows occur within the Bigadiç borate basin. Olivine basalts occur as partly emergent intrusions, and trachyandesite dykes fed extensive lava flows emplaced in a semi-arid lacustrine environment.Peperites associated with the olivine basalt and trachyandesites appear to display contrasting textural features, although all the localities include a large variety of clast morphologies from blocky to fluidal. Fluidal clasts, mainly globular, ameboidal and pillow-like varieties, are widespread in the peperite domains associated with olivine basalts, apparently due to large-volume sediment fluidisation. In contrast, fluidal clasts related to trachyandesites are restricted to narrow zones near the margins of the intrusions and have commonly elongate and polyhedral shapes with digitate margins, rather than globular and equant varieties. Blocky and fluidal clasts in the olivine basalt peperite display progressive disintegration, suggesting decreasing temperature and increasing viscosity during fragmentation. Abundance of blocky clasts with respect to fluidal clasts in the trachyandesite peperite indicates that the fluidal emplacement and low-volume sediment fluidisation in the early stages were immediately followed by quench fragmentation due to the high viscosity of the magma.Size, texture and abundance of the blocky and fluidal clasts in the olivine basalt and trachyandesite peperites were mainly controlled by sediment fluidisation, pulsatory magma injection and magma properties such as composition, viscosity, vesicularity, and size, abundance and orientation of phenocrysts. Variously combining these contrasting features to varying degrees may form diverse juvenile clast shapes in peperitic domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号