首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Recent high resolution, high incidence angle Arecibo radar images of southern Ishtar Terra and flanking plains of Guinevere and Sedna on Venus reveal details of topographic features resolved by Pioneer Venus. The high incidence angles of Arecibo images favor the detection of surface roughness-related features, and complement recently obtained low incidence angle Venera 15/16 images in which changes in surface topographic slope are well portrayed. Four provinces have been defined on the basis of radar characteristics in Arecibo images and topography. Volcanism and tectonism are the dominant processes in the mapped area, which has an average age of about 0.5–1.0 billion years (Ivanov et al., 1986). These processes vary in relative significance in the mapped provinces and it is likely that geologic activity has occurred simultaneously in all four provinces. On the basis of stratigraphic evidence, however, a general sequence is proposed which represents the major activity in each area. The low predominantly volcanic plains of Guinevere and Sedna Planitiae are the relatively oldest terrain. A major region of complex tectonic deformation, the Southern Ishtar Transition Zone, postdates much of the low plains and delineates the steep-sloped flanks of Ishtar Terra. Lakshmi Planum is characterized by a distinctive volcanic style (large low edifices, calderas, flanking plains) and at least in part postdates the Southern Ishtar Transition Zone. Relatively recent plains-style volcanism occurs locally in Sedna Planitia and embays the Southern Ishtar Transition Zone. Compressional deformation appears to dominate the mountains of the Ishtar plateau, but the nature of the tectonic deformation in the Southern Ishtar Transition Zone is very complex and likely represents a combination of extension, compression and strikeslip deformation. Arecibo data reveal additional coronae in the lowlands, suggesting that corona formation is an even more widespread process than indicated by the Venera data.  相似文献   

2.
Sedna is the first inner Oort cloud object to be discovered. Its dynamical origin remains unclear, and a possible mechanism is considered here. We investigate the parameter space of a hypothetical solar companion which could adiabatically detach the perihelion of a Neptune-dominated TNO with a Sedna-like semimajor axis. Demanding that the TNO’s maximum value of osculating perihelion exceed Sedna’s observed value of 76 AU, we find that the companion’s mass and orbital parameters (m c , a c , q c , Q c , i c ) are restricted to $$m_c>rapprox 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{Q_c}{7850\hbox{ AU}} \frac{q_c}{7850\hbox{ AU}}\right)^{3/2}$$ during the epoch of strongest perturbations. The ecliptic inclination of the companion should be in the range $45{\deg}\lessapprox i_c\lessapprox 135{\deg}$ if the TNO is to retain a small inclination while its perihelion is increased. We also consider the circumstances where the minimum value of osculating perihelion would pass the object to the dynamical dominance of Saturn and Jupiter, if allowed. It has previously been argued that an overpopulated band of outer Oort cloud comets with an anomalous distribution of orbital elements could be produced by a solar companion with present parameter values $$m_c\approx 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{9000\hbox{ AU}}{a_c}\right)^{1/2}.$$ If the same hypothetical object is responsible for both observations, then it is likely recorded in the IRAS and possibly the 2MASS databases.  相似文献   

3.
We present updated dynamical and statistical analyses of outer Oort cloud cometary evidence suggesting that the Sun has a wide-binary jovian mass companion. The results support a conjecture that there exists a companion of mass ≈ orbiting in the innermost region of the outer Oort cloud. Our most restrictive prediction is that the orientation angles of the orbit plane in galactic coordinates are centered on Ω, the galactic longitude of the ascending node = 319° and i, the galactic inclination = 103° (or the opposite direction) with an uncertainty in the orbit normal direction subtending <2% of the sky. Such a companion could also have produced the detached Kuiper Belt object Sedna. If the object exists, the absence of similar evidence in the inner Oort cloud implies that common beliefs about the origin of observed inner Oort cloud comets must be reconsidered. Evidence of the putative companion would have been recorded by the Wide-field Infrared Survey Explorer (WISE) which has completed its primary mission and is continuing on secondary objectives.  相似文献   

4.
We re-examine the formation of the inner Oort comet cloud while the Sun was in its birth cluster with the aid of numerical simulations. This work is a continuation of an earlier study (Brasser, R., Duncan, M.J., Levison, H.F. [2006]. Icarus 184, 59–82) with several substantial modifications. First, the system consisting of stars, planets and comets is treated self-consistently in our N-body simulations, rather than approximating the stellar encounters with the outer Solar System as hyperbolic fly-bys. Second, we have included the expulsion of the cluster gas, a feature that was absent previously. Third, we have used several models for the initial conditions and density profile of the cluster – either a Hernquist or Plummer potential – and chose other parameters based on the latest observations of embedded clusters from the literature. These other parameters result in the stars being on radial orbits and the cluster collapses. Similar to previous studies, in our simulations the inner Oort cloud is formed from comets being scattered by Jupiter and Saturn and having their pericentres decoupled from the planets by perturbations from the cluster gas and other stars. We find that all inner Oort clouds formed in these clusters have an inner edge ranging from 100 AU to a few hundred AU, and an outer edge at over 100,000 AU, with little variation in these values for all clusters. All inner Oort clouds formed are consistent with the existence of (90377) Sedna, an inner Oort cloud dwarf planetoid, at the inner edge of the cloud: Sedna tends to be at the innermost 2% for Plummer models, while it is 5% for Hernquist models. We emphasise that the existence of Sedna is a generic outcome. We define a ‘concentration radius’ for the inner Oort cloud and find that its value increases with increasing number of stars in the cluster, ranging from 600 AU to 1500 AU for Hernquist clusters and from 1500 AU to 4000 AU for Plummer clusters. The increasing trend implies that small star clusters form more compact inner Oort clouds than large clusters. We are unable to constrain the number of stars that resided in the cluster since most clusters yield inner Oort clouds that could be compatible with the current structure of the outer Solar System. The typical formation efficiency of the inner Oort cloud is 1.5%, significantly lower than previous estimates. We attribute this to the more violent dynamics that the Sun experiences as it rushes through the centre of the cluster during the latter’s initial phase of violent relaxation.  相似文献   

5.
R. Brasser  M.J. Duncan 《Icarus》2006,184(1):59-82
Observations suggest most stars originate in clusters embedded in giant molecular clouds [Lada, C.J., Lada, E.A., 2003. Annu. Rev. Astron. Astrophys. 41, 57-115]. Our Solar System likely spent 1-5 Myrs in such regions just after it formed. Thus the Oort Cloud (OC) possibly retains evidence of the Sun's early dynamical history and of the stellar and tidal influence of the cluster. Indeed, the newly found objects (90377) Sedna and 2000 CR105 may have been put on their present orbits by such processes [Morbidelli, A., Levison, H.F., 2004. Astron. J. 128, 2564-2576]. Results are presented here of numerical simulations of the orbital evolution of comets subject to the influence of the Sun, Jupiter and Saturn (with their current masses on orbits appropriate to the period before the Late Heavy Bombardment (LHB) [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461]), passing stars and tidal force associated with the gas and stars of an embedded star cluster. The cluster was taken to be a Plummer model with 200-400 stars, with a range of initial central densities. The Sun's orbit was integrated in the cluster potential together with Jupiter and Saturn and the test particles. Stellar encounters were incorporated by directly integrating the effects of stars passing within a sphere centred on the Sun of radius equal to the Plummer radius for low-density clusters and half a Plummer radius for high-density clusters. The gravitational influence of the gas was modeled using the tidal force of the cluster potential. For a given solar orbit, the mean density, 〈ρ〉, was computed by orbit-averaging the density of material encountered. This parameter proved to be a good measure for predicting the properties of the OC. On average 2-18% of our initial sample of comets end up in the OC after 1-3 Myr. A comet is defined to be part of the OC if it is bound and has q>35 AU. Our models show that the median distance of an object in the OC scales approximately as 〈ρ−1/2 when . Our models easily produce objects on orbits like that of (90377) Sedna [Brown, M.E., Trujillo, C., Rabinowitz, D., 2004. Astrophys. J. 617, 645-649] within ∼1 Myr in cases where the mean density is or higher; one needs mean densities of order to create objects like 2000 CR105 by this mechanism, which are reasonable (see, e.g., Guthermuth, R.A., Megeath, S.T., Pipher, J.L., Williams, J.P., Allen, L.E., Myers, P.C., Raines, S.N., 2005. Astrophys. J. 632, 397-420). Thus the latter object may also be part of the OC. Close stellar passages can stir the primordial Kuiper Belt to sufficiently high eccentricities (e?0.05; Kenyon, S.J., Bromley, B.C., 2002. Astron. J. 123, 1757-1775) that collisions become destructive. From the simulations performed it is determined that there is a 50% or better chance to stir the primordial Kuiper Belt to eccentricities e?0.05 at 50 AU when . The orbit of the new object 2003 UB313 [Brown, M.E., Trujillo, C.A., Rabinowitz, D.L., 2005. Astrophys. J. 635, L97-L100] is only reproduced for mean cluster densities of the order of , but in the simulations it could not come to be on its current orbit by this mechanism without disrupting the formation of bodies in the primordial Kuiper Belt down to 20 AU. It is therefore improbable that the latter object is created by this mechanism.  相似文献   

6.
Maxima of calculated topographical line-of-sight (LOS) gravity attractions caused by Ishtar Terra are shifted to the north with respect to the measured LOS free air gravity maxima south of the highland. This implies a tendency to isostatic compensation of central Ishtar and mass surpluses at the continental border and the southern forelands.The following scenario is compatible with the interpretation of the gravity anomalies and morphological features. Relative motions of the lowland Sedna Planitia against continental Ishtar Terra have caused buckling and flat subduction of the lowland lithospheric material. (Deep subduction can be ruled out by thermal reasons). The free air gravity high is modelled by surplus masses of the buckling and of the high density subducting plate. Evidence for this is given by several compressional features like Ut and Vesta Rupes at the southern continental border and ridges at the SW-flanks of Maxwell Montes. It is further supported by several possible volcanic-tectonic depressions located in the southern part of Ishtar. This local interpretation does not necessarily imply the existence of global plate tectonics on Venus like on Earth, but at least limited horizontal movements of the Venusian lithosphere seem to be likely. This result shows that plate recycling must be considered for heat transfer through the lithosphere beside conduction and hot spot volcanism.Contribution No. 273, Institut für Geophysik der Universität Kiel, F.R.G.  相似文献   

7.
We use a secular representation to describe the long-term dynamics of transneptunian objects in mean-motion resonance with Neptune. The model applied is thoroughly described in Saillenfest et al. (Celest Mech Dyn Astron, doi: 10.1007/s10569-016-9700-5, 2016). The parameter space is systematically explored, showing that the secular trajectories depend little on the resonance order. High-amplitude oscillations of the perihelion distance are reported and localised in the space of the orbital parameters. In particular, we show that a large perihelion distance is not a sufficient criterion to declare that an object is detached from the planets. Such a mechanism, though, is found unable to explain the orbits of Sedna or \(2012\text {VP}_{113}\), which are insufficiently inclined (considering their high perihelion distance) to be possibly driven by such a resonant dynamics. The secular representation highlights the existence of a high-perihelion accumulation zone due to resonances of type 1:k with Neptune. That region is found to be located roughly at \(a\in [100;300]\) AU, \(q\in [50;70]\) AU and \(I\in [30;50]^{\circ }\). In addition to the flux of objects directly coming from the Scattered Disc, numerical simulations show that the Oort Cloud is also a substantial source for such objects. Naturally, as that mechanism relies on fragile captures in high-order resonances, our conclusions break down in the case of a significant external perturber. The detection of such a reservoir could thus be an observational constraint to probe the external Solar System.  相似文献   

8.
Hauke Hussmann  Frank Sohl 《Icarus》2006,185(1):258-273
The detection of induced magnetic fields in the vicinity of the jovian satellites Europa, Ganymede, and Callisto is one of the most surprising findings of the Galileo mission to Jupiter. The observed magnetic signature cannot be generated in solid ice or in silicate rock. It rather suggests the existence of electrically conducting reservoirs of liquid water beneath the satellites' outermost icy shells that may contain even more water than all terrestrial oceans combined. The maintenance of liquid water layers is closely related to the internal structure, composition, and thermal state of the corresponding satellite interior. In this study we investigate the possibility of subsurface oceans in the medium-sized icy satellites and the largest trans-neptunian objects (TNO's). Controlling parameters for subsurface ocean formation are the radiogenic heating rate of the silicate component and the effectiveness of the heat transfer to the surface. Furthermore, the melting temperature of ice will be significantly reduced by small amounts of salts and/or incorporated volatiles such as methane and ammonia that are highly abundant in the outer Solar System. Based on the assumption that the satellites are differentiated and using an equilibrium condition between the heat production rate in the rocky cores and the heat loss through the ice shell, we find that subsurface oceans are possible on Rhea, Titania, Oberon, Triton, and Pluto and on the largest TNO's 2003 UB313, Sedna, and 2004 DW. Subsurface oceans can even exist if only small amounts of ammonia are available. The liquid subsurface reservoirs are located deeply underneath an ice-I shell of more than 100 km thickness. However, they may be indirectly detectable by their interaction with the surrounding magnetic fields and charged particles and by the magnitude of a satellite's response to tides exerted by the primary. The latter is strongly dependent on the occurrence of a subsurface ocean which provides greater flexibility to a satellite's rigid outer ice shell.  相似文献   

9.
This paper outlines the progress in development of the numerical planet ephemerides EPM—Ephemerides of Planets and the Moon. EPM was first created in the 1970s in support of Russian space flight missions and constantly improved at IAA RAS. Comparison between various available EPM ephemerides (EPM2004, EPM2008, EPM2011) is shown. The first results of the updated EPM2013 version which takes into account the two-dimensional annulus of small asteroids are presented. Currently two main factors drive the progress of planet ephemerides: dynamical models of planet motion and observational data, with the crucial role of spacecraft ranging. EPM ephemerides are the basis for the Russian Astronomical and Nautical Astronomical Yearbooks, are planned to use in the GLONASS and LUNA-RESOURCE programs, and are being used for determination of physical parameters: masses of asteroids, planet rotation parameters and topography, the \(GM_\odot \) and its secular variation, the PPN parameters, and the upper limit on the mass of dark matter in the Solar System. The files containing polynomial approximation for EPM ephemerides (EPM2004, EPM2008, EPM2011) along with TTTDB and ephemerides of Ceres, Pallas, Vesta, Eris, Haumea, Makemake, and Sedna are available from ftp://quasar.ipa.nw.ru/incoming/EPM/. Files are provided in IAA’s binary and ASCII formats, as well as in the SPK format.  相似文献   

10.
It is suggested that a collapsing supermassive object, which acts as an ultra-high energy particle accelerator, is the precursor of an active galactic nucleus and that the gravitational energy released during the collapse of the object is locked in the quark-gluon plasma permeated by leptons into which the entire matter in the core of the object is converted as a result of the collapse. It is also pointed out that the collapse of the object to a space-time singularity is inhibited by Pauli's exclusion principle as well as by Heisenberg's uncertainty principle and that the object explodes, before it could collapse to a singularity, thereby releasing the enormous amount of energy locked in the quark-gluon plasma.  相似文献   

11.
The EPM (Ephemerides of Planets and the Moon) numerical ephemerides were first created in the 1970s in support of Russian space flight missions and since then have been constantly improved at IAA RAS. In the following work, the latest version of the planetary part of the EPM2011 numerical ephemerides is presented. The EPM2011 ephemerides are computed using an updated dynamical model, new values of the parameters, and an extended observation database that contains about 680000 positional measurements of various types obtained from 1913 to 2011. The dynamical model takes into account mutual perturbations of the major planets, the Sun, the Moon, 301 massive asteroids, and 21 of the largest trans-Neptunian objects (TNOs), as well as perturbations from the other main-belt asteroids and other TNOs. The EPM ephemerides are computed by numerical integration of the equations of motion of celestial bodies in the parameterized post-Newtonian n-body metric in the BCRS coordinate system for the TDB time scale over a 400-year interval. The ephemerides were oriented to the ICRF system using 213 VLBI observations (taken from 1989 to 2010) of spacecraft near planets with background quasars, the coordinates of which are given in the ICRF system. The accuracy of the constructed ephemerides was verified by comparison with observations and the JPL independent ephemerides DE424. The EPM ephemerides are used in astronavigation (they form the basis of the Astronomical Yearbook and are planned to be utilized in GLONASS and LUNA-RESURS programs) and various research, including the estimation of the solar oblateness, the parameters of the rotation of Mars, and the total mass of the asteroid main belt and TNOs, as well as the verification of general relativity, the secular variations of the Sun’s mass and the gravitational constant, and the limits on the dark matter density in the Solar System. The EPM ephemerides, together with the corresponding time differences TT — TDB and the coordinates of seven additional objects (Ceres, Pallas, Vesta, Eris, Haumea, Makemake, and Sedna), are available at ftp://quasar.ipa.nw.ru/incoming/EPM.  相似文献   

12.
Recent numerical simulations have demonstrated that the Sun’s dynamical history within the Milky Way may be much more complex than that suggested by its current low peculiar velocity (Sellwood, J.A., Binney, J.J. [2002]. Mon. Not. R. Astron. Soc. 336, 785-796; Roškar, R., Debattista, V.P., Quinn, T.R., Stinson, G.S., Wadsley, J. [2008]. Astrophys. J. 684, L79-L82). In particular, the Sun may have radially migrated through the galactic disk by up to 5-6 kpc (Roškar, R., Debattista, V.P., Quinn, T.R., Stinson, G.S., Wadsley, J. [2008]. Astrophys. J. 684, L79-L82). This has important ramifications for the structure of the Oort Cloud, as it means that the Solar System may have experienced tidal and stellar perturbations that were significantly different from its current local galactic environment. To characterize the effects of solar migration within the Milky Way, we use direct numerical simulations to model the formation of an Oort Cloud around stars that end up on solar-type orbits in a galactic-scale simulation of a Milky Way-like disk formation. Surprisingly, our simulations indicate that Sedna’s orbit may belong to the classical Oort Cloud. Contrary to previous understanding, we show that field star encounters play a pivotal role in setting the Oort Cloud’s extreme inner edge, and due to their stochastic nature this inner edge sometimes extends to Sedna’s orbit. The Sun’s galactic migration heightens the chance of powerful stellar passages, and Sedna production occurs around ∼20-30% of the solar-like stars we study. Considering the entire Oort Cloud, we find its median distance depends on the minimum galactocentric distance attained during the Sun’s orbital history. The inner edge also shows a similar dependence but with increased scatter due to the effects of powerful stellar encounters. Both of these Oort Cloud parameters can vary by an order of magnitude and are usually overestimated by an Oort Cloud formation model that assumes a fixed galactic environment. In addition, the amount of material trapped in outer Oort Cloud orbits (a > 20,000 AU) can be extremely low and may present difficulties for traditional models of Oort Cloud formation and long-period comet production.  相似文献   

13.
Results are given for calculations of convective flows around objects in the outer layers of the Sun that have similar characteristics to small sunspots. These objects are allowed to radiatively (diffusively) exchange heat with their surroundings, but convective motions and exchange are absent. This assumption is based on the simple presumption that a sunspot magnetic field maintains pressure equilibrium with the surrounding medium and prevents convective exchange with that medium.The flow structure around the object, and the question of the overall balance or redistribution of the emerging heat flux as suggested by earlier empirical models, are studied and discussed.After a period of adjustment, shortly after the sunspot-like object is placed into the domain, the layer readjusts itself so that most of the heat flux actually reappears at the surface, although some fraction of the flux is carried horizontally far from the object. There is no indication of long term storage of the heat flux that would normally appear in the place where the object resides. Finally, when the object is removed, the surrounding medium responds very quickly and soon returns to the undisturbed state before the object was in place.The present numerical treatment includes restrictions that may influence aspects of the heat redistribution, convective flows and time scales. In particular, the shape of the object and its size (somewhat smaller than a sunspot) are important, as is the number of spatial dimensions and the treatment of some boundary conditions. Since all of these issues require further investigation, some discussion is presented regarding the applicability of our results to real sunspots.  相似文献   

14.
In this paper we investigate, by linear modal analysis, the one-armed dynamical instability of a two-dimensional fluid disc that has a massive object at its centre. The model of the disc is chosen to avoid the artificial instabilities that originate from the unrealistic disc configurations that have been adopted in previous studies. We find a one-armed instability for which the central massive object is displaced from the centre, which is generally called the 'eccentric instability'. However, to excite the eccentric instability, the mass of the central object should be appreciably smaller than that of the disc, and this mass ratio is far smaller than what was originally proposed. The instability shown in this paper is likely to be excited in a stellar system with a central massive object, e.g. a galactic nucleus harbouring a massive black hole, and further studies are desirable via techniques such as numerical simulations.  相似文献   

15.
When a gravitating object moves across a given mass distribution, it creates an overdense wake behind it. Here, we performed an analytical study of the structure of the flow far from object when the flow is isentropic and the object moves subsonically within it. We show that the dynamical friction force is the main drag force on the object and by using a perturbation theory, we obtain the density, velocity and pressure of the perturbed flow far from the mass. We derive the expression of the dynamical friction force in an isentropic flow and show its dependence on the Mach number of the flow and on the adiabatic index. We find that the dynamical friction force becomes lower as the adiabatic index increases. We show analytically that the wakes are less dense in our isentropic case in comparison to the isothermal ones.  相似文献   

16.
给出一种空间目标自动跟踪方法:圆轨道跟踪法.该方法在假设目标轨道为圆轨道的前提下计算目标轨道,而后在轨道平面中外推.和位置跟踪法比较表明:该方法不受空间目标视运动不均匀性的影响,有非常高的跟踪精度.即使采用低帧频CCD(1-2HZ),使用本方法,也能实现对空间目标的高精度跟踪;并能给出目标的多点CCD坐标,实现对空间目标的多点分区采样,提高空间目标的定位精度.  相似文献   

17.
The orbit of the Chelyabinsk object is calculated, applying the least‐squares method directly to astrometric positions. The dynamical evolution of this object in the past is studied by integrating equations of motion for particles with orbits from the confidence region. It is found that the majority of the Chelyabinsk clones reach the near‐Sun state. Sixty‐seven percent of these objects have collisions with the Sun for 15 Myr in our numerical simulations. The distribution of minimum solar distances shows that the most probable time for the encounters of the Chelyabinsk object with the Sun lies in the interval from ?0.8 Myr to ?2 Myr. This is consistent with the estimate of a cosmic ray exposure age of 1.2 Myr (Popova et al. 2013). A parent body of the Chelyabinsk object should experience strong tidal and thermal effects at this time. The possible association of the Chelyabinsk object with 86039 (1999 NC43) and 2008 DJ is discussed.  相似文献   

18.
Mark J. Reid 《Icarus》1973,20(2):240-248
Tidal interactions, by altering spin and orbital parameters, can lead to the destruction of bodies in the solar system. Specifically, tidal interactions can rapidly decay the orbit of an object which revolves around a satellite. Hence, almost any object which once orbited a satellite would have impacted the satellite early in the history of the solar system. This may explain the absence of such objects today.The tidal loss of lunar-orbiting objects offers a solution to the problem of how objects may have been “stored” for ≈0.5 eons prior to impacting the Moon. The craters produced by the impacts of lunar-orbiting objects should have characteristic sizes, shapes, and ages. The Crisium and Serenitatis basins exhibit these characteristics, and, therefore, could have been produced by the impact of a lunar orbiting object. Finally, the possibility that the Imbrium and Crisium basins originated from one object, which fragmented prior to impact, is discussed.  相似文献   

19.
Using the conventional gravastar model, that is, an object constituted by two components where one of them is a massive infinitely thin shell and the other one is a de Sitter interior spacetime, we physically interpret a solution characterized by a zero Schwarzschild mass. No stable gravastar is formed and it collapses without forming an event horizon, originating what we call a massive non-gravitational object. The most surprise here is that the collapse occurs with an exterior de Sitter vacuum spacetime. This creates an object which does not interact gravitationally with an outside test particle and it may evolve to a point-like topological defect.  相似文献   

20.
Sakurai's object(V4334 Sgr) in all likelihood is a star undergoing a final helium flash.Since its discovery in 1996 observers have been trying to keep up a monitoring of the amazingly fast changes of its stellar properties;changes occuring on time scales of a few weeks or months. By enabling us to follow the evolution of one object in `real time' it relieves us of the need to painstakingly assemble a consistent understanding from different objects, at the various stages of evolution that they have reached from differing starting conditions.Sakurai's object thereby offers a unique opportunity to study an important but short-lived aspect of regular stellar evolution, the final helium flash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号