首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
An inverse model is applied for the analysis of hydrographic and current meter data collected on the repeat WOCE section SR4 in the Weddell Sea in 1989–1992. The section crosses the Weddell Sea cyclonic gyre from Kapp Norvegia to the northern end of the Antarctic Peninsula. The concepts of geostrophy, conservation of planetary vorticity and hydrostatics are combined with advective balances of active and passive properties to provide a dynamically consistent circulation pattern. Our variational assimilation scheme allows the calculation of three-dimensional velocities in the section plane. Current speeds are small except along the coasts where they reach up to 12 cm/s. We diagnose a gyre transport of 34 Sverdrup which is associated with a poleward heat transport of 28 × 1012 W corresponding to an average heat flux of 15 Wm–2 in the Weddell Sea south of the transect. This exceeds the estimated local flux on the transect of 2 Wm–2. As the transect is located mostly in the open ocean, we conclude that the shelf areas contribute significantly to the ocean-atmosphere exchange and are consequently key areas for the contribution of the Weddell Sea to global ocean ventilation. Conversion of water masses occuring south of the section transform 6.6 ± 1.1 Sv of the inflowing warm deep water into approximately equal amounts of Weddell Sea deep water and Weddell Sea bottom water. The volume transport of surface water equals in the in-and outflow. This means that almost all newly formed surface water is involved in the deep and bottom water formation. Comparison with the results obtained by pure velocity interpolation combined with a hydrographic data subset indicates major differences in the derived salt transports and the water mass conversion of the surface water. The differences can be explained by deviations in the structure of the upper ocean currents to which shelf areas contribute significantly. Additionally a rigorous variance analysis is performed. When only hydrographic data are used for the inversion both the gyre transport and the poleward heat transport are substantially lower. They amount to less than 40% of our best estimate while the standard deviations of both quantities are 6.5 Sv and 37 × 1012 W, respectively. With the help of long-term current meter measurements these errors can be reduced to 2 Sv and 8 × 1012 W. Our result underlines the importance of velocity data or equivalent information that helps to estimate the absolute velocities.  相似文献   

2.
Decadal-scale variations of water mass properties in the deep Weddell Sea   总被引:2,自引:0,他引:2  
Data from cruises between 1989 and 2003 with FS Polarstern were used to construct section-wide potential temperature and salinity time series of the main water masses in the Weddell Gyre. In tandem with these CTD data, two time series between 1989 and 1995 are presented from moored instruments in the central Weddell Sea. The regional and methodological consistency of the dataset allows us to quantify variations which are not visible in less homogeneous datasets. The data reveal significant temperature and salinity variations of the Warm Deep Water and the Weddell Sea Bottom Water on a decadal time scale. The longest time series were obtained at the prime meridian. Here warming is observed in the Warm Deep Water from 1992 to 1998 followed by cooling. In the Weddell Sea proper, measurements of instruments moored in the Weddell Sea Bottom Water layer recorded a temperature increase over 6 years at a rate of 0.01 °C a–1. After the mooring period, CTD casts in 1998 point to a weakening of the trend. The warming trend in the bottom water occurs over most of the Weddell Sea, as detected in the additional CTD surveys. The variations are close to the detection level in the voluminous Weddell Sea Deep Water. The initial warming trend of the Warm Deep Water is consistent with warming trends reported in literature of subsurface waters of the Antarctic Circumpolar Current. The reversal of the trend in the Weddell Sea seems to be related to variations of the atmospheric conditions which can affect both the intrusion of Circumpolar Deep Water from the north and the circulation of the Weddell Gyre. Because the Warm Deep Water is the major source water for the formation of deep and bottom water in the Weddell Sea, it is suggested that its increase in temperature and salinity is likely to at least partly cause the variations which were observed in the bottom water.Responsible Editor: Jörg-Olaf Wolff  相似文献   

3.
226Ra and210Pb were measured in sections and profiles collected in the Weddell Sea during the International Weddell Sea Oceanographic Expedition in 1973. The results can be correlated with the circulation and mixing schemes deduced from hydrographic observations. Along the surface cyclonic gyre the Ra activities are fairly uniform at about 17 dpm/100 kg, quite similar to those of the Circumpolar surface water south of the Antarctic Convergence. The210Pb activities in the northern flank of the gyre, probably influenced by the high210Pb-bearing Circumpolar Deep Water in the north, are as high as 12 dpm/100 kg. At the central gyre and its southern flank, the surface water210Pb activities are about 7 dpm/100 kg. The warmer surface water at the central gyre has a Ra activity of about 19 dpm/100 kg, slightly higher than the colder surface water at the flanks. Thus lower210Pb/226Ra activity ratios are observed in the central gyre, and higher ratios in its flanks. Similar relationships between Ra and Pb are noted in the Weddell Sea Bottom Water (WSBW): lower Pb associated with higher Ra in the center; higher Pb with slightly lower Ra in the flanks.Vertical profiles along the cyclonic gyre show lower Ra and Pb activities in the southwestern Weddell Basin where lower temperature and lower silicate are observed. Similar to Ba, both Ra and Si are non-conservative in the Weddell Sea, with significant input from the bottom sediments and particulate dissolution during subsurface mixing.Each water mass or type in the Weddell Sea is well characterized by its Ra content, but not well by its Pb content. Ra and Si are crudely correlated with a slope of about 7 × 10?4 dpm Ra per μmole of Si. The fact that the WSBW values fall on the slope suggests that the net input rate for Ra (corrected for the decay rate) is proportional to that of Si. The linear extrapolation to zero Si gives a Ra value of 13 dpm/100 kg. These relationships are quite similar to those observed in the Circumpolar waters.  相似文献   

4.
Deep water originating in the North Atlantic is transported across the Antarctic Circumpolar Current by eddies and, after circumnavigating of the Antarctic, enters the Weddell Gyre south of Africa. As it does so, it rises up from mid-depth towards the surface. The separate temperature and salinity maxima, the Upper and Lower Circumpolar Deep Waters, converge to form the Warm Deep Water. Cores of this water mass on the southern flank of the eastern Weddell Gyre show a change in characteristic as they flow westward in the Lazarev Sea. Observations have been made along four meridional sections at 3° E, 0°, 3° W and 6° W between 60 and 70° S during the Polarstern Cruise ANTXXIII/2 in 2005/2006. These show that a heterogeneous series of warm and salty cores entering the region from the east both north and south of Maud Rise (65° S, 3° W) gradually merge and become more homogeneous towards the west. The gradual reduction in the variance of potential temperature on isopycnals is indicative of isopycnic mixing processes. A multiple regression technique allows diagnosis of the eddy diffusivities and, thus, the relative importance of isopycnic and diapycnic mixing. The method shows that the isopycnic diffusivity lies in the range 70–140 m2 s−1 and the diapycnic diffusivity reaches about 3 × 10−6 m2 s−1. Scale analysis suggests that isopycnic diffusion dominates over diapycnic diffusion in the erosion of the Warm Deep Water cores.  相似文献   

5.
The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW) at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC) through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current) and fresher Subantarctic surface water (originating in the ACC). The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor). Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW) equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model’s rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of thermocline, intermediate and deep waters are constructed from an analysis of flows bound between isothermal and isobaric surfaces. This analysis shows how the return path of NADW is partitioned between a cold water route through the Drake Passage (6.5 Sv), a warm water route involving the Agulhas Current sheeding thermocline water westward (2.5 Sv), and a recirculation of intermediate water originating in the Indian Ocean (1.6 Sv).  相似文献   

6.
The physical and biological environment of the Barents Sea is characterised by large variability on a wide range of scales. Results from a numerical ocean model, SINMOD, are presented showing that the physical variability is partly forced by changes in annual net ice import. The mean contribution from ice import in the simulation period (1979–2007) is about 40% of the total amount of ice melted each year. The annual ice import into the Barents Sea varies between 143 and 1,236 km3, and this causes a substantial variability in the amount of annual ice melt in the Barents Sea. This in turn impacts the freshwater content. The simulated freshwater contribution from ice is 0.02 Sv on average and 0.04 Sv at maximum. When mixed into a mean net Atlantic Water (AW) inflow of 1.1 Sv with a salinity of 35.1, this freshwater addition decreases the salinity of the modified AW to 34.4 and 33.9 for the mean and maximum freshwater fluxes, respectively. Ice import may thus be important for the Barents Sea production of Arctic Ocean halocline water which has salinity of about 34.5. The changes in the ice melt the following summer due to ice import also affect the formation of dense water in the Barents Sea by changing stratification, altering the vertical mixing rates and affecting heat loss from the warm AW. The model results thus indicate that ice import from the Arctic has a great impact on water mass modification in the Barents Sea which in turn impacts the ventilation of the Arctic Ocean.  相似文献   

7.
The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is assessed using a set of 37 hydrographic sections collected over a 20-year period in the Southern Ocean as part of the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity-maximum is observed eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, and in the Atlantic sector, this acts to limit the direct poleward propagation of the salinity signal. Limited entrainment occurs into the Weddell Gyre, with LCDW entering primarily through the eddy-dominated eastern limb. A vertical mixing coefficient, κV of (2.86 ± 1.06) × 10?4 m2 s?1 and an isopycnal mixing coefficient, κI of (8.97 ± 1.67) × 102 m2 s?1 are calculated for the eastern Indian and Pacific sectors of the Antarctic Circumpolar Current (ACC). A κV of (2.39 ± 2.83) × 10?5 m2 s?1, an order of magnitude smaller, and a κI of (2.47 ± 0.63) × 102 m2 s?1, three times smaller, are calculated for the southern and eastern Weddell Gyre reflecting a more turbulent regime in the ACC and a less turbulent regime in the Weddell Gyre. In agreement with other studies, we conclude that the ACC acts as a barrier to direct meridional transport and mixing in the Atlantic sector evidenced by the eastward propagation of the deep salinity-maximum signal, insulating the Weddell Gyre from short-term changes in NADW characteristics.  相似文献   

8.
The Ross Sea is an important area for the ventilation of the deep layers of the Southern Ocean (e.g. [Jacobs, S.S., Fairbanks, R.G., Horibe, Y., 1985. Origin and evolution of water masses near the Antarctic continental margin: evidence from H218O/H216O ratios in seawater. In: Jacobs, S.S. (Ed.), Oceanology of the Antarctic Continental Shelf. Antarctic Research Series, vol. 43. pp. 59–85; Orsi, A.H., Johnson, G.C., Bullister, J.L., 1999. Circulation, mixing, and the production of Antarctic bottom water. Progress in Oceanography 109, 43–55]). These processes are driven by the atmospheric forcing which, at high latitude, plays a key role in the formation and thickness of sea ice. In order to investigate the effect of the atmospheric forcing variability at different time scales, we analysed the surface heat budget over the Ross Sea continental shelf and in Terra Nova Bay (TNB) polynya, using analyses for the period 1990–2006 provided by European Centre for Medium-range Weather Forecast (ECMWF). This study was also performed using thermohaline data collected within the activities of Climatic Long-term Interaction for the mass-balance in Antarctica project of the Italian National Programme for Antarctic Research for the summer periods from 1994 until 2001.The annual average of the heat budget over the continental shelf of the Ross Sea estimated in the period 1990–2006 shows an interannual variability ranging between −97 and −123 W m−2. Assuming that the heat loss must be compensated by the sensible heat carried by the Circumpolar Deep Water we estimated its transport (3.1 Sv) and its variability (0.2 Sv). Similarly in the TNB polynya the heat loss reaches its maximum in 2003 (−313 W m−2) and its minimum (−58 W m−2) in 1996. The related production of sea ice and the High Salinity Shelf Water (HSSW) were also estimated. The HSSW production switched from the lowest values during the first 10 years of the investigated period (1990–2000) to the highest values for the remaining period (2001–2006).The thermohaline characteristics of the water column in TNB show a general decrease in salinity with a superimposed variability. Comparison between the estimated HSSW production and the salinity observed within the TNB water column show similar tendency in the last years after 2002, while during the period 1995–1998 the behaviour is different. Our hypothesis concern a possible role of the CDW inflow in the TNB area and our results could be explained by a different contribution of CDW transport and HSSW production to the salt content within the water column.  相似文献   

9.
The water exchange between the subpolar and subtropical gyres of the North Pacific is demonstrated by the simulation of chlorofluorocarbon (CFC) using an ocean general circulation model. The simulated CFC concentration in the North Pacific is in good agreement with observations. The water exchange is clearly illustrated by the tongues of CFC concentration. The subpolar waters with high CFC are transported southward into the eastern subtropical gyre, whereas the subtropical waters with low CFC are transported northward into the western subpolar gyre. The simulated exchange transport along 42°N in the layer of σθ< 26.8 indicates that the northward mass transport is about 15 Sv (1 Sv = 106 m3·s-1) west of 165°E, and about 5 Sv between 175°W and 150°W. The southward mass transport is about 5 Sv between 165°E and 175°W, and about 2 Sv east of 150°W.  相似文献   

10.
We present the first transect of dissolved 10Be depth profiles across the Antarctic Circumpolar Current (ACC) in the Atlantic sector. North of the Polar Front the 10Be concentrations increase continuously from very low values at the surface to values of up to 1600 atoms/g at depth. Deep water 10Be concentrations of particular water masses are consistent with earlier results obtained further north. South of the Polar Front and in the Weddell Sea the distribution of 10Be is also characterised by low surface concentrations but below 1000 m depth the concentrations are relatively constant and significantly higher (up to 2000 atoms/g) than further north, probably as a result of mixing and advection of water masses of Pacific origin. Overall the deep water 10Be distribution is obviously not significantly affected by scavenging processes or ice melt and comparison with the density distribution suggests that 10Be can be viewed as a quasi-conservative tracer. This provides a tool for an improved understanding of the behaviour of other more particle reactive trace metals in the Southern Ocean such as 230Th: in deep waters north of the ACC/Weddell Gyre boundary (AWB) 10Be/230Th has a relatively constant value (1.7±0.3×109 atoms/dpm) over a wide density range whereas south of the AWB the ratio is significantly lower (1.1±0.2×109 atoms/dpm). This normalisation to 10Be corroborates that 230Th is enriched by 50% due to accumulation south of the AWB as a consequence of minimal particulate fluxes. The quasi-conservative behaviour deduced from our results also implies that 10Be can only be used as a tracer for Southern Ocean particle fluxes in the past if ocean circulation patterns and water mass residence times did not change significantly.  相似文献   

11.
Global ocean circulation models do not usually take high-latitude processes into account in an adequate form due to a limited model domain or insufficient resolution. Without the processes in key areas contributing to the lower part of the global thermohaline circulation, the characteristics and flow of deep and bottom waters often remain unrealistic in these models. In this study, various sections of the Bremerhaven Regional Ice Ocean Simulation model results are combined with a global inverse model by using temperature, salinity, and velocity constraints for the Hamburg Large Scale Geostrophic ocean general circulation model. The differences between the global model with and without additional constraints from the regional model demonstrate that the Weddell Sea circulation exerts a significant influence on the course of the Antarctic Circumpolar Current with consequences for Southern Ocean water mass characteristics and the spreading of deep and bottom waters in the South Atlantic. The influence of the Ross Sea is found to be less important in terms of global influences. However, regional changes in the Pacific sector of the Southern Ocean are found to be of Ross Sea origin. The additional constraints change the hydrographic conditions of the global model in the vicinity of the Antarctic Circumpolar Current in such a way that transport values, e.g., in Drake Passage no longer need to be prescribed to obtain observed transports. These changes not only improve the path and transport of the Antarctic Circumpolar Current but affect the meso- and large-scale circulation. With a higher (lower) mean Drake Passage transport, the mean Weddell Gyre transport is lower (higher). Furthermore, an increase (decrease) in the Antarctic Circumpolar Current leads to a decrease (increase) of the circum-Australian flow, i.e., a decrease (increase) of the Indonesian Throughflow.  相似文献   

12.
Flow structure in the Australian–Antarctic basin is investigated using an eddy-resolving general ocean circulation model and validated with iceberg and middepth float trajectories. A cyclonic circulation system between the Antarctic Circumpolar Current and Antarctic Slope Current consists of a large-scale gyre in the west (80–110° E) and a series of eddies in the east (120–150° E). The western gyre has an annual mean westward transport of 22 Sv in the southern limb. Extending west through the Princess Elizabeth Trough, 5 Sv of the gyre recirculates off Prydz Bay and joins the western boundary current off the Kerguelen Plateau. Iceberg trajectories from QuickScat and ERS-1/2 support this recirculation and the overall structure of the Antarctic Slope Current against isobath in the model. Argo float trajectories also reveal a consistent structure of the deep westward slope current. This study indicates the presence of a large cyclonic circulation in this basin, which is comparable to the Weddell and Ross gyres.  相似文献   

13.
The eastern boundary of the North Atlantic subtropical gyre (NASG) is an upwelling favorable region characterized by a mean southward flow. The Canary Upwelling Current (CUC) feeds from the interior ocean and flows south along the continental slope off NW Africa, effectively providing the eastern boundary condition for the NASG. We follow a joint approach using slope and deep-ocean data together with process-oriented modeling to investigate the characteristics and seasonal variability of the interior–coastal ocean connection, focusing on how much NASG interior water drains along the continental slope. First, the compiled sets of data show that interior central waters flow permanently between Madeira and the Iberian Peninsula at a rate of 2.5?±?0.6 Sv (1 Sv = 106 m3 s-1 109 km s-1), with most of it reaching the slope and shelf regions north of the Canary Islands (1.5?±?0.7?Sv). Most of the water entering the African slope and shelf regions escapes south between the easternmost Canary Islands and the African coast: In 18 out of 22 monthly realizations, the flow was southward (?0.9?±?0.4?Sv) although an intense flow reversal occurred usually around November (1.7?±?0.9?Sv), probably as the result of a late fall intensification of the CUC north of the Canary Islands followed by instability and offshore flow diversion. Secondly, we explore how the eastern boundary drainage may be specified in a process-oriented one-layer quasigeostrophic numerical model. Non-zero normal flow and constant potential vorticity are alternative eastern boundary conditions, consistent with the idea of anticyclonic vorticity induced at the boundary by coastal jets. These boundary conditions cause interior water to exit the domain at the boundary, as if recirculating through the coastal ocean, and induce substantial modifications to the shape of the eastern NASG. The best model estimate for the annual mean eastward flow north of Madeira is 3.9?Sv and at the boundary is 3.3?Sv. The water exiting at the boundary splits with 1?Sv flowing into the Strait of Gibraltar and the remaining 2.3?Sv continuing south along the coastal ocean until the latitude of Cape Ghir. The model also displays significant wind-induced seasonal variability, with a maximum connection between the interior and coastal oceans taking place in autumn and winter, in qualitative agreement with the observations.  相似文献   

14.
The South Pacific low latitude western boundary currents (LLWBCs) carry waters of subtropical origin through the Solomon Sea before joining the equatorial Pacific. Changes in their properties or transport are assumed to impact El Niño Southern Oscillation (ENSO) dynamics. At ENSO timescales, the LLWBCs transport tends to counterbalance the interior geostrophic one. When transiting through the complex geography of the Solomon Sea, the main LLWBC, the New Guinea Coastal Undercurrent, cannot follow a unique simple route to the equator. Instead, its routes and water mass properties are influenced by the circulation occurring in the Solomon Sea. In this study, the response of the Solomon Sea circulation to ENSO is investigated based on a numerical simulation. The transport anomalies entering the Solomon Sea from the south are confined to the top 250 m of the water column, where they represent 7.5 Sv (based on ENSO composites) for a mean transport of 10 Sv. The induced circulation anomalies in the Solomon Sea are not symmetric between the two ENSO states because of (1) a bathymetric control at Vitiaz Strait, which plays a stronger role during El Niño, and (2) an additional inflow through Solomon Strait during La Niña events. In terms of temperature and salinity, modifications are particularly notable for the thermocline water during El Niño conditions, with cooler and fresher waters compared to the climatological mean. The surface water at Vitiaz Strait and the upper thermocline water at Solomon Strait, feeding respectively the equatorial Pacific warm pool and the Equatorial Undercurrent, particularly affect the heat and salt fluxes. These fluxes can change by up to a factor of 2 between extreme El Niño and La Niña conditions.  相似文献   

15.
Based on snow- and ice-thickness measurements at >11 000 points augmented by snow- and icecore studies during 4 expeditions from 1986 - 92 in the Weddell Sea, we describe characteristics and distribution patterns of snow and meteoric ice and assess their importance for the mass balance of sea ice. For first-year ice (FY) in the central and eastern Weddell Sea, mean snow depth amounts to 0.16 m (mean ice thickness 0.75 m) compared to 0.53 m (mean ice thickness 1.70 m) for second-year ice (SY) in the northwestern Weddell Sea. Ridged ice retains a thicker snow cover than level ice, with ice thickness and snow depth negatively correlated for the latter, most likely due to aeolian redistribution. During the different expeditions, 8, 15, 17 and 40% of all drill holes exhibited negative freeboard. As a result of flooding and brine seepage into the snow pack, snow salinities averaged 4‰. Through 18O measurements the distribution of meteoric ice (i.e. precipitation) in the sea-ice cover was assessed. Roughly 4% of the total ice thickness consist of meteoric ice (FY 3%, SY 5%). With a mean density of 290 kg/m3, the snow cover itself contributes 8% to total ice mass (7% FY, 11% SY). Analysis of 18O in snow indicates a local maximum in accumulation in the 65 to 75^S latitude zone. Hydrogen peroxide in the snow has proven useful as a temporal tracer and for identification of second-year floes. Drawing on accumulation data from stations at the Weddell Sea coast, it becomes clear that the onset of ice growth is important for the evolution of ice thickness and the interaction between ice and snow. Loss of snow to leads due to wind drift may be considerable, yet is reduced owing to metamorphic processes in the snow column. This is confirmed by a comparison of accumulation data from coastal stations and from snow depths over sea ice. Temporal and spatial accumulation patterns of snow are shown to be important in controlling the sea-ice cover evolution.  相似文献   

16.
The Eastern Weddell Ice Shelves (EWIS) are believed to modify the water masses of the coastal current and thus preconditions the water mass formation in the southern and western Weddell Sea. We apply various ocean warming scenarios to investigate the impact on the temperature–salinity distribution and the sub-ice shelf melting in the Eastern Weddell Sea. In our numerical experiments, the warming is imposed homogeneously along the open inflow boundaries of the model domain, leading to a warming of the warm deep water (WDW) further downstream. Our modelling results indicate a weak quadratic dependence of the melt rate at the ice shelf base on the imposed amount of warming, which is consistent with earlier studies. The total melt rate has a strong dependence on the applied ocean warming depth. If the warming is restricted to the upper ocean (above 1,000  m), the water column (aside from the mixed surface layer) in the vicinity of the ice shelves stabilises. Hence, reduced vertical mixing will reduce the potential of Antarctic Bottom Water formation further downstream with consequences on the global thermohaline circulation. If the warming extends to the abyss, the WDW core moves significantly closer to the continental shelf break. This sharpens the Antarctic Slope Front and leads to a reduced density stratification. In contrast to the narrow shelf bathymetry in the EWIS region, a wider continental shelf (like in the southern Weddell Sea) partly protects ice shelves from remote ocean warming. Hence, the freshwater production rate of, e.g., the Filchner–Ronne Ice Shelf increases much less compared with the EWIS for identical warming scenarios. Our study therefore indicates that the ice-ocean interaction has a significant impact on the temperature-salinity distribution and the water column stability in the vicinity of ice shelves located along a narrow continental shelf. The effects of ocean warming and the impact of increased freshwater fluxes on the circulation are of the same order of magnitude and superimposed. Therefore, a consideration of this interaction in large-scale climate studies is essential.  相似文献   

17.
Transport of salt in the Irminger Current, the northern branch of the Atlantic Subpolar Gyre coupling the eastern and western subpolar North Atlantic, plays an important role for climate variability across a wide range of time scales. High-resolution ocean modeling and observations indicate that salinities in the eastern subpolar North Atlantic decrease with enhanced circulation of the North Atlantic subpolar gyre (SPG). This has led to the perception that a stronger SPG also transports less salt westward. In this study, we analyze a regional ocean model and a comprehensive global coupled climate model, and show that a stronger SPG transports more salt in the Irminger Current irrespective of lower salinities in its source region. The additional salt converges in the Labrador Sea and the Irminger Basin by eddy transports, increases surface salinity in the western SPG, and favors more intense deep convection. This is part of a positive feedback mechanism with potentially large implications for climate variability and predictability.  相似文献   

18.
Variability of dense water formation in the Ross Sea   总被引:1,自引:0,他引:1  
This paper presents results from a model study of the interannual variability of high salinity shelf water (HSSW) properties in the Ross Sea. Salinity and potential temperature of HSSW formed in the western Ross Sea show oscillatory behaviour at periods of 5–6 and 9 years superimposed on long-term fluctuations. While the shorter oscillations are induced by wind variability, variability on the scale of decades appears to be related to air temperature fluctuations. At least part of the strong decrease of HSSW salinities deduced from observations for the period 1963–2000 is shown to be an aliasing artefact due to an undersampling of the periodic signal. While sea ice formation is responsible for the yearly salinity increase that triggers the formation of HSSW, interannual variability of net freezing rates hardly affects changes in the properties of the resulting water mass. Instead, results from model experiments indicate that the interannual variability of dense water characteristics is predominantly controlled by variations in the shelf inflow through a sub-surface salinity and a deep temperature signal. The origin of the variability of inflow characteristics to the Ross Sea continental shelf can be traced into the Amundsen and Bellingshausen Seas. The temperature anomalies are induced at the continental shelf break in the western Bellingshausen Sea by fluctuations of the meridional transport of circumpolar deep water with the eastern cell of the Ross Gyre. In the Amundsen Sea, upwelling due to a persistently cyclonic wind field carries the signal into the surface mixed layer, leading to fluctuations of the vertical heat flux, anomalies of brine release near the sea ice edge, and consequently to a sub-surface salinity anomaly. With the westward flowing coastal current, both the sub-surface salinity and deep temperature signals are advected onto the Ross Sea continental shelf. Convection carries the signal of salinity variability into the deep ocean, where it interacts with modified circumpolar deep water upwelled onto the continental shelf as the second source water mass of HSSW. Sea ice formation on the Ross Sea continental shelf thus drives the vertical propagation of the signal rather than determining the signal itself.  相似文献   

19.
Time series of hydrographic sections in the northern North Atlantic from the period 1990 to 2004 are analyzed for changes in the characteristics and distribution of water masses that are involved in the thermohaline circulation (THC). During the 1990s, the North Atlantic Oscillation (NAO) alternates from a positive phase (strong westerlies) to a negative phase (weak westerlies). The reduced ocean heat loss confined the convection in the Labrador Sea to the upper 1,200 m, generating a new salinity minimum layer characterizing the Upper Labrador Sea Water (ULSW), and led to a warming and salinization of the older LSW below due to lateral mixing. The Lower LSW, formed in the first half of the 1990s, spread in the subpolar gyre and reached the Newfoundland and Irminger basins after about 1 to 2 years, where the associated isopycnal doming contributed to eastward frontal shifts in the upper layer. After 5 and 6 years, it arrived in the Iceland and West European basins, respectively. The collapse of the isopycnal dome in the Labrador Sea, associated with the drainage of the Lower LSW, resulted in a slowing of the cyclonic circulation of the subpolar gyre. This was accompanied in the upper layer by a westward shift of the southeastern extension of the gyre and a northward advection of warm and saline subtropical water in its eastern part, which finally reached the Labrador Sea after about 7 years. In the upper layer of the Labrador Sea, the advection of warm and saline water dominated over the heat loss to the atmosphere and the freshwater gain from melting ice and precipitation in the NAO-low period, so that no accumulation of freshwater but an increase of the heat and salt contents were observed, as in the whole eastern part of the subpolar gyre. Within 1 to 2 years after the drop of the NAO in the winter of 1995/1996, the Subarctic (Subpolar) Front shifted northward and westward north of about 50°N, favored by the retreat of the low-salinity tongue extending eastward from the southern Labrador Sea, and it shifted southward and eastward in the Newfoundland Basin. Therefore, the enhanced northward advection of subtropical waters in the northeastern North Atlantic is balanced by the enhanced southward advection of subarctic waters, including Lower LSW in the Newfoundland Basin, indicating a strong response of the gyre component of the THC.  相似文献   

20.
The study of the fine structure of the phosphorus and silicon distribution in near-bottom layers and in the interstitial water of the sediments has been carried out in the different Baltic Sea regions (Gulf of Finland, Bornholm, Gotland). The data of this study are used to calculate the flows and effective transport coefficients for mineral phosphorus and silicon exchange processes between sediment and near-bottom layer. The values of nutrient flows varied depending on sediment type from 9.8 to 632 μg-at. m−2 year−1 for phosphorus and from 232.4 to 1881.1 μg-at. m−2 year−1 for silicon. The dependence of the effective transport coefficients versus the distance from the bottom (h) is expressed by empirically-derived equation: Keff = Ah−b. The values of constants “A” and “b” depend on the hydrochemical conditions, sediment type and hydrophysical conditions in the near-bottom layers. Calculated constants for regions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号