首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous research has shown that Cu and Fe isotopes are fractionated by dissolution and precipitation reactions driven by changing redox conditions. In this study, Cu isotope composition (65Cu/63Cu ratios) was studied in profiles through sulphide-bearing tailings at the former Cu mine at Laver and in a pilot-scale test cell at the Kristineberg mine, both in northern Sweden. The profile at Kristineberg was also analysed for Fe isotope composition (56Fe/54Fe ratios). At both sites sulphide oxidation resulted in an enrichment of the lighter Cu isotope in the oxidised zone of the tailings compared to the original isotope ratio, probably due to preferential losses of the heavier Cu isotope into the liquid phase during oxidation of sulphides. In a zone with secondary enrichment of Cu, located just below the oxidation front at Laver, δ65Cu (compared to ERM-AE633) was as low as −4.35 ± 0.02‰, which can be compared to the original value of 1.31 ± 0.03‰ in the unoxidised tailings. Precipitation of covellite in the secondary Cu enrichment zone explains this fractionation. The Fe isotopic composition in the Kristineberg profile is similar in the oxidised zone and in the unoxidised zone, with average δ56Fe values (relative to the IRMM-014) of −0.58 ± 0.06‰ and −0.49 ± 0.05‰, respectively. At the well-defined oxidation front, δ56Fe was less negative, −0.24 ± 0.01‰. Processes such as Fe(II)–Fe(III) equilibrium and precipitation of Fe-(oxy)hydroxides at the oxidation front are assumed to cause this Fe isotope fractionation. This field study provides additional support for the importance of redox processes for the isotopic composition of Cu and Fe in natural systems.  相似文献   

2.
The petrology, geochemistry, geochronology, and Sr–Nd–Hf isotopes of the backarc granitoids from the central part of the Qilian block are studied in the present work. Both S- and I-type granitoids are present. In petrographic classification, they are granite, alkali feldspar granite, felsic granite, diorite, quartz diorite, granodiorite, and albite syenite. The SHRIMP ages are 402–447 Ma for the S-type and 419–451 Ma for the I-type granitoids. They are mostly high-K calc-alkaline granitoids. The S-type granitoids are weakly to strongly peraluminous and are characterized by negative Eu anomalies (Eu/Eu* = 0.18–0.79). The I-type granitoids are metaluminous to weakly peraluminous and are characterized mostly by small negative to small positive Eu anomalies (Eu/Eu* = 0.71–1.16). The initial (87Sr/86Sr) values are 0.708848–0.713651 for the S-type and 0.704230–0.718108 for the I-type granitoids. The εNd(450 Ma) values are − 8.9–−4.1 and − 9.7–+ 1.9 for the S-type and I-type granitoids, respectively. The TDM values are 1.5–2.4 Ga for the S-type and 1.0–2.3 Ga for the I-type granitoids. For the Qilian block, the backarc granitoid magmatism took place approximately 60 million years after the onset of the southward subduction of the north Qilian oceanic lithosphere and lasted approximately 50 million years. Partial melting of the source rocks consisting of the Neoproterozoic metasedimentary rocks of the Huangyuan Group and the intruding lower Paleozoic basaltic rocks could produce the S-type granitoid magmas. Partial melting of basaltic rocks mixed with lower continental crustal materials could produce the I-type granitoid magmas. Major crustal growth occurred in the late Archean and Meso-Paleoproterozoic time for the Qilian block. The magma generation was primarily remelting of the crustal rocks with only little addition of the mantle materials after 1.0 Ga for the Qilian block.  相似文献   

3.
Kafang is one of the main ore deposits in the world-class Gejiu polymetallic tin district, SW China. There are three main mineralization types in the Kafang deposit, i.e., skarn Cu–Sn ores, stratiform Cu ores hosted by basalt and stratiform Cu–Sn ores hosted by carbonate. The skarn mainly consists of garnet and pyroxene, and retrograde altered rocks. These retrograde altered rocks are superimposed on the skarn and are composed of actinolite, chlorite, epidote and phlogopite. Major ore minerals are chalcopyrite, pyrrhotite, cassiterite, pyrite and scheelite. Sulfur and Pb isotopic components hint that the sources of different types of mineralization are distinctive, and indicate that the skarn ore mainly originated from granitic magma, whereas the basalt-hosted Cu ores mainly derived from basalt. Microthermometry results of fluid inclusions display a gradual change during the ore-forming process. The homogenization temperature of different types of inclusions continuously decreases from early to late mineralization stages. The salinities and freezing temperatures exhibit similar evolutionary tendencies with the T homogenization, while the densities of the different types keep constant, the majority being less than 1. Oxygen and hydrogen isotopic values (δ18O and δD) of the hydrothermal fluids fall within ranges of 3.1 to 7.7‰ with an average of 6.15‰, calculated at the corresponding homogenization temperature, and − 73 and − 98‰ with an average of − 86.5‰, respectively. Microthermometry data and H–O isotopes indicate that the ore-forming fluid of the Kafang deposit is mainly derived from magma in the early stage and a mixture of meteoric and magmatic water in late stage. Molybdenite Re–Os age of the skarn type mineralization is 83.4 ± 2.1 Ma, and the stratiform ores hosted by basalt is 84.2 ± 7.3 Ma, which are consistent with the LA-ICP-MS zircon age of the Xinshan granite intrusion (83.1 ± 0.4 Ma). The evidence listed above reflects the fact that different ore styles in the Kafang deposit belong to the same mineralization system.  相似文献   

4.
Studies of sulfur and lead isotopic compositions in hydrothermal deposits are an important tool to determine the source and processes of both sulfur and lead, and to understand the origin of hydrothermal ore deposits. Here, the sulfur and lead isotopic compositions of sulfide minerals have been studied for different hydrothermal fields in the East Pacific Rise (EPR), Mid-Atlantic Ridge (MAR), Central Indian Ridge (CIR), Southwest Indian Ridge (SWIR), and North Fiji Basin (NFB). The sulfur isotopic compositions of the studied sulfide samples are variable (δ34S 0.0 to 9.6‰, avg. δ34S 4.7‰; n = 60), being close to the associated igneous rocks (~ 0‰ for, e.g., basalt, serpentinized peridotite), which may reflect the S in the sulfide samples is derived mainly from the associated igneous rocks, and a relatively small proportion (< 36%) of seawater sulfur incorporated into these sulfides during mixing between seawater (δ34S 21‰) and hydrothermal fluid. In contrast for a mixed origin for the source of S, the majority of the lead isotopic compositions (206Pb/204Pb 17.541 ± 0.004 to 19.268 ± 0.001, 207Pb/204Pb 15.451 ± 0.001 to 15.684 ± 0.001, 208Pb/204Pb 37.557 ± 0.008 to 38.988 ± 0.002, n = 21) of the sulfides possess a basaltic Pb isotopic composition, suggesting that the lead in the massive sulfide is mainly leached from local basaltic rocks that host the sub-seafloor hydrothermal systems in sediment-free mid-ocean ridges and mature back-arc basins. Furthermore, sulfide minerals in the super-fast and fast spreading mid-ocean ridges (MORs) exhibit less spread in their the δ34S values compared to sulfides from super-slow, and slow spreading MORs, which is most easily explained as a lesser degree of fluid-rock interaction and hydrothermal fluid-seawater mixing during hydrothermal ore-forming process. Additionally, the S and Pb isotope compositions of sulfides are controlled by the fluid processes for forming seafloor massive sulfide deposits. We demonstrate that the variable sulfur and lead isotopic compositions exhibit a relationship with the sulfur and lead sources, fluid–rock interaction, and fluid–seawater mixing.  相似文献   

5.
The Hongtoushan volcanogenic massive sulfide (VMS) deposit is the largest Archean Cu–Zn deposit in China, located in the Qingyuan greenstone belt on the northern margin of the North China Craton. The Cu–Zn mineralization was stratigraphically controlled by the interbeds (~ 100 m in thickness) of mafic–felsic volcanic sets and overlain by banded iron layers. However, the relationship between VMS deposits and associated volcanics has not been examined. This study ultimately clarifies the times and sources of the volcanics and mineralization. Based on in situ zircon U–Pb and O isotope on VMS-hosting mafic, felsic volcanic rocks, banded and massive sulfide ores and postmineralization pegmatite vein, we considered that there were two main formation stages for the Qingyuan Cu–Zn deposits; one was exhalative-hydrothermal sedimentation and another was further Cu–Zn enriched by later hydrothermal processes. The timing of the first stage occurred at 2571 ± 6 Ma based on the magmatic zircons in the VMS-hosting mafic volcanic rocks, from which the inherited zircons also indicate the existence of 2.65–3.12 Ga ancient supercrustal rocks in the Qingyuan district. A modern mantle-like δ18Ozircon value of 5.5 ± 0.1‰ (2SD) for this volcanism was well preserved in the inherited core domains of ore samples. It suggests that the mafic volcanics was most likely sourced from partial melting of juvenile crust, e.g., TTG granites. A large-scale metamorphic or hydrothermal event is documented by the recrystallized zircons in sulfide ores. The timing is tightly constrained by the hydrothermal zircon U–Pb ages. They are 2508 ± 4 Ma for the banded ore, 2507 ± 4 Ma for the massive ore and 2508 ± 2 Ma for the postmineralization pegmatite vein. These indistinguishable ages indicate that the 2507 Ma hydrothermal systems played a significant role in the upgrading of the VMS Cu–Zn orebodies. The weighted δ18O values of hydrothermal zircons show a successively increasing trend from 6.0 ± 0.1‰ (2σ) for the banded ore, 6.6 ± 0.2‰ (2σ) for the massive ore to 7.3 ± 0.2‰ (2σ) for the later pegmatite vein. This variation might be induced by gradual inputting of the δ18O-rich oceanic crust and/or oceanic sediment during the hydrothermal cycling system. Considering its modern mantle-like oxygen isotope composition of 2571 Ma volcanism, a submarine volcanic hydrothermal system involving mantle plumes is a preferred setting for the Neoarchean VMS Cu–Zn deposits in the Qingyuan greenstone belt.  相似文献   

6.
Xiaolonghe is a poorly studied greisen-type tin deposit that is hosted by biotite granite in the western Yunnan tin belt. The mineralisation-related metaluminous and weak peraluminous granite is characterised by high Si, Al and K and low Mg, Fe and Ca, with an average A/CNK of 1.02. The granite is enriched in LILEs (K and Rb), LREEs and HFSEs (Zr, Hf, Th, U and Ce) and depleted in Ba, Nb, Sr, P, and Ti, with zircon εHf(t) =  10.8 to − 7.5 (TDM2 = 1.61–1.82 Ga). These characteristics indicate that the magma was generated by the partial melting of a thickened ancient crust. LA-ICP-MS U–Pb dating of igneous zircon and hydrothermal cassiterite yield ages of 71.4 ± 0.4 Ma and 71.6 ± 4.8 Ma, respectively. The igneous biotite and hydrothermal muscovite samples show Ar–Ar plateau ages of 72.3 ± 0.4 Ma and 70.6 ± 0.2 Ma, respectively. The close temporal relationship between the igneous emplacement and hydrothermal activity suggests that the tin mineralisation was closely linked to the igneous emplacement. The δ18O and δD values for the deposit range from + 3.11‰ to − 4.5‰ and from − 127.3‰ to − 94.7‰, respectively. The hydrothermal calcite C and O isotopic data show a wide range of δ13CPDB values from − 5.7‰ to − 4.4‰, and the δ18OSMOW values range from + 1.4‰ to + 11.2‰. The δ34SV-CDT data range from + 4.8‰ to + 8.9‰ for pyrite, and the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios range from 18.708 to 18.760, from 15.728 to 15.754 and from 39.237 to 39.341, respectively. The stable isotopic (C–H–O–S–Pb) compositions are all similar to those of magmatic and mantle-derived fluids, which indicate that the ore-forming fluids and materials were mainly derived from magmatic sources that were accompanied by meteoric water. The tin mineralisation in the Xiaolonghe district was closely associated with the Late Cretaceous crustal-melting S-type granites that formed during the subduction of the Neo-Tethys oceanic lithosphere. Combined with the tin deposits in the Southeast Asian tin belt, Tengchong block and Central Lhasa, we interpreted that a giant intermittent tin mineralisation belt should be present along the Asian Neo-Tethys margin.  相似文献   

7.
The study presents copper (Cu) isotope data of mineral separates of chalcopyrite from four drill core samples in the Miocene Dabu porphyry Cu-Mo deposit formed in a post-collisional setting in the Gangdese porphyry copper belt, southern Tibet. Copper isotope values in hypogene chalcopyrite range from –1.48‰ to +1.12‰, displaying a large variation of up to 2.60‰, which demonstrates Cu isotope fractionation at high-temperature during hydrothermal evolution. The majority of measured chalcopyrite isotopic compositions show a gradual increasing trend from –1.48‰ to +1.12‰ with the increase of drilling depth from 130m to 483m, as the alteration assemblages change from potassic to phyllic. Similarly, the other δ65Cu values (δ65Cu = ((65Cu/63Cu)sample/(65Cu/63Cu)standard  1) × 1000) of the chalcopyrite show a gradual increasing trend from −1.48‰ to +0.59‰ with the decrease of drilling depth from 130 m to 57 m, as the alteration assemblages change from potassic, phyllic, through argillic to relatively fresh. These observations suggest a genetic link between Cu isotope variation and silicate alteration assemblages formed at different temperatures, indicative of a Rayleigh precipitation process resulting in the large variation of δ65Cu values at Dabu. In general, samples closest to the center of hydrothermal system dominated by high-temperature potassic alteration are isotopically lighter, whereas samples dominated by low-temperature phyllic alteration peripheral to the center are isotopically heavier. The predicted flow pathways of hydrothermal fluids are from No. 0 to No. 3 exploration line, and the lightest δ65Cu values are the most proximal to the hydrothermal source. Finally, we propose that the northwest side of the No. 0 exploration line has high potential for hosting undiscovered orebodies. The pattern of Cu isotope variation in conjunction with the features of silicate alteration in porphyry system can be used to trace the hydrothermal flow direction and to guide mineral exploration.  相似文献   

8.
The Dapingzhang volcanogenic Cu–Pb–Zn sulfide deposit is located in the Lancangjiang tectonic zone within the Sanjiang region, Yunnan province of southwestern China. The deposit occurs within a felsic volcanic dome belonging to a mid-Silurian volcanic belt stretching for more than 100 km from Dapingzhang to Sandashan. The mineralized volcanic rocks are predominantly keratophyre and quartz keratophyre with subordinate spilite. The Dapingzhang deposit is characterized by well-developed vertical zonation with stockwork ores in the bottom, disseminated sulfide ores in the middle, and massive sulfide ores in the top, overlain by a thin layer of chemical sedimentary exhalative rocks (chert and barite). The Re–Os age of the pyrites from the deposit is 417 ± 23 Ma, indistinguishable from the age of the associated felsic volcanic rocks. The associated felsic volcanic rocks are characterized by negative Nb–Ta anomalies and positive εNd(t) values (+ 4.4–+6.5), similar to the coeval calc-alkaline volcanic rocks in the region. This observation supports the interpretation that the felsic volcanic rocks associated with the Dapingzhang deposit are the derivatives of arc basaltic magma by extensive fractional crystallization. The δ34S values of the sulfides from the deposit vary from − 1.24 to + 4.32‰, indicating a predominantly magmatic source for the sulfur. The sulfides are also characterized by homogeneous and relatively low radiogenic Pb isotope compositions (206Pb/204Pb = 18.310–18.656, 207Pb/204Pb = 15.489–15.643 and 208Pb/204Pb = 37.811–38.662), similar to the Pb isotopic compositions of the associated volcanic rocks. The Pb isotopic data indicate that mantle-derived Pb is more prevalent than crust-derived Pb in the deposit. The S–Pb isotopic data indicate that the important ore-forming materials were mainly derived from the associated volcanic rocks. The δ13CPDB and δ18OSMOW values of the associated hydrothermal calcite crystals vary from − 2.3‰ to + 0.27‰ and from + 14.6 to + 24.4‰, respectively. These values are between the mantle and marine carbonate values. The narrow range of the δ13CPDB values for the calcite indicates that carbon-bearing species in the hydrothermal fluids were primarily derived from marine carbonates. The δ18O values for the hydrothermal fluids, calculated from the measured values for quartz, are between − 2.1‰ and + 3.5‰. The corresponding δD values for the fluids range from − 59‰ to − 84‰. The O–H isotopic data indicate mixing between magmatic fluids and seawater in the ore-forming hydrothermal system. Similar to a typical volcanogenic massive sulfide (VMS) deposit, the ore-forming fluids contained both magmatic fluids and heated seawater; the ore metals and regents were derived from the underlying magma as well as felsic country rocks.  相似文献   

9.
Chilean manto-type (CMT) Cu(–Ag) hydrothermal deposits share a characteristic association of volcano-sedimentary Jurassic to Lower Cretaceous host rocks, style of mineralization, ore and associated mineralogy and geochemistry, with ore grades typically > 1%Cu, that make this family of deposits significant and interesting, both academically and economically. Although often stratabound, geological evidence supports an epigenetic origin for these deposits. We present a detailed stable isotope study of La Serena and Melipilla–Naltahua Lower Cretaceous deposits, central Chile, which reveals extremely negative δ34S values, to − 50‰, which are among the lowest values found in any ore deposit. In addition, the range of δ34S values from sulfides in the two areas is very wide: − 38.3 to − 6.9‰ in La Serena, and − 50.4 to − 0.6‰ in Melipilla–Naltahua. These new data significantly extended the reported range of δ34S data for CMT deposits. Co-existing sulfates range from 7.9 to 14.3‰, and are exclusive to La Serena deposit. The wide sulfide isotopic range occurs at deposit and hand specimen scale, and suggests a polygenic sulfur source for these deposits, where bacteriogenic sulfide dominates. While sulfur isotope data for the bulk of Jurassic CMT deposits, northern Chile, suggests a predominant magmatic source in their origin (mean =  2.7 ± 1.9‰, 1σ), contributions of a magmatic component is only likely to be involved at Melipilla–Naltahua deposit.The δ13C values obtained for calcites associated with the mineralization range from − 20.1 to 0.2‰ also suggesting polygenic carbon sources, with the likely strong involvement of degradation of organic matter and leaching of limestone.Two different genetic models, with involvement of hydrocarbon, are proposed for both areas. For Melipilla–Naltahua, a two-step model can be developed as follows: 1) Framboidal pyrite growth, with very low δ34S, formed by bacterial sulfate reduction in an open system, and with diagenetic degradation of oil-related brines, leaving pyrobitumen. 2) Cu-bearing stage, replacing of framboidal pyrite, inheriting depleted sulfur as low as − 50.4‰, together with sulfides directly precipitated from a hydrothermal fluid with δ34S close to 0‰. For La Serena, a single step model fits best, without framboidal pyrite generation. Cu-bearing sulfides were precipitated mainly in veins where Cu plus base metal-bearing hydrothermal fluids mixed with H2S generated by bacterial sulfate reduction in the host rocks. Isotopic evidence clearly illustrates that bacterial activity, perhaps enhanced by hydrothermal activity, was fed by hydrocarbon brines and sulfate remobilized from continental evaporites. It is possible that variable ecological conditions led to different extents of isotopic fractionation, adding to the typical sulfur isotopic heterogeneity of such bacterial systems. For both areas, the Cu-bearing stage occurred during the peak to waning stages of the very low-grade metamorphism that affected the Lower Cretaceous sequence.  相似文献   

10.
The Bafoussam area in western Cameroon is part of the Central African Orogenic Belt. It is dominated by granitoids which belong to the Pan-African syn- to post-collisional post-650 Ma group. Syenogranites are predominant, but alkali-feldspar granite, monzogranite, quartz-monzonite and quartz-monzodiorite occur as well. Four granitoid suites, biotite granitoids and deformed biotite granitoids with amphibole, megafeldspar granitoids with megacrysts and two-mica granitoids with primary muscovite and igneous garnet are distinguished. The granites can be assigned to high-K calc-alkalic to shoshonitic series. The partly shoshonitic biotite granitoids are metaluminous to weakly peraluminous and can be labelled as a highly fractionated I-type suite. The megafeldspar granitoids are weakly peraluminous with I-type character whereas the two-mica granitoids are weakly to strongly peraluminous and belong to an S-type suite. Emplacement ages at 558–564 Ma for the two-mica granitoids have been dated from monazite by the EMP Th–U–Pb method.The REE in the biotite granitoids are moderately fractionated with (La/Lu)N = 23–38. Enrichment of Nb and Ta varies by one order of magnitude. The megafeldspar granitoids show homogeneous and strongly fractionated REE patterns with (La/Lu)N = 27–42. The primitive mantle-normalized element patterns are homogeneous with marked negative Ba, Nb, Ta, Sr, Eu and Ti anomalies. The two-mica granitoids are characterized by low to moderate total REE contents with strongly fractionated REE expressed by (La/Lu)N ranging from 7 to 59. The negative Nb and Ta anomalies are less significant. Nd and Sr whole-rock isotope data confirm different sources for the granitoid suites. The source of the I-type biotite granitoids was probably a juvenile mantle which has been variably metasomatized. The source of the I-type megafeldspar granitoids is characterized by juvenile mantle and lower crust components. Anatectic melts of the upper continental crust with variable contribution of lower continental crust or mantle melts can explain the heterogeneous isotopic signatures of the S-type two-mica granitoids. It is suggested that the melting of these sources was successively initiated by the rising isotherms during a syn- to post-collisional setting which followed a subduction.  相似文献   

11.
The Yukeng–Banling deposit is a typical fault-controlled hydrothermal Cu–Au deposit in the Shanmen Volcanic Basin (SVB), SE China. Ore bodies commonly occur as lodes, lenses and disconnected pods dipping SW with vertical zonation of ore minerals. Ore-related hydrothermal alteration is well developed on both sides of the veins, dominated by silicification, sericitization, chloritization and argillation with a banded alteration zonation. The mineralization can be divided into three stages (stages I, II and III). Native gold is present as veinlets in fractures of fine-grained pyrite from stage II.Zircon U–Pb and Rb–Sr isochron ages indicate that the Cu–Au mineralization is coeval with the Caomen alkaline granite and Xiaokeng quartz-diorite, both emplaced at ca. 102 Ma. Microthermometric measurements of fluid inclusions in quartz and sphalerite from stage II veins indicate that the Yukeng–Banling deposit is an epithermal deposit. Six ore-related quartz grains have δDH2O values of − 69 to − 43‰, and δ18OH2O values calculated using total homogenization temperatures that range from − 2.0 to 0.7‰. All samples plot in an area between the magmatic field and the meteoric line, suggesting that the ore-forming fluids are derived from a mixed source of magmatic and meteoric waters. δ34S values for eight pyrite separates range from − 2.1 to + 4.1‰ with an average of + 1.7‰, and δ34S values for galena and sphalerite are 2.3‰ and 2.2‰, similar to magmatic sulfur. Four alkaline granite samples have Pb isotopic ratios (206Pb/204Pb)t = 18.175–18.411, (207Pb/204Pb)t = 15.652–15.672 and (208Pb/204Pb)t = 38.343–38.800. Three quartz-diorite samples have ratios (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t of 18.277–18.451, 15.654–15.693 and 38.673–38.846, respectively. These age-calculated lead isotopic data for alkaline granite are similar to those for the analyzed sulfides. Co/Ni ratios for stage II pyrites range from 1.42 to 5.10, indicating that the Yukeng–Banling deposit records the past involvement of magmatic hydrothermal fluids. The isotope data, together with geological, mineralogical and geochronological evidence, favor a primary magmatic source for sulfur and metals in the ore fluids. Mixing of the Cu- and Au-rich fluids with meteoric water led to precipitation of the Cu–Au veins along NW-trending faults.The Yukeng–Banling deposit, the contemporaneous Caomen alkaline granite and Xiaokeng quartz-diorite in the SVB formed under an extensional setting, due to high-angle subduction of the paleo-Pacific plate. The extensional setting facilitated the formation of Cu- and Au-rich magmas which was derived from enriched mantle and lower crust.  相似文献   

12.
The Zhuguangshan complex carries some of the most important granite-hosted uranium deposits in South China. Here we investigate the Changjiang and Jiufeng granites which represent typical U-bearing and barren granites in the complex, using zircon U-Pb ages, whole-rock geochemistry, Sr-Nd isotopic and zircon Hf isotopic data, and mineral chemistry, to constrain the petrogenesis and uranium mineralization. LA-ICP-MS zircon U-Pb dating shows that both the Changjiang and Jiufeng granites were emplaced ca. 160 Ma. These rocks show high silica, weakly to strongly peraluminous compositions, enrichment in Rb, Th, and U, and depletion in Ba, Nb, Sr, P, and Ti. These features coupled with the high initial 87Sr/86Sr ratios, negative εNd(t) values and εHf(t) values, and the Paleoproterozoic two stage model ages of these two granites suggest that the two granites belong to S-type granites, and the parental magmas of the two granites were derived from the Paleoproterozoic metasedimentary rocks. However, the granitoids show different mineralogical characteristics. The biotite in the Changjiang granite belongs to siderophyllite, marking higher degree of chloritization, whereas the biotite in the Jiufeng granite is ferribiotite, characterized by only slight chloritization. Compared with the Jiufeng granite, the biotite in the Changjiang granite has lower crystallization temperature and oxygen fugacity, but higher F content, and the uraninite has higher UO2 content but lower ThO2 content, and stronger corrosion. The chemical ages of uraninites from both granites are (within error) consistent with the zircon U-Pb ages and are considered to represent the emplacement ages of granites. Chemical ages of pitchblende in the Changjiang granite yield 118 ± 8 Ma, 87 ± 4 Ma, and 68 ± 6 Ma, representing multiple episodes of hydrothermal events that are responsible for the precipitation of U ores in the Changjiang uranium ore field. Our study suggests that the degree of magma differentiation and physicochemical conditions of the magmatic-hydrothermal system are the key factors that control the different U contents of these two granites. The mineralogical characteristics of uraninite and biotite can be used to distinguish between U-bearing and barren granites, and serve as a potential tool for prospecting granite-hosted uranium deposits.  相似文献   

13.
The recently-discovered Wenquan porphyry Mo deposit hosted in the Wenquan granite of the West Qinling Orogen has been recognized as a product of the Indosinian metallogenesis. Three generations of mineral assemblage for the deposit are identified as follows: (1) quartz–biotite–K-feldspar; (2) quartz–sulfide and (3) sulfide–calcite. Geochemical study shows that the mafic microgranular enclaves (MMEs) in the ore-bearing Wenquan granite have lower SiO2, and higher Mg# and Nb/Ta ratios than the host granite itself. Different from the granite which have zircon εHf(t) values of − 3.6–3.0 and TDM2 of 1234–890 Ma, the MMEs are characterized by the εHf(t) values of − 10.1–10.8 and TDM1 of 865–441 Ma. This can be interpreted to indicate a mixture origin of the Meso- and Neoproterozoic crust-derived component and Neoproterozoic SCLM-derived materials for the formation of the Wenquan granite, which played an essential role in the Mo mineralization. Comparative Pb isotopic data between ores and K-feldspar suggest that the Wenquan granitic magma originated from the middle-lower crust of the South China Block and the ore-forming materials were incorporated by hydrothermal fluid differentiated from the Triassic magmatic system, with minor contribution of sedimentary rocks. The δ34S values of 5.0–11.7‰ with a pronounced mode at 5.0 to 6.1‰ for the ores probably represent the sulfur incorporation of a typical magmatic hydrothermal fluid contaminated by heavy sulfur of Devonian sediments. The granite yielded the zircon U–Pb ages of 218 ± 2.4 Ma and 221 ± 1.3 Ma, as the same as the ages of 217 ± 2.0 Ma and 218 ± 2.5 Ma obtained for the MMEs. These ages are indistinguishable with the molybdenite Re–Os isochron age of 219 ± 5.2 Ma which is the timing for the Mo mineralization. Tectonically, the magmatic mixture processes of the Wenquan granite and the Mo mineralization to form the Wenquan Mo deposit contemporaneously occurred during the transition of tectonic regime from syn- to post-collision orogeny in the Qinling Orogen in the Late Triassic.  相似文献   

14.
Stable Zn isotopes may be applied to trace the source of ore-forming metals in various types of PbZn deposits. To test this application, Zn and Pb isotope systematics for sulfides and associated basement rocks as well as FeMn carbonates (gangue) from the Zhaxikang PbZn deposit in South Tibet have been analyzed. The basement in this region includes metamorphosed mafic to felsic rocks (dolerite, quartz diorite, rhyolite porphyry, pyroclastics and porphyritic monzogranite). These rocks have similar δ66Zn values of 0.33 to 0.37‰, with an average value of 0.36 ± 0.03‰ (2σ), except for the more evolved porphyritic monzogranite that has a heavier value of 0.49‰. FeMn carbonates are present as hydrothermal veins and were probably precipitated from magmatic fluids. They have an average δ66Zn value of 0.27 ± 0.05‰, which is slightly lighter than the basement rocks, possibly representing δ66Zn isotopic compositions of the hydrothermal fluids. Sphalerite and galena have similar Zn isotopic compositions with δ66Zn ranging from 0.03 to 0.26‰ and 0.21 to 0.28‰, respectively. Considering the Zn isotope fractionation factor between sphalerite and fluids of − 0.2‰ at ~ 300 °C as reported in literature, hydrothermal fluids from which these sulfides precipitated will have δ66Zn values of ca. 0.39 ± 0.10‰, which are consistent with the values of basement rocks and the FeMn carbonates. This similarity supports a magmatic-hydrothermal origin of the Zhaxikang PbZn deposit. Both Pb and S isotopes in these sphalerite and galena show large variations and are consistent with being derived from a mixture of basement and sedimentary rocks in various proportions. Zn isotopic compositions of the sulfides significantly extend the range of regional basement rocks, suggesting that sedimentary rocks (e.g., shales) are also a significant source of Zn. However, the Zn isotopic compositions of sphalerite and galena differ from those of marine carbonates and those of typical SEDEX-type deposits (e.g. Kelley et al., 2009), confirming a magmatic-hydrothermal model. Combined with regional geological observations and the age constraints of ~ 20 Ma (Zheng et al., 2012, 2014), the results of our investigation indicate that the Zhaxikang PbZn deposit is most likely a magmatic-hydrothermal deposit.  相似文献   

15.
The Baoshan Cu-polymetallic deposit is a recently discovered skarn deposit in the northern Lesser Xing’an Range, NE China. The orebodies are mainly hosted in the contact zone between granitic intrusions and Lower Cambrian dolomitic crystalline limestones or skarns. We present here zircon U–Pb and molybdenite Re–Os age data, whole-rock geochemistry, and zircon Hf isotopic data to constrain the geodynamic mechanisms of igneous activity and metallogenesis within the Baoshan Cu–polymetallic deposit. LA–ICP–MS zircon U–Pb dating suggests that a hornblende–quartz monzonite and porphyritic biotite granite were emplaced at 252.45 ± 0.70 Ma and 251.10 ± 0.98 Ma, respectively. Molybdenite separated from ore-bearing quartz veins or skarn-type ores yields a weighted mean model age of 250.3 ± 3.4 Ma, which coincide with the emplacement of the igneous rocks. These data suggest that the Late Permian-Early Triassic magmatic and mineralization event led to the formation of the Baoshan Cu–polymetallic deposit. Granitic intrusions are closely associated with this mineralization and have high contents of SiO2 (60.90–68.98 wt.%), Al2O3 (15.15–16.98 wt.%) and K2O (2.77–4.17 wt.%), with A/CNK ratios of 0.86–0.96. These granites are classified as metaluminous and high-K calc-alkaline I-type granites, and are enriched in Rb, Th, U, and K, and depleted in Nb, Ta, P, and Ti. Moreover, Moreover, the hornblende–quartz monzonite and porphyritic biotite granite have geochemical characteristics similar to adakites and island arc calc-alkaline rocks, respectively. In situ zircon Hf isotope data on the hornblende–quartz monzonite samples show εHf(t) values from +0.1 to +3.1, and porphyritic biotite granite samples exhibit heterogeneous εHf(t) values from −5.4 to +1.1. The geochemical and isotopic data for the Baoshan intrusions indicate that the Late Permian–Early Triassic continental–continental collision caused over thickening and delamination of the lower crust. Partial melting of delaminated lower crust formed the primary adakitic magmas, which may have reacted with surrounding mantle peridotite during ascent. Hornblende–quartz monzonite was formed by the emplacement of the adakitic magmas, whereas the formation of the porphyritic biotite granite was caused by the mixing of adakitic magmas with ancient crustal materials during ascent. Moreover, ore-forming materials were typically derived from the adakitic magmas with high oxygen fugacity, which incorporated significant amounts of ore-forming elements. Based on the regional geological history and the new geochemical and isotopic data from intrusions, we suggest that diagenesis and mineralization of the Baoshan Cu–polymetallic deposit took place in a transitional tectonic setting from collisional orogeny to extension, after collision of the North China Plate and Songnen Block, during the latter stages of the Xingmeng orogeny.  相似文献   

16.
The Tongjing Cu–Au deposit is a medium-sized deposit within the Ningwu volcanic basin, east China, and is hosted by Cretaceous volcanic rocks of the Dawangshan and Niangniangshan Formations. The veined and lenticular Cu–Au orebodies are spatially and temporally related to the volcanic and subvolcanic rocks of the Niangniangshan Formation in the ore district. The wall-rock alteration is dominated by silicification, siderite alteration, carbonation, sericitization, chloritization, and kaolinization. On the basis of field evidence and petrographic observations, two stages of mineralization are recognized: (1) a siderite–quartz–sulfide stage (Stage 1) associated with the formation of chalcopyrite and pyrite in a quartz and siderite gangue; and (2) a quartz–bornite stage (Stage 2) cutting the Stage 1 phases. Stage 1 is the main mineralization stage. Quartz that formed in Stage 1 has δ18OH2O values of − 4.3‰ to 3.5‰ with δD values of fluid inclusion waters of − 97.1‰ to − 49.9‰, indicating that the ore-forming fluids were derived from early magmatic fluids and may have experienced oxygen isotopic exchange with meteoric water during Stage 1 mineralization.LA–MC–ICP–MS zircon U–Pb dating of the mineralization-related nosean-bearing phonolite and nosean-bearing phonolitic brecciated tuff at Tongjing yields ages of 129.8 ± 0.5 Ma and 128.9 ± 1.1 Ma, respectively. These results are interpreted as the crystallization age of the volcanic rocks of the Niangniangshan Formation. A hydrothermal sericite sample associated with Cu–Au mineralization at Tongjing yields a plateau 40Ar–39Ar age of 131.3 ± 1.3 Ma. These results confirm a genetic link between the volcanism and associated Cu–Au mineralization. The Tongjing Cu–Au deposit in the Ningwu basin is genetically and possibly tectonically similar to alkaline intrusion-related gold deposits elsewhere in the world.  相似文献   

17.
The Kalaxiange’er porphyry copper ore belt is situated in the eastern part of the southern Altai of the Central Asian Orogenic Belt and forms part of a broad zone of Cu porphyry mineralization in southern Mongolia, which includes the Oyu Tolgoi ore district and other copper–gold deposits. The copper ore bodies are spatially associated with porphyry intrusions of granodiorite, quartz diorite, quartz syenite, and quartz monzonite and have a polygenetic (polychromous) origin (magmatic porphyry, hydrothermal, and supergene). The mineralized porphyries are characterized by almost identical REE and trace element patterns. The Zr/Hf and Nb/Ta ratios are similar to those of normal granite produced through the evolution of mantle magma. The low initial Sr isotope ratio ISr, varying within a narrow range of values (0.703790–0.704218), corresponds to that of primitive mantle, whereas the εNd(T) value of porphyry varies from 5.8 to 8.4 and is similar to that of MORB. These data testify to the upper-mantle genesis of the parental magmas of ore-bearing porphyry, which were then contaminated with crustal material in an island-arc environment. The isotopic composition of sulfur (unimodal distribution of δ34S with peak values of − 2 to − 4‰) evidences its deep magmatic origin; the few lower negative δ34S values suggest that part of S was extracted from volcanic deposits later. The isotopic characteristics of Pb testify to its mixed crust–upper-mantle origin. According to SHRIMP U–Pb geochronological data for zircon from granite porphyry and granodiorite porphyry, mineralization at the Xiletekehalasu porphyry Cu deposit formed in two stages: (1) Hercynian “porphyry” stage (375.2 ± 8.7 Ma), expressed as the formation of porphyry with disseminated and vein–disseminated mineralization, and (2) Indosinian stage (217.9 ± 4.2 Ma), expressed as superposed hydrothermal mineralization. The Re–Os isotope data on molybdenite (376.9 ± 2.2 Ma) are the most consistent with the age of primary mineralization at the Xiletekehalasu porphyry Cu deposit, whereas the Ar–Ar isotopic age (230 ± 5 Ma) of K-feldspar–quartz vein corresponds to the stage of hydrothermal mineralization. The results show that mineralization at the Xiletekehalasu porphyry Cu deposit was a multistage process which resulted in the superposition of the Indosinian hydrothermal mineralization on the Hercynian porphyry Cu mineralization.  相似文献   

18.
Neoproterozoic igneous rocks are widely distributed in the Kuluketage block along the northern margin of the Tarim Craton. However, the published literature mainly focuses on the ca. 800 Ma adakitic granitoids in the area, with the granites that intrude the 735–760 Ma mafic–ultramafic rocks poorly studied. Here we report the ages, petrography and geochemistry of two granites in the Xingdi mafic–ultramafic rocks, in order to construct a new view of the non-adakitic younger granites. LA-ICP-MS zircon U–Pb dating provided weighted mean 206Pb/238U ages of 743.0 ± 2.5 Ma for the No.I granite (G1) and 739.0 ± 3.5 Ma for the No.II granite (G2). A clear core-rim texture of similar age and a high zircon saturation temperature of ca. 849 ± 14 °C were observed for the No.I granite; in contrast, G2 has no apparent core-rim texture but rather inherited older zircons and a lower zircon saturation temperature of ca. 763 ± 17 °C. Geochemical analysis revealed that G1 is an alkaline A-type granite and G2 is a high-K calc-alkaline I-type granite. Both granites share similar geochemical characteristics of arc-related magmatic rocks and enriched Sr–Nd–Hf isotopes, likely due to their enriched sources or mixing with enriched magma. Whereas G1 and its host mafic rocks form typical bimodal intrusions of the same age and similar Sr–Nd–Hf isotope compositions, G2 is younger than its host mafic rocks and its Sr–Nd–Hf isotope composition indicates a lower crust origin. Although they exhibit arc-related geochemical features, the two granites likely formed in a rift setting, as inferred from thier petrology, Sr–Nd–Hf isotopes and regional tectonic evolution.  相似文献   

19.
The Maozu Pb–Zn deposit, located on the western margin of the Yangtze Block, southwest China, is a typical carbonate-hosted deposit in the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province with Pb + Zn reserves of about 2.0 million tonnes grading 4.15 wt.% Pb and 7.25 wt.% Zn. Its ore bodies are hosted in Sinian (635–541 Ma) Dengying Formation dolostone and show stratiform, vein and irregular textures. Ores are composed of sphalerite, galena, pyrite, calcite, dolomite, quartz and fluorite with massive, banded, disseminated and veined structures. The C–O–Sm–Nd isotopic compositions of hydrothermal calcites and S–Pb isotopic compositions of sulfides were analyzed to constrain the origin of the Maozu deposit. δ13CPDB and δ18OSMOW values of hydrothermal calcites range from −3.7‰ to −2.0‰ and +13.8‰ to +17.5‰, respectively, and plot near the marine carbonate rocks field in a plot of δ13CPDB vs. δ18OSMOW, with a negative correlation. It suggests that CO2 in the hydrothermal fluids was mainly originated from marine carbonate rocks, with limited influence from sedimentary organic matter. δ34SCDT values of sulfides range from +9.9‰ to +19.2‰, similar to that of Cambrian to Triassic seawater sulfate (+15‰ to +35‰) and evaporate (+15‰ to +30‰) in the Cambrian to Triassic sedimentary strata. It suggests that reduced sulfur was derived from evaporate in sedimentary strata by thermo chemical sulfate reduction. Sulfides have low radiogenic Pb isotope compositions (206Pb/204Pb = 18.129–18.375, 207Pb/204Pb = 15.640–15.686 and 208Pb/204Pb = 38.220–38.577) that plot in the field between upper crust and the orogenic belt evolution curve in the plot of 207Pb/204Pb vs. 206Pb/204Pb, and similar to that of age corrected Proterozoic basement rocks (Dongchuan and Kunyang Groups). This indicates that ore-forming metals were mainly derived from basement rocks. Hydrothermal calcite yields a Sm–Nd isotopic age of 196 ± 13 Ma, possibly reflecting the timing of Pb–Zn mineralization in the SYG province, younger than the Permian Emeishan mantle plume (∼260 Ma). All data combined suggests that hydrothermal fluids circulated through basement rocks where they picked up metals and migrated to surface, mixed with reduced sulfur-bearing fluids and precipitated metals. Ore genesis of the Maozu deposit is different from known magmatic–hydrothermal, Sedimentary Exhalative or Mississippi Valley-types, which maybe represent a unique ore deposit type, named as the SYG-type.  相似文献   

20.
Depending on the geological setting, the interaction of submarine hydrothermal fluids with the host rock leads to distinct energy and mass transfers between the lithosphere and the hydrosphere. The Nibelungen hydrothermal field is located at 8°18′S, about 9 km off-axis of the Mid-Atlantic Ridge (MAR). At 3000 m water depth, 372 °C hot, acidic fluids emanate directly from the bottom, without visible sulfide chimney formation. Hydrothermal fluids obtained in 2009 are characterized by low H2S concentrations (1.1 mM), a depletion of B (192 μM) relative to seawater, lower Si (13.7 mM) and Li (391 μM) concentrations relative to basaltic-hosted hydrothermal systems and a large positive Eu anomaly, and display a distinct stable isotope signature of hydrogen (?2HH2O = 7.6–8.7‰) and of oxygen (?18OH2O = 2.2–2.4‰).The heavy hydrogen isotopic signature of the Nibelungen fluids is a specific feature of ultramafic-hosted hydrothermal systems and is mainly controlled by the formation of OH-bearing alteration minerals like serpentine, brucite, and tremolite during pervasive serpentinization. New isotopic data obtained for the ultramafic-hosted Logatchev I field at 14°45′N, MAR (?2HH2O = 3.8–4.2‰) display a similar trend, being clearly distinguished from other, mafic-hosted hydrothermal systems at the MAR.The fluid geochemistry at Nibelungen kept stable since the first sampling campaign in 2006 and is evident for a hybrid alteration of mafic and ultramafic rocks in the subseafloor. Whereas the ultramafic-fingerprint parameters Si, Li, B, Eu anomaly and ?2HH2O distinguish the Nibelungen field from other hydrothermal systems venting in basaltic settings at similar physico-chemical conditions and are related to the interaction with mantle rocks, the relatively high concentrations of trace alkali elements, Pb, and Tl can only be attributed to the alteration of melt-derived gabbroic rocks. The elemental and isotopic composition of the fluid suggest a multi-step alteration sequence: (1) low- to medium-temperature alteration of gabbroic rocks, (2) pervasive serpentinization at moderate to high temperatures, and (3) limited high-temperature interaction with basaltic rocks during final ascent of the fluid. The integrated water/rock ratio for the Nibelungen hydrothermal system is about 0.5.The fluid compositional fingerprint at Nibelungen is similar to the ultramafic-hosted Logatchev I fluids with respect to key parameters. Some compositional differences can be ascribed to different alteration temperatures and other fluid pathways involving a variety of source rocks, higher water/rock ratios, and sulfide precipitation in the sub-seafloor at Logatchev I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号