首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Three dolines (sinkholes), each representing different land uses (crop, grass, and forest) in a karst area in East Tennesse, were selected to determine soil erosional and depositional rates. Three methods were used to estimate the rates: fallout radiocesium (137Cs) redistribution, buried surface soil horizons (Ab horizon), and the revised universal soil loss equation (RUSLE). When 137Cs redistribution was examined, the average soil erosion rates were calculated to be 27 t ha–1 yr–1 at the cropland, 3 t ha–1 yr–1 at the grassland, and 2 t ha–1 yr–1 at the forest. By comparison, cropland erosion rate of 2.6 t ha–1 yr–1, a grassland rate of 0.6 t ha–1 yr–1, and a forest rate of 0.2 t ha–1 yr–1 were estimated by RUSLE. The 137Cs method expressed higher rates than RUSLE because RUSLE tends to overestimate low erosion rates and does not account for deposition. The buried surface horizons method resulted in deposition rates that were 8 t ha–1 yr–1 (during 480 yr) at the cropland, 12 t ha–1 yr–1 (during 980 yr) at the grassland, and 4 t ha–1 yr–1 (during 101 yr) at the forest site. By examining 137Cs redistribution, soil deposition rates were found to be 23 t ha–1 yr–1 at the cropland, 20 t ha–1 yr–1 at the grassland, and 16 t ha–1 yr–1 at the forest site. The variability in deposition rates was accounted for by temporal differences;137Cs expressed deposition during the last 38 yr, whereas Ab horizons represented deposition during hundreds of years. In most cases, land use affected both erosion and deposition rates – the highest rates of soil redistribution usually representing the cropland and the lowest, the forest. When this was not true, differences in the rates were attributed to differences in the size, shape, and closure of the dolines. Received: 10 October 1995 · Accepted: 13 October 1995  相似文献   

2.
 The southern Voltaian Sedimentary Basin underlies an area of about 5000 km2 in east-central Ghana. Groundwater in the basin occurs in fractures in highly consolidated siliciclastic aquifers overlain by a thin unsaturated zone. Aquifer parameters were evaluated from available aquifer-test data on 28 shallow wells in the basin. Hydraulic-conductivity values range from 0.04–3.6 m/d and are about two orders of magnitude greater than the hydraulic conductivity calculated using Darcy's Law and the average groundwater velocity estimated from carbon-14 dating. Linear-regression analysis of the transmissivity and specific-capacity data allowed the establishment of an empirical relationship between log transmissivity and log specific capacity for the underlying aquifers. Groundwater chemistry in the basin is controlled by the weathering of albitic plagioclase feldspar. The weathering rates of various minerals were estimated using 14C-derived average velocity in the basin. The weathering rate of albite was calculated to be 2.16 μmol L–1 yr–1 with the resulting formation of 3.3 μmol L–1 yr–1 of kaolinite and 0.047 μmol L–1 yr–1 of calcite. The low porosity and permeability of the aquifers in the basin are attributed to the precipitation of secondary minerals on fracture surfaces and interlayer pore spaces. Received, September 1997 Revised, July 1998, August 1998 Accepted, August 1998  相似文献   

3.
2 study area was assessed with respect to its heavy-metal load on the basis of the current guideline values. The heavy-metal loads of the soils in the study area have ranges of <0.2–200 mg kg−1 for Cd, <10–30,000 mg kg−1 for Pb, 7–10,000 mg kg−1 for Cu and 50–55,000 mg kg−1 for Zn. Mobility of the heavy metals was determined by extraction at different pH values. The acid neutralisation capacity (ANCx) at these pH values was also determined to estimate the probability that the pH can drop to pH=x. The ANC values in the study area ranged from 6 to 3000 mmol H+ kg−1, from −33 to 800 mmol H+ kg−1 and from −74 to 160 mmol H+ kg−1 for ANC3.5, ANC5.0 and ANC6.2, respectively. Together with pedological data, the extraction experiments permit differentiation between soil units that have been placed in the same environmental hazard class on the basis of total heavy-metal loads. Received: 10 August 1998 · Accepted: 14 August 1999  相似文献   

4.
The syn-tectonic breccia-hosted Mount Isa Cu deposit in northwest Queensland is the largest sediment-hosted Cu deposit in Australia. Whole-rock samples of chalcopyrite-rich Cu ore form an isochron with a Re–Os age of 1,372 ± 41 Ma. This age is more than 100 Ma younger than the previously accepted age of Cu ore formation, an Ar–Ar mineral age for biotite separated from the host rocks within the alteration envelope to the Cu orebody. This discrepancy cannot be unequivocally resolved due to a lack of other absolute geochronological constraints for Cu mineralisation or the deformation event associated with Cu emplacement. The 1,372 ± 41 Ma date may reflect (a) the time of Cu deposition, (b) the time of a hydrothermal event that reset the Re–Os signature of the Cu ore or (c) mixing of the Re–Os isotope systematics between the host rocks and Cu-bearing fluids. However, a range of published Ar–Ar and Rb–Sr dates for potassic alteration associated with Cu mineralisation also records an event between 1,350 and 1,400 Ma and these are consistent with the 1,372 Ma Re–Os age. The 1.8 Ga Eastern Creek Volcanics are a series of tholeiitic basalts with a primary magmatic Cu enrichment which occur adjacent to the Mount Isa Cu deposit. The whole-rock Os isotopic signature of the Eastern Creek Volcanics ranges from mantle-like values for the upper Pickwick Member, to more radiogenic/crustal values for the lower Cromwell Member. The Re–Os isotope signature of the Cu ores overlaps with those calculated for the two volcanic members at 1,372 Ma; hence, the Os isotope data are supportive of the concept that the Os in the Cu ores was sourced from the Eastern Creek Volcanics. By inference, it is therefore postulated that the Eastern Creek Volcanics are the source of Cu in the Mount Isa deposit, as both Os and Cu are readily transported by oxidised hydrothermal fluids, such as those that are thought to have formed the Cu orebody. The Pickwick Member yields a Re–Os isochron age of 1,833 ± 51 Ma, which is within error of previously reported age constraints. The initial 187Os/188Os isotopic ratio of 0.114 ± 0.067 (γOs = −0.7) is slightly subchondritic, and together with other trace element geochemical constraints, is consistent with a subcontinental lithospheric mantle source. The Pickwick Member records a minimum age of ca. 1.95 Ga for melt depletion in the subcontinental lithospheric mantle beneath the Mount Isa Inlier prior to the extraction of the magmas which formed the Eastern Creek Volcanics. This corresponds with the end of subduction-related magmatism along the eastern margin of the Northern Australian Craton, which included the Mount Isa Inlier.  相似文献   

5.
 Hydrogeologic data of 455 water wells comprising geologic logs, water qualities, and aquifer test results are analyzed to determine hydrogeological characteristics, water quality, and sustainable yield of the groundwater resources of Cheju volcanic island. The groundwater of the island occurs in unconsolidated pyroclastic deposits and clinkers interbedded in highly jointed basaltic and andesitic rocks as high-level, basal, and parabasal groundwater under unconfined conditions. The total storage of groundwater is estimated at about 44 billion m3. The average transmissivity and specific yield of the aquifer are at about 0.34 m2 s–1(29300 m2 day–1) and 0.12, respectively. The average annual precipitation is about 3.39 billion m3, of which 1.49 billion m3– equivalent to 44.0% of the total annual precipitation – is recharged into aquifers, with 0.638 billion m3 year–1 of runoff and 1.26 billion m3 year–1 of evapotranspiration. Based on a groundwater budget analysis, the sustainable yield is estimated at about 0.62 billion m3 year–1, equivalent to 41.6% of annual recharge. A low-permeability marine sedimentary formation (Sehwari formation), composed of loosely cemented sandy silt, was recently found to be situated at 120±68 m below mean sea level. If the said marine sediment is distributed as a basal formation of the freshwater zone of the island, most of its groundwater will be of parabasal type. So the marine sediment is one of the most important hydrogeological boundaries and groundwater occurrences in the area. Received: 16 January 1997 / Accepted: 16 June 1997  相似文献   

6.
 The South Canyon Fire of July 1994 burned 800 ha of vegetation on Storm King Mountain near Glenwood Springs, Colorado, USA. On the night of 1 September 1994, in response to torrential rains, debris flows inundated seven areas along a 5-km length of Interstate Highway 70. Mapping from aerial photographs, along with field observations and measurements, shows that the September rainstorm eroded unconsolidated, burned surficial soil from the hillsides, flushed dry-ravel deposits from the tributary channels, and transported loose, large material from the main channels. The hyperconcentrated flows and debris flows inundated 14 ha of Interstate Highway 70 with 70 000 m3 of material. Although the burned area was seeded in November 1994, the potential for continuing debris-flow activity remains. Incision and entrainment of channel alluvium, as well as erosion of loose material from the hillslopes could result in future debris- and hyperconcentrated-flow activity. Received: 15 October 1996 / Accepted: 25 June 1997  相似文献   

7.
Total nitrogen (TN), total phosphorus (TP), and total suspended solids (TSS) loadings [log (kg ha−1 yr−1)] were regressed against seagrass depth limits (percent of depth-limit targets) to back-predict the load limits or allocations (kg ha−1 yr−1 or kg yr−1) necessary to meet targeted seagrass depth limits in the Indian River and Banana River (IRBR) lagoons, Florida. Because the load allocations can be applied as total maximum daily loads (TMDL) for the IRBR (U.S. Environmental Protection Agency mandate), the method and results are developed and presented toward that end. The regression analyses indicate that the range of surface-discharge load limits (nonpoint + point source), per watershed area, required to achieve the desired depth limits for seagrass in the IRBR are approximately 2.4–3.2 kg ha−1 yr−1 TN, 0.41–0.64 kg ha−1 yr−1 TP, and 48–64 kg ha−1 yr−1 TSS. This simple regression method may have application to other shallow estuarine lagoons or bays where seagrass growth is limited by light and water transparency, water transparency is strongly affected by watershed pollutant loadings, water residence times are sufficiently long to allow seagrass coverage to respond to and covary with total load inputs, and multiyear monitoring has yielded sufficient variability in both pollutant loadings and seagrass coverages to develop a statistically meaningful relationship.  相似文献   

8.
 Acid mine drainage (AMD) from abandoned underground mines significantly impairs water quality in the Jones Branch watershed in McCreary Co., Kentucky, USA. A 1022-m2 surface-flow wetland was constructed in 1989 to reduce the AMD effects, however, the system failed after six months due to insufficient utilization of the treatment area, inadequate alkalinity production and metal overloading. In an attempt to improve treatment efficiencies, a renovation project was designed incorporating two anoxic limestone drains (ALDs) and a series of anaerobic subsurface drains that promote vertical flow of mine water through a successive alkalinity producing system (SAPS) of limestone beds overlain by organic compost. Analytical results from the 19-month post-renovation period are very encouraging. Mean iron concentrations have decreased from 787 to 39 mg l–1, pH increased from 3.38 to 6.46 and acidity has been reduced from 2244 to 199 mg l–1 (CaCO3 equivalent). Mass removal rates averaged 98% for Al, 95% for Fe, 94% for acidity, 55% for sulfate and 49% for Mn during the study period. The results indicate that increased alkalinity production from limestone dissolution and longer residence time have contributed to sufficient buffering and metal retention. The combination of ALDs and SAPS technologies used in the renovation and the sequence in which they were implemented within the wetland system proved to be an adequate and very promising design for the treatment of this and other sources of high metal load AMD. Received: 29 June 1998 · Accepted: 15 September 1998  相似文献   

9.
Sample cylinders of two galena ore hand specimens from Braubach, Germany were axially shortened in the strain rate range 5 × 10−5 s−1–5 × 10−7 s−1 at a confining pressure of 200 (300) MPa and at temperatures of 20 °C–600 °C. Neutron diffraction analyses of the crystallographic preferred orientation (texture) were carried out before and after experimental deformation on the same sample cylinder. Up to a deformation temperature of 300 °C and a strain rate of 5 × 10−6 s−1 a more or less complete <110> fiber texture develops, the strength of the fiber texture only depending on strain and the strength of the original preferred orientation. At slower strain rate and higher temperature, there is a distinct decrease of the fiber texture development. Diffusional mass transfer starts to become a significant deformation mechanism. Deformation at 500 °C changes the original texture only slightly, which indicates a rapid increase of importance of diffusional flow processes. The alteration of the accompanying sulfosalts indicates that the temperature is high enough for the movement of atoms. The microstructure only reveals remarkable deformation structures at higher strains and in areas of locally higher stresses. Received: 10 June 1997 / Accepted: 14 May 1998  相似文献   

10.
Tidal freshwater marshes exist at the interface between watersheds and estuaries, and thus may serve as critical buffers protecting estuaries from anthropogenic metal pollution. Bi-weekly samples of newly deposited marsh sediments were collected and analyzed for Cu, Zn, and Fe concentrations over 21 months from July 1995 to March 1997 in five distinct habitats at the head of Bush River, Maryland. Bi-weekly anthropogenic metal enrichments ranged from 0.9–4.7. Anthropogenic excess metal loadings averaged over 1996 ranged from 6–306 and 25–1302 μg cm−2 year−1 between sites for Cu and Zn, respectively. Based on Fe-normalized trace metal signatures, Susquehanna River sediment does not significantly contribute to upper Bush River. Organic matter was found to dilute total metal concentrations, whereas past studies suggested organics enhance labile metal content. Analysis of metal input pathways shows that marsh metals are primarily imported from nearby subtidal accumulations of historic watershed material by tidal flushing. Received: 29 April 1999 / Accepted: 7 December 1999  相似文献   

11.
 The total amount of groundwater resources in the middle and upper Odra River basin is 5200×103 m3/d, or about 7.7% of the disposable groundwater resources of Poland. The average modulus of groundwater resources is about 1.4 L/s/km2. Of the 180 'Major Groundwater Basins' (MGWB) in Poland, 43 are partly or totally located within the study area. The MGWB in southwestern Poland have an average modulus of groundwater resources about 2.28 L/s/km2 and thus have abundant water resources in comparison to MGWB from other parts of the country. Several types of mineral waters occur in the middle and upper Odra River basin. These waters are concentrated especially in the Sudety Mountains. Carbon-dioxide waters, with yields of 414 m3/h, are the most widespread of Sudetic mineral waters. The fresh waters of the crystalline basement have a low mineralization, commonly less than 100 mg/L; they are a HCO3–Ca–Mg or SO4–Ca–Mg type of water. Various hydrochemical compositions characterize the groundwater in sedimentary rocks. The shallow aquifers are under risk of atmospheric pollution and anthropogenic effects. To prevent the degradation of groundwater resources in the middle and upper Odra River basin, Critical Protection Areas have been designated within the MGWB. Received, January 1995 Revised, May 1996, August 1997 Accepted, August 1997  相似文献   

12.
The Copper Creek mining district, southeastern Arizona, contains more than 500 mineralized breccia pipes, buried porphyry-style, copper-bearing stockworks, and distal lead–silver veins. The breccia pipes are hosted by the Copper Creek Granodiorite and the Glory Hole volcanic rocks. The unexposed Mammoth breccia pipe, solely recognized by drilling, has a vertical extent of 800 m and a maximum width of 180 m. The pipe consists of angular clasts of granodiorite cemented by quartz, chalcopyrite, bornite, anhydrite, and calcite. Biotite 40Ar/39Ar dates suggest a minimum age of 61.5 ± 0.7 Ma for the host Copper Creek Granodiorite and 40Ar/39Ar dates on hydrothermal sericite indicate an age of 61.0 ± 0.5 Ma for copper mineralization. Fluid inclusion studies suggest that a supercritical fluid with a salinity of approximately 10 wt.% NaCl equiv. condensed to a dilute aqueous vapor (1–2.8 wt.% NaCl equiv.) and a hypersaline brine (33.4–35.1 wt.% NaCl equiv.). Minimum trapping temperatures are 375°C and trapping depths are estimated at 2 km. Sulfur isotope fractionation of cogenetic anhydrite and chalcopyrite yields a temperature of mineralization of 469 ± 25°C. Calculated oxygen and hydrogen isotope values for fluids in equilibrium with quartz and sericite range from 10.2‰ to 13.4‰ and −60‰ to −39‰, respectively, suggesting that the mineralizing fluid was dominantly magmatic. Evidence from the stable isotope and fluid inclusion analyses suggests that the fluids responsible for Cu mineralization within the Mammoth breccia pipe exsolved from a gray porphyry phase found at the base of the breccia pipe.  相似文献   

13.
The hydroelectric reservoir of Petit Saut, French Guiana, was created in 1994–1995 by flooding 350 km2 of tropical forest. When sampled in 1999, the lake exhibited a permanent stratification separating the 3–5 m thick, oxygenated epilimnion from the anoxic hypolimnion. The rate of anaerobic organic carbon mineralization below the oxycline was on the order of 1 μmol C m−2 s−1 and did not show a pronounced difference between wet and dry seasons. Methanogenesis accounted for 76–83% of anaerobic carbon mineralization, with lesser contributions of sulfate reduction and dissimilatory iron reduction. Upward mixing of reduced inorganic solutes explained 90% of the water column O 2 demand during the dry season, while most O 2 consumption during the wet season was coupled to aerobic respiration of organic matter synthesized in the surface waters. Inorganic mercury species represented 10–40% of total dissolved mercury in the epilimnion, but were of relatively minor importance (≤10%) in the anoxic portion of the water column. Net production of soluble organic mercury compounds in the flooded soils and anoxic water column did not vary significantly between wet and dry seasons. Methylmercury accounted for about 15% of total dissolved mercury below the oxycline. Its estimated net production rate, 0.04 mg m−2 yr−1, is of the same order of magnitude as values reported for contaminated lakes and flooded terrestrial ecosystems.  相似文献   

14.
 Long Lake, located near Lake Michigan within the dune-complexes of Indiana Dunes National Lakeshore, USA, was formed some time during the Pleistocene and Holocene epochs. A surficial aquifer underlies Long Lake, which is either a source or sink for the later. The hydrologic processes in the lakeshore and surrounding environs have been significantly altered during the agricultural, municipal, and industrial development of the region. Limited data suggest that the organisms of Long Lake have elevated levels of several contaminants. This study attempts to quantify seepage within the lake to assess the potential threat to groundwater quality. Seepage measurements and minipiezometric tests were used to determine seepage within the lake. Seepage measurements and minipiezometric tests suggest that water seeps out of Long Lake, thus recharging the groundwater that flows southwest away from the lake. There is a great deal of variability in the seepage rate, with a mean of 11.5×10–4±11.2×10–4 m d–1. The mean seepage rate of 0.3 m yr–1 for Long Lake is greater than the 0.2 m yr–1 recharge rate estimated for the drainage basin area. The Long Lake recharge volume of 2.5×105 m3 yr–1 is approximately 22% of the volume of the lake and is significant when compared to the total surface recharge volume of 4.8×105 m3 yr–1 to the upper aquifer of the drainage area. There is a potential for contamination of the groundwater system through seepage from the lake from contaminants derived from aerial depositions. Received: 16 August 1995 · Accepted: 18 September 1995  相似文献   

15.
Studying spatial and temporal variation of soil loss is of great importance because of global environmental concerns. Understanding the spatial distribution of soil erosion and deposition in the high-cold steppe is important for designing soil and water conservation measures. Measured 137Cs losses (Bq m−2) from long-term high altitude (4,000 m above sea level) watershed plots on the Qinghai–Tibet plateau and derived soil erosion estimates (Mg ha−1 year−1) were significantly correlated to directly measured soil losses from the same plots, over the same period (1963–2005). The local reference inventory was estimated to be 2,468 Bq m−2. The result of analyzing 137Cs distribution and its intensity in the soil profiles in this area shows similarities to 137Cs distribution in other areas. 137Cs is basically distributed in the topsoil layer of 0–0.3 m. Soil erosions vary greatly in the entire sampled area, ranging from 5.5 to 23 Mg ha−1 year−1, with an average of 16.5 Mg ha−1 year−1 which is a moderate rate of erosion.  相似文献   

16.
 The central Ganga Basin is one of the major groundwater reservoirs in India. The Kali-Ganga sub-basin is a micro watershed of the central Ganga Basin, containing a number of productive aquifers. A detailed hydrogeological investigation was carried out, which reveals the occurrence of a single-tier aquifer system down to 163 m bgl (metres below ground level), but at places it is interleaved with clay layers; thus imparting it a two-to three-tier aquifer system. These aquifers are unconfined to confined in disposition. The transmissivity, storage coefficient and hydraulic conductivity are determined as 2178 m2/day, 1.12×10–5 and 120 m/day, respectively. The groundwater of the basin is fresh, of an alkali-bicarbonate type and is suitable for irrigation and domestic use. However, in certain areas, extensive agricultural activities, and domestic and industrial effluents have caused some deterioration of groundwater quality. This study contains data of where the concentration of Fe, Pb, Cd, Cr and Ni are higher than the permissible limits, which may be hazardous to public health. Received: 2 March 2000 · Accepted: 3 July 2000  相似文献   

17.
SeaWiFS ocean color measurements were used to investigate interannual, monthly, and weekly variations in chlorophylla (chla) on the Louisiana shelf and to assess relationships with river discharge, nitrate load, and hypoxia. During the study period (2000–2003), interannual changes in shelf-wide chla concentrations averaged over January–July ranged from +57% to −33% of the 4-yr average, in accord with freshwater discharge changes of +20% to −29% and nitrate load changes of +20% to −35% from the Mississippi and Atchafalaya Rivers. Chla variations were largest on the shelf between the Mississippi and Atchafalaya Deltas. Within this region, which corresponds spatially to the area of most frequent hypoxia, lowest January–July mean chla concentrations (5.5 mg m−3 over 7,000 km2) occurred during 2000, the year of lowest freshwater discharge (16,136 m3 s−1) and nitrate load (55,738 MT N d−1) onto the shelf. Highest January–July mean chla concentrations (13 mg m−3 over 7,000 km2) were measured in 2002, when freshwater discharge (27,440 m3s−1) and nitrate load (101,761 MT N d−1) were highest and second highest, respectively. Positive correlations (R2=0.4–0.5) were found between chla and both fresh water and nitrate loads with 0 to 1 month lags, with the strongest relationships just west of the Mississippi Delta. In 2001, unusually clear skies allowed the identification of distinct spring and summer chla blooms west of the Mississippi Delta 4–5 wk after peaks in river discharge. East of the delta, the chla concentrations peaked in June and July, following the seasonal reversal in the coastal current. A clear linkage was not detected between satellite-measured chla and hypoxia during the 4-yr period, based on a time series of bottom oxygen concentrations at one station within the area of most frequent hypoxia. Clear relationships are confounded by the interaction of physical processes (wind stress effects) with the seasonal cycle of nutrient-enhanced productivity and are influenced by the prior year's nitrate load and carbon accumulation at the seabed.  相似文献   

18.
Cation diffusion rates at 690 ± 30 °C have been calculated by inverse modelling of observed manganese (Mn) zonation profiles in 40 garnets from two kyanite-bearing metapelite samples from the High Himalayan Crystalline Series, Zanskar, northwest India. Knowledge of the initial growth profile of Mn in garnet is a pre-requisite for this technique. Following previous workers we model Mn partitioning into growing garnet in terms of a Rayleigh fractionation process, and demonstrate that the Mngarnet:whole rock partition coefficient is 60–100. Three-dimensional zonation profiles were obtained by successively grinding and polishing ∼1 cm slabs of each sample at 0.1–0.2 mm intervals and analysing the garnets at each stage, thus ensuring that core sections were measured. The diffusion model assumes that garnet has a spherical geometry and behaves as a closed system, and simulates diffusive modification of the hypothetical Mn Rayleigh growth profile for each garnet. The derived measure of the time-integrated diffusion history for each garnet is then combined with radiometric and field-relation constraints for the duration of the Himalayan metamorphic event to calculate cation diffusion rates. The average cation interdiffusion rate calculated for garnets in the two samples examined is (6 ± 3.2) × 10−23 m2s−1. This interdiffusion rate pertains to a temperature of 690 ± 30 °C, which is 0.97 × T PEAK, the peak temperature conditions experienced by the samples estimated using standard thermobarometric techniques. Garnet compositions are Py2–17Alm65–77Gro6–16Sp1–17. These new diffusion data are consistent with, and more precise than, existing high-temperature (>1000 °C) experimentally determined diffusion data, although some uncertainties remain difficult to constrain. Qualitative comparison between diffusively modified Mn growth profiles in garnets from the Scottish Dalradian and the Himalayan garnets suggests that the duration of metamorphism affecting the Dalradian garnets was 10–20 times longer than that endured by the Himalayan garnets. Received: 5 June 1996 / Accepted: 29 January 1997  相似文献   

19.
The dissolved fluoride (F) in the Lower Ganges-Brahmaputra-Meghna (GBM) river system, Bengal basin, Bangladesh, was studied during 1991–1993 to determine its distribution and source in the basin, and its annual flux to the Bay of Bengal. The concentration of dissolved F varied between 2 and 11 μmol l−1 with statistically significant variations both spatially and temporally in the basin. Such variations are attributable to the geology of the individual subbasins (Ganges, Brahmaputra and Meghna), dilution by rainwater during monsoon and groundwater contribution to the river systems during dry season. Correlation coefficients among F and major cations and anions suggest diverse inorganic processes responsible for regulating the concentration of F in these river systems. However, fluorite seems to be one of the major sources of dissolved F. The concentration of F in the Lower GBM river system is low compared to the rivers draining Deccan Plateau and arid regions of the subcontinent, for example, Yamuna and its tributaries. However, it is within the range of most of the other Peninsular and Himalayan rivers. The GBM system contributes about 115×103 tonnes year−1 of dissolved F into the Bay of Bengal, and thus accounts for about 3% of the global F flux to the oceans annually. Received: 19 May 1999 · Accepted: 11 October 1999  相似文献   

20.
 This study was undertaken to determine whether recent anthropogenic changes in the Nile basin have affected the modern rate of sediment accumulation in the Nile delta. Excess 210Pb, 137Cs, and 239,240Pu were used to develop a sediment chronology for a core from central Manzala lagoon, the delta sector which has had the highest average rate of sediment accumulation during the Holocene (to about 0.7 cm year–1). Excess 210Pb was detected in the top 32 cm of the core, yielding an accumulation rate of 1.2 cm year–1, higher than the mean rate for the Holocene. A high 137Cs/239,240Pu ratio requires a reactor source (possibly Chernobyl) for these nuclides. Low concentrations of excess 210Pb and weapons-fallout nuclides precluded recognition of changes in sediment accumulation rate in Manzala lagoon during this century and may limit the use of tracer radionuclides for modern sediment chronology in the Nile delta. Received: 18 March 1997 · Accepted: 22 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号