首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ∼5.0 × 1014 g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV–TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.  相似文献   

2.
Cherenkov telescopes have the capability of detecting high energy tau neutrinos in the energy range of 1–1000 PeV by searching for very inclined showers. If a tau lepton, produced by a tau neutrino, escapes from the Earth or a mountain, it will decay and initiate a shower in the air which can be detected by an air shower fluorescence or Cherenkov telescope. In this paper, we present detailed Monte Carlo simulations of corresponding event rates for the VERITAS and two proposed Cherenkov Telescope Array sites: Meteor Crater and Yavapai Ranch, which use representative AGN neutrino flux models and take into account topographic conditions of the detector sites. The calculated neutrino sensitivities depend on the observation time and the shape of the energy spectrum, but in some cases are comparable or even better than corresponding neutrino sensitivities of the IceCube detector. For VERITAS and the considered Cherenkov Telescope Array sites the expected neutrino sensitivities are up to factor 3 higher than for the MAGIC site because of the presence of surrounding mountains.  相似文献   

3.
We investigate the influence of the geomagnetic field (GF) on the Imaging Air Cherenkov Telescope technique for two northern (Tenerife and San Pedro Martir) and three southern (Salta, Leoncito and Namibia (the H.E.S.S.-site)) site candidates for Cherenkov Telescope Array (CTA) observatories. We use the CORSIKA and sim_telarray programs for Monte Carlo simulations of gamma ray showers, hadronic background and the telescope response. We focus here on gamma ray measurements in the low energy, sub-100 GeV, range. Therefore, we only consider the performance of arrays of several large telescopes. Neglecting the GF effect, we find (in agreement with previous studies) that such arrays have lower energy thresholds, and larger collection areas below 30 GeV, when located at higher altitudes. We point out, however, that in the considered ranges of altitudes and magnetic field intensities, 1800–3600 m a.s.l. and 0–40 μT, respectively, the GF effect has a similar magnitude to this altitude effect. We provide the trigger-level performance parameters of the observatory affected by the GF effect, in particular the collection areas, detection rates and the energy thresholds for all five locations, which information may be useful in the selection of sites for CTA. We also find simple scaling of these parameters with the magnetic field strength, which can be used to assess the magnitude of the GF effect for other sites; in this work we use them to estimate the performance parameters for five sites: South Africa-Beaufort West, USA-Yavapai Ranch, Namibia-Calapanzi, Chile-La Silla and India-Hanle. We roughly investigate the impact of the geophysical conditions on gamma/hadron separation procedures involving image shape and direction cuts. We note that the change of altitude has an opposite effect at the trigger and analysis levels, i.e. gains in triggering efficiency at higher altitudes are partially balanced by losses in the separation efficiency. In turn, a stronger GF spoils both the shape and the direction discrimination of gamma rays, thus its effects at the trigger and analysis levels add up resulting in a significant reduction of the observatory performance. Overall, our results indicate that the local GF strength at a site can be equally important as its altitude for the low-energy performance of CTA.  相似文献   

4.
Networks are becoming a key element in most current and all future, telescope and observatory projects. The ability to easily and efficiently pass observation data, alert data and instrumentation requests between distributed systems could enable science as never before. However, any effective large scale or meta‐network of astronomical resources will require a common communication format or development resources will have to be continuously dedicated to creating interpreters. The necessary elements of any astronomy communication can be easily identified, efficiently described and rigidly formatted so that both robotic and human operations can use the same data. In this paper we will explore the current state of notification, what notification requirements are essential to create a successful standard and present a standard now under development by the International Virtual Observatory Alliance (IVOA), called the VOEvent. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We describe the Caltech solar site survey in 1965–1967 directed by R. B. Leighton. The solar seeing at 102 locations in 34 sites in Southern California was evaluated by 6009 visual estimates with portable telescopes. Cloud cover and other meteorological factors were also measured, and sunlight recorders were operated at several sites. We have reanalyzed much of the data to determine its consistency and learn what else we could about the sites. The visual estimates show good internal consistency and correlation with photographic data.The seeing was found to be best at various sites associated with water, and we point out the importance of the Bowen ratio in determining the influence of water vapor on seeing. It was found that seeing at the different sites was not well correlated in time.The seeing was found to be best at Lake Elsinore, an inland sink. Good seeing was also found on the Caltech campus and at Big Bear Lake in the San Bernardino Mountains. Taking into account the better sky transparency and the feasibility of constructing an observatory in the lake, we chose Big Bear Lake for the site of a new observatory. The lack of correlation of seeing with transparency suggests the benefits of several smaller telescopes, targeted at specific goals, located at sites chosen for those goals.  相似文献   

6.
This paper aims at studying the wind at 200 mbar over the Moroccan observatory Oukaimeden, as high-altitude winds have been adopted as a useful parameter for site characterization in terms of the suitability of a site for the development of some adaptive optics techniques. The data used come from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data base, which is widely acknowledged as being reliable. Statistical analyses of 200-mbar wind speed since 1983 are performed. Comparison with some of the main observatory sites worldwide qualifies Oukaimeden as one of the best observatory sites in terms of 200-mbar wind statistics. Our analysis of a record of seeing measurements during the years 2003 and 2004 concludes that while 200-mbar wind speed can be used as a parameter for ranking astronomical sites in term of their suitability for adaptive optics, it cannot be used for the whole atmospheric seeing prediction. A comparison of monthly values of the seeing parameter at Oukaimeden, La Silla and Paranal demonstrates the high seeing quality of Oukaimeden, as the seeing values measured were lower than those of La Silla and Paranal for most of the time during the comparison period. Furthermore, a statistical analysis of atmospheric stratified seeing, wavefront coherence time and isoplanatic angle measured with a Multi-Aperture Scintillation Sensor instrument over Paranal from 2004 to 2007 have been performed. We found good correlations between 200-mbar wind velocity and levels 4, 5 and 6 seeing, wavefront coherence time and isoplanatic angle, with corresponding correlation coefficients of 0.74, 0.79, 0.70, 0.97 and 0.78.  相似文献   

7.
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project.  相似文献   

8.
Atmospheric density profiles as well as several light absorption and scattering processes depend on geographic position and are generally time-variable. Their impact on the atmospheric Cherenkov technique in general (imaging or non-imaging) is investigated. Different density profiles lead to differences in Cherenkov light density of up to 60%. Seasonal variations at mid-latitude sites are of the order of 15–20%. The quest for improved energy calibration of Cherenkov experiments also shows the need for improved transmission calculations, taking all relevant processes into account and using realistic profiles of absorbers. Simulations including the scattering mechanisms also reveal the relevance of Rayleigh and Mie scattering for atmospheric Cherenkov experiments. Refraction and the differences between treating the atmosphere in plane-parallel or spherical geometry are also investigated.  相似文献   

9.
本文介绍了云南天文台米波分米波两个波段射电频谱仪的性能指标及可能的观测研究选题。  相似文献   

10.
In this exploratory simulation study, we compare the event-progenitor classification potential of a variety of measurable parameters of atmospheric Cherenkov pulses which are produced by ultrahigh energy γ-ray and hadron progenitors and are likely to be recorded by the TACTIC (TeV atmospheric Cherenkov telescope with imaging camera) array of atmospheric Cherenkov telescopes. The parameters derived from Cherenkov images include Hillas, fractal and wavelet moments, while those obtained from non-image Cherenkov data consist of pulse profile rise time and base width and the relative ultraviolet to visible light content of the Cherenkov event. It is shown by a neural-net approach that these parameters, when used in suitable combinations, can bring about a proper segregation of the two event types, even with modest sized data samples of progenitor particles.  相似文献   

11.
An astronomical observatory is the core component of any astronomical research facility that connects astronomers with their lab: the Cosmos. The research quality of an astronomical facility is rooted in the precision of data, collected by its observatory. For optimal performance, an observatory is sited while considering certain astronomical, environmental, geological and social parameters. This study aims to identify the potential sites in Pakistan for locating an optical-astronomical observatory using the Multicriteria Decision Analysis(MCDA) technique. The study uses the Analytic Hierarchy Process(AHP) for deriving the influence weights of nine evaluation criteria: Photometric Night Fraction; Night-time Sky Brightness;Sky Transparency; Aerosol Concentration; Altitude; Terrain Slope; Accessibility; Seismic Vulnerability;and Landuse/Land Cover. On the basis of experts' opinions and previous studies, the evaluation criteria have been ordered in two possible preference sequences for identifying their influence weights with respect to each other for taking part in MCDA. Consequently, the process of MCDA identified certain areas with respect to each preference sequence, whereas some areas were found to be suitable according to both preference sequences. The study synchronizes the required eclectic data into an evaluation matrix that augments the process of astronomical site selection. In the future, this study will be useful for astronomical societies and for furthering astronomical research in the country.  相似文献   

12.
13.
A scintillation detector array composed of 115 detectors and covering an area of about 20000 m2 was installed at the end of 2016 at the Yangbajing international cosmic ray observatory and has been taking data since then. The array is equipped with electronics from Large High Altitude Air Shower Observatory Square Kilometer Complex Array (LHAASO-KM2A) and, in turn, currently serves as the largest debugging and testing platform for the LHAASO-KM2A. Furthermore, the array was used to study the performance of a wide field-of-view air Cherenkov telescope by providing accurate information on the shower core, direction and energy, etc. This work is mainly dealing with the scintillation detector array. The experimental setup and the offline calibration are described in detail. Then, a thorough comparison between the data and Monte Carlo (MC) simulations is presented and a good agreement is obtained. With the even-odd method, the resolutions of the shower direction and core are measured. Finally, successful observations of the expected Moon’s and Sun’s shadows of cosmic rays (CRs) verify the measured angular resolution.  相似文献   

14.
ASTRI SST-2M is one of the prototypes of the small size class of telescopes proposed for the Cherenkov Telescope Array. Its optical design is based on a dual-mirror Schwarzschild-Couder configuration, and the camera is composed by a matrix of monolithic multipixel silicon photomultipliers managed by ad-hoc tailored front-end electronics. This paper describes the procedures for the gain calibration on the ASTRI SST-2M. Since the SiPM gain depends on the operative voltage and the temperature, we adjust the operative voltages for all sensors to have equal gains at a reference temperature. We then correct gain variations caused by temperature changes by adjusting the operating voltage of each sensor. For that purpose the SiPM gain dependence on operating voltage and on temperature have been measured. In addition, we present the calibration procedures and the results of the experimental measurements to evaluate, for each pixel, the parameters necessary to make the trigger uniform over the whole focal plane.  相似文献   

15.
Most of what we know of cosmic gamma rays has come from spacecraft, but at energies above tens of GeV it has become possible to make observations with ground-based detectors of enormously greater collecting area. In recent years one such detector type, the cluster of imaging air Cherenkov telescopes, has reached a very productive state, whilst several alternative approaches have been explored, including converted solar power collectors and novel high-altitude particle shower detectors which promised to extend the energy range covered. Key examples of development from 1952 to 2011 are followed, noting the problems and discoveries that stimulated the current work, explaining the logic of the alternative approaches that were taken. The merits of the current major Cherenkov observatories and of other viable detectors are examined and compared, with examples of the astrophysical information they are beginning to provide. The detectors are still evolving, as we still do not understand the processes onto which the gamma rays provide a window. These include the acceleration of Galactic cosmic rays (in particular, the wide-band spectra of radiation from some individual supernova remnants are still hard to interpret), the highly relativistic and variable jets from active galactic nuclei, and aspects of the electrodynamics of pulsars. Larger groups of Cherenkov telescopes still offer the possibility of an increase in power of the technique for resolvable Galactic sources especially.  相似文献   

16.
Radio detection of cosmic-ray-induced air showers has come to a flight the last decade. Along with the experimental efforts, several theoretical models were developed. The main radio-emission mechanisms are established to be the geomagnetic emission due to deflection of electrons and positrons in Earth’s magnetic field and the charge-excess emission due to a net electron excess in the air shower front. It was only recently shown that Cherenkov effects play an important role in the radio emission from air showers. In this article we show the importance of these effects to extract quantitatively the position of the shower maximum from the radio signal, which is a sensitive measure for the mass of the initial cosmic ray. We also show that the relative magnitude of the charge-excess and geomagnetic emission changes considerably at small observer distances where Cherenkov effects apply.  相似文献   

17.
During the last decade, very high energy astrophysics emerged as a new branch of astronomy with major discoveries achieved by the present ground-based gamma-ray Cherenkov telescopes. The sample of cosmic sources firmly detected at very high energy (VHE) now exceeds two hundred objects, including active galactic nuclei (AGN), pulsar wind nebulae, and several other types of sources of which a significant number are unidentified ones. The scientific return from recent VHE data is particularly interesting for AGN science, shedding new light on particle acceleration and emission processes around supermassive black holes, and probing the intergalactic space by the analysis of VHE photons propagating from bright remote sources to the Earth. The perspectives of this research field are promising with new generation VHE instruments such as CTA, a project of open observatory at extreme energies at the horizon 2023, allowing a deep analysis of the sky in the highest part of the electromagnetic spectrum, from 20 GeV to 300 TeV.  相似文献   

18.
There is considerable interest world-wide in developing large area atmospheric Cherenkov detectors for ground-based gamma-ray astronomy. This interest stems, in large part, from the fact that the gamma-ray energy region between 20 and 250 GeV is unexplored by any experiment. Atmospheric Cherenkov detectors offer a possible way to explore this region, but large photon collection areas are needed to achieve low energy thresholds. We are developing an experiment using the heliostat mirrors of a solar power plant as the primary collecting element. As part of this development, we built a detector using four heliostat mirrors, a secondary Fresnel lens, and a fast photon detection system. In November 1994, we used this detector to record atmospheric Cherenkov radiation produced by cosmic ray particles showering in the atmosphere. The detected rate of cosmic ray events was consistent with an energy threshold near 1 TeV. The data presented here represent the first detection of atmospheric Cherenkov radiation using solar heliostats viewed from a central tower.  相似文献   

19.
Based on this exploratory investigation involving CORSIKA simulation code generated Cherenkov photons and a linearly polarized, hypothetical photon beam, we make a case here for exploiting polarization properties of atmospheric Cherenkov events for providing an independent method for locating air-shower cores by a TACTIC-like array of atmospheric Cherenkov telescopes. Preliminary results based on simulations indicate that for a 3 TeV γ-ray having ∼30% degree of polarization for its associated Cherenkov light at a core distance of ∼100 m, core location can be found with an error of ∼27 m. Deceased This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The Zeiss-2000 telescope of the International Center for Astronomic and Medico-Ecological Research, National Academy of Sciences of Ukraine (Terskol observatory), with a 2-meter aperture is the largest optical instrument in Europe that is regularly used for investigating space debris in the vicinity of the geostationary orbit. One of the main objectives is to detect and characterize small fragments of space debris that are difficult to approach for other telescopes. During each photometric night, we usually detect four to five unknown fragments of 17th to 20th magnitude. This article provides orbital parameters and physical characteristics of several small-sized fragments of space debris that were detected during observations at Terskol observatory in 2014–2015.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号