首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lower Cretaceous Britannia Formation (North Sea) includes an assemblage of sandstone beds interpreted here to be the deposits of turbidity currents, debris flows and a spectrum of intermediate flow types termed slurry flows. The term ‘slurry flow’ is used here to refer to watery flows transitional between turbidity currents, in which particles are supported primarily by flow turbulence, and debris flows, in which particles are supported by flow strength. Thick, clean, dish‐structured sandstones and associated thin‐bedded sandstones showing Bouma Tb–e divisions were deposited by high‐ and low‐density turbidity currents respectively. Debris flow deposits are marked by deformed, intraformational mudstone and sandstone masses suspended within a sand‐rich mudstone matrix. Most Britannia slurry‐flow deposits contain 10–35% detrital mud matrix and are grain supported. Individual beds vary in thickness from a few centimetres to over 30 m. Seven sedimentary structure division types are recognized in slurry‐flow beds: (M1) current structured and massive divisions; (M2) banded units; (M3) wispy laminated sandstone; (M4) dish‐structured divisions; (M5) fine‐grained, microbanded to flat‐laminated units; (M6) foundered and mixed layers that were originally laminated to microbanded; and (M7) vertically water‐escape structured divisions. Water‐escape structures are abundant in slurry‐flow deposits, including a variety of vertical to subvertical pipe‐ and sheet‐like fluid‐escape conduits, dish structures and load structures. Structuring of Britannia slurry‐flow beds suggests that most flows began deposition as turbidity currents: fully turbulent flows characterized by turbulent grain suspension and, commonly, bed‐load transport and deposition (M1). Mud was apparently transported largely as hydrodynamically silt‐ to sand‐sized grains. As the flows waned, both mud and mineral grains settled, increasing near‐bed grain concentration and flow density. Low‐density mud grains settling into the denser near‐bed layers were trapped because of their reduced settling velocities, whereas denser quartz and feldspar continued settling to the bed. The result of this kinetic sieving was an increasing mud content and particle concentration in the near‐bed layers. Disaggregation of mud grains in the near‐bed zone as a result of intense shear and abrasion against rigid mineral grains caused a rapid increase in effective clay surface area and, hence, near‐bed cohesion, shear resistance and viscosity. Eventually, turbulence was suppressed in a layer immediately adjacent to the bed, which was transformed into a cohesion‐dominated viscous sublayer. The banding and lamination in M2 are thought to reflect the formation, evolution and deposition of such cohesion‐dominated sublayers. More rapid fallout from suspension in less muddy flows resulted in the development of thin, short‐lived viscous sublayers to form wispy laminated divisions (M3) and, in the least muddy flows with the highest suspended‐load fallout rates, direct suspension sedimentation formed dish‐structured M4 divisions. Markov chain analysis indicates that these divisions are stacked to form a range of bed types: (I) dish‐structured beds; (II) dish‐structured and wispy laminated beds; (III) banded, wispy laminated and/or dish‐structured beds; (IV) predominantly banded beds; and (V) thickly banded and mixed slurried beds. These different bed types form mainly in response to the varying mud contents of the depositing flows and the influence of mud on suspended‐load fallout rates. The Britannia sandstones provide a remarkable and perhaps unique window on the mechanics of sediment‐gravity flows transitional between turbidity currents and debris flows and the textures and structuring of their deposits.  相似文献   

2.
Deep‐water sandstone beds of the Oligocene Fusaru Sandstone and Lower Dysodilic Shale, exposed in the Buz?u Valley area of the East Carpathian flysch belt, Romania, can be described in terms of the standard turbidite divisions. In addition, mud‐rich sand layers are common, both as parts of otherwise ‘normal’ sequences of turbidite divisions and as individual event beds. Eleven units, interpreted as the deposits of individual flows, were densely sampled, and 87 thin sections were point counted for grain size and mud content. S3/Ta divisions, which form the bulk of most sedimentation units, have low internal textural variability but show subtle vertical trends in grain size. Most commonly, coarse‐tail normal grading is associated with fine‐tail inverse grading. The mean grain size can show inverse grading, normal grading or a lack of grading, but sorting tends to improve upward in most beds. Fine‐tail inverse grading is interpreted as resulting from a decreasing effectiveness of trapping of fines during rapid deposition from a turbidity current as the initially high suspended‐load fallout rate declines. If this effect is strong enough, the mean grain size can show subtle inverse grading as well. Thus, thick inversely graded intervals in deep‐water sands lacking traction structures do not necessarily imply waxing flow velocities. If the suspended‐load fallout rate drops to zero after the deposition of the coarse grain‐size populations, the remaining finer grained flow bypasses and may rework the top of the S3 division, forming well‐sorted, coarser grained, current‐structured Tt units. Alternatively, the suspended‐load fallout rate may remain high enough to prevent segregation of fines, leading to the deposition of significant amounts of mud along with the sand. Mud content of the sandstones is bimodal: either 3–13% or more than 20%. Two types of mud‐rich sandstones were observed. Coarser grained mud‐rich sandstones occur towards the upper parts of S3/Ta divisions. These units were deposited as a result of enhanced trapping of mud particles in the rapidly deposited sediment. Finer grained mud‐rich units are interbedded with ripple‐laminated very fine‐grained sandy Tc divisions. During deposition of these units, mud floccules were hydraulically equivalent to the very fine sand‐ and silt‐sized sediment. The mud‐rich sandstones were probably deposited by flows that became transitional between turbidity currents and debris flows during their late‐stage evolution.  相似文献   

3.
Marine shelf strata of the Quinault Formation reflect the influences of storm–flood processes and convergent margin tectonism on sedimentation and palaeocommunity distributions in an active forearc basin of Early Pliocene age, western Washington, USA. The sedimentologic, ichnologic and invertebrate megafaunal character of coastal sea cliff exposures in the Pratt Cliff–Duck Creek area, Quinault Indian Nation, reveal five different sedimentary facies – scoured, Rosselia, bioturbated, mixed and Acharax. These facies document the shifting interplay and intensities among storms, waves and river‐flood plumes during transgression in inner to mid‐shelf settings. Storm sedimentation on the inner shelf is recorded north of Pratt Cliff by amalgamated, proximal tempestites of the scoured facies, which grade up‐section to thick deposits of hummocky cross‐stratified sandstone, indicative of strong wave influences. These hummocky beds alternate, in metre‐scale packages, with banded mudstone and siltstone that have distinctive sedimentologic and ichnofaunal characteristics (Rosselia facies). In particular the mudstone and siltstone occur as 1–15 cm‐thick, rhythmic, parallel beds that are laterally continuous, internally homogeneous to faintly laminated, and thus similar in nature to fine‐grained, oceanic flood deposits reported from shelf settings offshore the modern Eel River, northern California. The Quinault flood deposits are dominated by the ubiquitous trace fossil Rosselia socialis, comprising vertical, mud‐packed, flaring burrows with a sand‐filled central shaft which has been inferred as the feeding‐dwelling structure of a vermiform invertebrate adapted to high sedimentation rates in inner‐shelf settings. Fairweather conditions in between the higher energy periods of storms, waves and floods are recorded north of Pratt Cliff by the mixed facies, which is interpreted as representing the sand and mud zone of the inner‐ to mid‐shelf transition. Quieter, deeper, mid‐shelf, fairweather settings are typified by the bioturbated facies south of Pratt Cliff, where lower sedimentation rates and lower physical energies produced extensively bioturbated deposits of sandy siltstone punctuated, in places, by isolated sandy beds of distal tempestites. Quinault strata also chronicle stratigraphic signatures of subduction of the Juan de Fuca plate beneath western Washington during the Pliocene. For example, the imprint of geochemically unusual authigenic carbonates and a chemosynthetic palaeocommunity (Acharax facies) have been interpreted as a methane seep on the Quinault seafloor. Furthermore, a mobile rockground epifauna of pholadid bivalves became established on abundant, dark mudstone cobbles and pebbles sourced from the Hoh Assemblage, a Miocene accretionary prism that was actively deforming as well as interacting with Quinault forearc sediments during the Pliocene. Hoh mudstone clasts were supplied to the Quinault shelf via seafloor‐piercing diapirs and eroding mélange shear zones, exposures of which today occur in fault contact with Quinault strata along the coast from Taholah to the Raft River.  相似文献   

4.
Aeolian processes and ephemeral water influx from the Variscan Iberian Massif to the mid‐Cretaceous outer back‐erg margin system in eastern Iberia led to deposition and erosion of aeolian dunes and the formation of desert pavements. Remains of aeolian dunes encased in ephemeral fluvial deposits (aeolian pods) demonstrate intense erosion of windblown deposits by sudden water fluxes. The alternating activity of wind and water led to a variety of facies associations such as deflation lags, desert pavements, aeolian dunes, pebbles scattered throughout dune strata, aeolian sandsheets, aeolian deposits with bimodal grain‐size distributions, mud playa, ephemeral floodplain, pebble‐sand and cobble‐sand bedload stream, pebble–cobble‐sand sheet flood, sand bedload stream, debris flow and hyperconcentrated flow deposits. Sediment in this desert system underwent transport by wind and water and reworking in a variety of sub‐environments. The nearby Variscan Iberian Massif supplied quartzite pebbles as part of mass flows. Pebbles and cobbles were concentrated in deflation lags, eroded and polished by wind‐driven sands (facets and ventifacts) and incorporated by rolling into the toesets of aeolian dunes. The back‐erg depositional system comprises an outer back‐erg close to the Variscan highlands, and an inner back‐erg close to the central‐erg area. The inner back‐erg developed on a structural high and is characterized by mud playa deposits interbedded with aeolian and ephemeral channel deposits. In the inner back‐erg area ephemeral wadis, desiccated after occasional floods, were mud cracked and overrun episodically by aeolian dunes. Subsequent floods eroded the aeolian dunes and mud‐cracked surfaces, resulting in largely structureless sandstones with boulder‐size mudstone intraclasts. Floods spread over the margins of ephemeral channels and eroded surrounding aeolian dunes. The remaining dunes were colonized occasionally by plants and their roots penetrated into the flooded aeolian sands. Upon desiccation, deflation resulted in lags of coarser‐grained sediments. A renewed windblown supply led to aeolian sandsheet accumulation in topographic wadi depressions. Synsedimentary tectonics caused the outer back‐erg system to experience enhanced generation of accommodation space allowing the accumulation of aeolian dune sands. Ephemeral water flow to the outer back‐erg area supplied pebbles, eroded aeolian dunes, and produced hyperconcentrated flow deposits. Fluidization and liquefaction generated gravel pockets and recumbent folds. Dune damming after sporadic rains (the case of the Namib Desert), monsoonal water discharge (Thar Desert) and meltwater fluxes from glaciated mountains (Taklamakan Desert) are three potential, non‐exclusive analogues for the ephemeral water influx and the generation of hyperconcentrated flows in the Cretaceous desert margin system. An increase in relief driven by the Aptian anti‐clockwise rotation of Iberia, led to an altitude sufficient for the development of orographic rains and snowfall which fed (melt)water fluxes to the desert margin system. Quartzite conglomerates and sands, dominantly consisting of quartz and well‐preserved feldspar grains which are also observed in older Cretaceous strata, indicate an arid climate and the mechanical weathering of Precambrian and Palaeozoic metamorphic sediments and felsic igneous rocks. Unroofing of much of the cover of sedimentary rocks in the Variscan Iberian Massif must therefore have taken place in pre‐Cretaceous times.  相似文献   

5.
Current understanding of submarine sediment density flows is based heavily on their deposits, because such flows are notoriously difficult to monitor directly. However, it is rarely possible to trace the facies architecture of individual deposits over significant distances. Instead, bed‐scale facies models that infer the architecture of ‘typical’ deposits encapsulate current understanding of depositional processes and flow evolution. In this study, the distribution of facies in 12 individual beds has been documented along downstream transects over distances in excess of 100 km. These deposits were emplaced in relatively flat basin‐plain settings in the Miocene Marnoso Arenacea Formation, north‐east Italy and the late Quaternary Agadir Basin, offshore Morocco. Statistical analysis shows that the most common series of vertical facies transitions broadly resembles established facies models. However, mapping of individual beds shows that they commonly deviate from generalized models in several important ways that include: (i) the abundance of parallel laminated sand, suggesting deposition of this facies from both high‐density and low‐density turbidity current; (ii) three distinctly different types of grain‐size break, suggesting waxing flow, erosional hiatuses and bypass of silty sediment; (iii) the presence of mud‐rich debrites demonstrating hybrid flow deposition; and (iv) dune‐scale cross‐lamination in fine‐medium grained sandstones. Submarine sediment density flows in basin‐plain settings flow over relatively simple topography. Yet, their deposits record complex flow events, involving transformation between different flow types, rather than the simple waning surges often associated with the distal parts of turbidite systems.  相似文献   

6.
7.
The Penjom gold deposit lies on the eastern side of the Raub‐Bentong Suture line within the Central Belt of Permo‐Triassic rocks, near Kuala Lipis, Pahang, Malaysia. The geology of the deposit is dominated by a sequence of fine‐ to coarse‐grained rhyolitic to rhyodacitic tuff, tuff‐breccia and a minor rhyolitic–rhyodacitic volcanic series, associated with argillaceous marine sedimentary rocks consisting of shale with subordinate shalely limestone of Padang Tungku Formation and Pahang Volcanic Series. Fine‐ to coarse‐grained tonalite and quartz porphyry intruded this unit. The main structural features of the area are north–south‐trending left‐lateral strike‐slip faults and their subsidiaries, which generally strike north–south and dip moderately to the east (350°–360°/40°–60°). Mineralization at the Penjom gold deposit is structurally controlled and also erratic laterally and vertically. The gold mineralization can be categorized as (i) gold associated with carbonate‐rich zones hosted within dilated quartz veins carrying significant amount of sulfides; (ii) gold disseminated within stockwork of quartz–carbonate veins affiliated with tonalite; and (iii) gold often associated with arsenopyrite and pyrite in quartz–carbonate veins and stringers hosted within shear zones of brittle–ductile nature in all rock types and in brittle fractured rhyodacitic volcanic rocks. Sphalerite, chalcopyrite, tetrahedrite and pyrrhotite are the minerals accompanying the early stage of gold mineralization. These minerals also suffered from local brittle deformation. However, most of the gold mineralization took place after the deposition of these sulfides. Galena appears somewhat towards the end of gold mineralization, whereas tellurium and bismuth accompanied gold contemporaneously. The gold mineralization occurred most probably due to the metamorphogenic deformational origin concentrated mostly in the shear zone. The mineralization is strongly controlled by the wall rock (e.g. graphitic shale), the sulfide minerals and fluid–rock interaction.  相似文献   

8.
Garnet (10 vol.%; pyrope contents 34–44 mol.%) hosted in quartzofeldspathic rocks within a large vertical shear zone of south Madagascar shows a strong grain‐size reduction (from a few cm to ~300 μm). Electron back‐scattered diffraction, transmission electron microscopy and scanning electron microscope imaging coupled with quantitative analysis of digitized images (PolyLX software) have been used in order to understand the deformation mechanisms associated with this grain‐size evolution. The garnet grain‐size reduction trend has been summarized in a typological evolution (from Type I to Type IV). Type I, the original porphyroblasts, form cm‐sized elongated grains that crystallized upon multiple nucleation and coalescence following biotite breakdown: biotite + sillimanite + quartz = garnet + alkali feldspar + rutile + melt. These large garnet grains contain quartz ribbons and sillimanite inclusions. Type I garnet is sheared along preferential planes (sillimanite layers, quartz ribbons and/or suitably oriented garnet crystallographic planes) producing highly elongated Type II garnet grains marked by a single crystallographic orientation. Further deformation leads to the development of a crystallographic misorientation, subgrains and new grains resulting in Type III garnet. Associated grain‐size reduction occurs via subgrain rotation recrystallization accompanied by fast diffusion‐assisted dislocation glide. This plastic deformation of garnet is associated with efficient recovery as shown by the very low dislocation densities (1010 m?3 or lower). The rounded Type III garnet experiences rigid body rotation in fine‐grained matrix. In the highly deformed samples, the deformation mechanisms in garnet are grain‐size‐ and shape‐dependent: dislocation creep is dominant for the few large grains left (>1 mm; Type II garnet), rigid body rotation is typical for the smaller rounded grains (300 μm or less; Type III garnet) whereas diffusion creep may affect more elliptic garnet (Type IV garnet). The P–T conditions of garnet plasticity in the continental crust (≥950 °C; 11 kbar) have been identified using two‐feldspar thermometry and GASP conventional barometry. The garnet microstructural and deformation mechanisms evolution, coupled with grain‐size decrease in a fine‐grained steady‐state microstructure of quartz, alkali feldspar and plagioclase, suggests a separate mechanical evolution of garnet with respect to felsic minerals within the shear zone.  相似文献   

9.
The 3·2 km long Rose Creek fan delta of west‐central Nevada is prograding from an active rift margin into the 32 m deep Walker Lake. A case study of the forms, processes and facies of this fan delta reveals that the proximal and medial zones mainly are of sub‐aerial origin, and the distal zone is of lacustrine origin. Pebbly to bouldery rock‐avalanche mounds >100 m thick (Facies A) and muddy to bouldery debris flow levées 0·5 to 2·0 m thick (Facies B) dominate the proximal zone, whereas mostly matrix‐supported cobbly pebbly debris flow lobes 0·1 to 1·0 m thick (Facies C) typify the medial zone. Surficial pebble lags and gully fills (Facies D) are widespread in both zones but, in exposures, comprise only partings or lenticles between debris flow units. The distal fan delta mainly consists of lakeshore to lake‐bottom tracts formed by extensive wave reworking of debris flow facies. Nearshore deposits include erosional cobbly boulder lag beaches (Facies E), pebbly constructional beaches attached at headcuts or on barrier spits (Facies F), pebbly upper shoreface (Facies G) and sandy lower shoreface (Facies H) tracts positioned lakeward of the beach, and pebbly landward‐dipping foresets (Facies I) and backshore‐pond sand and mud (Facies J) present landward of the spits. Erosional lag beaches fringe the windward north side of the fan‐delta front, attached constructional beaches characterize the central zone, and southward‐elongating barrier spits typify the leeward south side, extending from the zone of greatest projection of the fan delta into the lake. Shoreline facies asymmetry results from largely unidirectional longshore drift caused by high fetch to the north and minimal fetch to the south, combined with the arcuate shape of the fan‐delta front. The spits overlie a platform deposited below common wave base consisting of south‐east‐trending cones of pebbly Gilbert foresets (Facies K) and sandy toesets (Facies L). Typically slumped silt and mud (Facies M) fringe both this platform and lower shoreface sand in deeper water. This case demonstrates facies types and patterns that are inconsistent with the widely promoted fan‐delta facies model having a front consisting of an apron of radially directed Gilbert foresets deposited where sub‐aerial flows enter the lake. The Rose Creek fan‐delta front instead features a sharp contact between sub‐aerial and lakeshore facies formed where waves erode, sort and redistribute heterogeneous debris flow sediment into the various shallow‐to‐deep lake facies. Gilbert foresets are present only in the lee of the fan delta where sediment moving by longshore drift reaches the brink of the spit front. This facies scenario results from the infrequency of fan‐building events versus nearly constant wind‐induced waves, a scenario that, in contrast to the popular Gilbert model, probably is the norm for fan deltas. The level of Walker Lake, and thus the position of wave reworking on the Rose Creek fan delta, fluctuated over a range of ~157 m during the last 18 kyr, producing complex interfingering between sub‐aerial and lakeshore facies across a 1700 m wide radial belt, typifying a wave‐modified, freestand lacustrine fan delta.  相似文献   

10.
Melt infiltration into quartzite took place due to generation and migration of partial melts within the high‐grade metamorphic rocks of the Big Cottonwood (BC) formation in the Little Cottonwood contact aureole (UT, USA). Melt was produced by muscovite and biotite dehydration melting reactions in the BC formation, which contains pelite and quartzite interlayered on a centimetre to decimetre scale. In the migmatite zone, melt extraction from the pelites resulted in restitic schollen surrounded by K‐feldspar‐enriched quartzite. Melt accumulation occurred in extensional or transpressional domains such as boudin necks, veins and ductile shear zones, during intrusion‐related deformation in the contact aureole. The transition between the quartzofeldspathic segregations and quartzite shows a gradual change in texture. Here, thin K‐feldspar rims surround single, round quartz grains. The textures are interpreted as melt infiltration texture. Pervasive melt infiltration into the quartzite induced widening of the quartz–quartz grain boundaries, and led to progressive isolation of quartz grains. First as clusters of grains, and with increasing infiltration as single quartz grains in the K‐feldspar‐rich matrix of the melt segregation. A 3D–μCT reconstruction showed that melt formed an interconnected network in the quartzites. Despite abundant macroscopic evidence for deformation in the migmatite zone, individual quartz grains found in quartzofeldspathic segregations have a rounded crystal shape and lack quartz crystallographic orientation, as documented with electron backscatter diffraction (EBSD). Water‐rich melts, similar to pegmatitic melts documented in this field study, were able to infiltrate the quartz network and disaggregate grain coherency of the quartzites. The proposed mechanism can serve as a model to explain abundant xenocrysts found in magmatic systems.  相似文献   

11.
《Sedimentology》2018,65(5):1558-1589
Most of the present knowledge of shallow‐marine, mixed carbonate–siliciclastic systems relies on examples from the carbonate‐dominated end of the carbonate–siliciclastic spectrum. This contribution provides a detailed reconstruction of a siliciclastic‐dominated mixed system (Pilmatué Member of the Agrio Formation, Neuquén Basin, Argentina) that explores the variability of depositional models and resulting stratigraphic units within these systems. The Pilmatué Member regressive system comprises a storm‐dominated, shoreface to basinal setting with three subparallel zones: a distal mixed zone, a middle siliciclastic zone and a proximal mixed zone. In the latter, a significant proportion of ooids and bioclasts were mixed with terrigenous sediment, supplied mostly via along‐shore currents. Storm‐generated flows were the primary processes exporting fine sand and mud to the middle zone, but were ineffective to remove coarser sediment. The distal zone received low volumes of siliciclastic mud, which mixed with planktonic‐derived carbonate material. Successive events of shoreline progradation and retrogradation of the Pilmatué system generated up to 17 parasequences, which are bounded by shell beds associated with transgressive surfaces. The facies distribution and resulting genetic units of this siliciclastic‐dominated mixed system are markedly different to the ones observed in present and ancient carbonate‐dominated mixed systems, but they show strong similarities with the products of storm‐dominated, pure siliciclastic shoreface–shelf systems. Basin‐scale depositional controls, such as arid climatic conditions and shallow epeiric seas might aid in the development of mixed systems across the full spectrum (i.e. from carbonate‐dominated to siliciclastic‐dominated end members), but the interplay of processes supplying sand to the system, as well as processes transporting sediment across the marine environment, are key controls in shaping the tridimensional facies distribution and the genetic units of siliciclastic‐dominated mixed systems. Thus, the identification of different combinations of basin‐scale factors and depositional processes is key for a better prediction of conventional and unconventional reservoirs within mixed, carbonate–siliciclastic successions worldwide.  相似文献   

12.
Thin‐bedded delta‐front and prodelta facies of the Upper Cretaceous Ferron Notom Delta Complex near Hanksville in southern Utah, USA, show significant along‐strike facies variability. Primary initiation processes that form these thin beds include surge‐type turbidity currents, hyperpycnal flows and storm surges. The relative proportion of sedimentary structures generated by each of these depositional processes/events has been calculated from a series of measured sedimentological sections within a single parasequence (PS6–1) which is exposed continuously along depositional strike. For each measured section, sedimentological data including grain size, lithology, bedding thickness, sedimentary structures and ichnological suites have been documented. Parasequence 6–1 shows a strong along‐strike variation with a wave‐dominated environment in the north, passing abruptly into a fluvial‐dominated area, then to an environment with varying degrees of fluvial and wave influence southward, and back to a wave‐dominated environment further to the south‐east. The lateral facies variations integrated with palaeocurrent data indicate that parasequence 6–1 is deposited as a storm‐dominated symmetrical delta with a large river‐dominated bayhead system linked to an updip fluvial feeder valley. This article indicates that it is practical to quantify the relative importance of depositional processes and determine the along‐strike variation within an ancient delta system using thin‐bedded facies analysis. The wide range of vertical stratification and grading sequences present in these event beds also allows construction of conceptual models of deposition from turbidity currents (i.e. surge‐type turbidity currents and hyperpycnal flows) and storm surges, and shows that there are significant interactions and linkages of these often paired processes.  相似文献   

13.
Garnet–clinopyroxene intermediate granulites occur as thin layers within garnet–kyanite–K–feldspar felsic granulites of the St. Leonhard granulite body in the Bohemian Massif. They consist of several domains. One domain consists of coarser‐grained coexisting ternary feldspar, clinopyroxene, garnet, quartz and accessory rutile and zircon. The garnet has 16–20% grossular, and the clinopyroxene has 9% jadeite and contains orthopyroxene exsolution lamellae. Reintegrated ternary feldspar and the Zr‐in‐rutile thermometer give temperatures higher than 950 °C. Mineral equilibria modelling suggests crystallization at 14 kbar. The occurrence and preservation of this mineral assemblage is consistent with crystallization from hot dry melt. Between these domains is a finer‐grained deformed matrix made up of diopsidic clinopyroxene, orthopyroxene, plagioclase and K‐feldspar, apparently produced by reworking of the coarser‐grained domains. Embedded in this matrix, and pre‐dating the reworking deformation, are garnet porphyroblasts that contain clinopyroxene, feldspar, quartz, rutile and zircon inclusions. In contrast with the garnet in the coarser‐grained domains, the garnet generally has >30% grossular, the included clinopyroxene has 7–27% jadeite and the Zr content of rutile indicates much lower temperatures. Some of these high‐grossular garnet show zoning in Fe/(Fe + Mg), decreasing from 0.7 in the core to 0.6 and then increasing to 0.7 at the rim. These garnet are enigmatic, but with reference to appropriate pseudosections are consistent with localized new mineral growth from 650 to 850 °C and 10 to 17 kbar, or with equilibration at 20 kbar and 770 °C, modified by two‐stage diffusional re‐equilibration of rims, at 10–15 and 8 kbar. The strong pervasive deformation has obscured relationships that might have aided the interpretation of the origin of these porphyroblasts. The evolution of these rocks is consistent with formation by igneous crystallization and subsequent metamorphism to high‐T and high‐P, rather than an origin by ultrahigh‐T metamorphism. Regarding the petrographic complexity, combination of the high grossular garnet with the ternary feldspar to infer ultrahigh‐T metamorphism at high pressure is not justified.  相似文献   

14.
Facies analysis of widely distributed exposures of the 32·6 km2 and 8·1-km-long Warm Spring Canyon fan, central Death Valley, shows that it has been built principally by debris-flow deposits. These deposits were derived from a mature Panamint Range catchment mostly underlain by Precambrian mudrock, quartzite and dolomite. Stacked, clast-rich and matrix-supported debris-flow lobes of slightly bouldery, muddy, pebble–cobble gravel in beds 20–150 cm thick dominate the fan from apex to toe, accounting for 75–98% of most exposures. Interstratified with the debris flows are less abundant (2–25% of cuts), thinner (5–30 cm) and more discontinuous beds of clast-supported and imbricated, pebble–cobble gravel deposited by overland flows and gully flows. This facies formed by the surficial fine-fraction water winnowing of the debris flows primarily during recessional flood stage of the debris-flow events. Two other facies associations make up a small part of the fan. The incised-channel tract consists of a 250-m-wide clast-supported ribbon of irregularly to thickly bedded, boulder, pebble, cobble gravel nested within debris-flow deposits. This channel fill is oriented generally perpendicular to the Panamint range front. It formed by extensive erosion and winnowing of debris flows deposited within the incised channel, into which all water discharge from the catchment is funnelled. The limited presence of this facies only straddling the present incised channel indicates that this channel overall has maintained a consistent position on the fan except for slight lateral shifts, some caused by strike-slip offset. Fault offset temporarily closed the upper incised channel, causing recessional debris-flow mud to be ponded behind the dam. The other local facies assemblage consists of subrounded to rounded, moderately sorted pebble gravel in low-angle cross-beds that slope both basinwards and fanwards. This gravel was deposited in beachface, backshore and shoreface barrier-spit environments that developed where Lake Manly impinged on the Warm Spring fan during late Pleistocene time. These deposits straddle headcuts into, and were derived from, erosion of the debris-flow deposits. Wave energy sorted finer sediment from the shore zone, concentrated coarser sediment and rounded the coarse to very coarse pebble fraction by selective reworking.  相似文献   

15.
《Sedimentology》2018,65(3):952-992
Hybrid event beds comprising both clean and mud‐rich sandstone are important components of many deep‐water systems and reflect the passage of turbulent sediment gravity flows with zones of clay‐damped or suppressed turbulence. ‘Behind‐outcrop’ cores from the Pennsylvanian deep‐water Ross Sandstone Formation reveal hybrid event beds with a wide range of expression in terms of relative abundance, character and inferred origin. Muddy hybrid event beds first appear in the underlying Clare Shale Formation where they are interpreted as the distal run‐out of the wakes to flows which deposited most of their sand up‐dip before transforming to fluid mud. These are overlain by unusually thick (up to 4·4 m), coarse sandy hybrid event beds (89% of the lowermost Ross Formation by thickness) that record deposition from outsized flows in which transformations were driven by both substrate entrainment in the body of the flow and clay fractionation in the wake. A switch to dominantly fine‐grained sand was accompanied initially by the arrest of turbulence‐damped, mud‐rich flows with evidence for transitional flow conditions and thick fluid mud caps. The mid and upper Ross Formation contain metre‐scale bed sets of hybrid event beds (21 to 14%, respectively) in (i) upward‐sandying bed set associations immediately beneath amalgamated sheet or channel elements; (ii) stacked thick‐bedded and thin‐bedded hybrid event bed‐dominated bed sets; (iii) associations of hybrid event bed‐dominated bed sets alternating with conventional turbidites; and (iv) rare outsized hybrid event beds. Hybrid event bed dominance in the lower Ross Formation may reflect significant initial disequilibrium, a bias towards large‐volume flows in distal sectors of the basin, extensive mud‐draped slopes and greater drop heights promoting erosion. Higher in the formation, hybrid event beds record local perturbations related to channel switching, lobe relocations and extension of channels across the fan surface. The Ross Sandstone Formation confirms that hybrid event beds can form in a variety of ways, even in the same system, and that different flow transformation mechanisms may operate even during the passage of a single flow.  相似文献   

16.
High‐strain zones are potential pathways of melt migration through the crust. However, the identification of melt‐present high‐strain deformation is commonly limited to cases where the interpreted volume of melt “frozen” within the high‐strain zone is high (>10%). In this contribution, we examine high‐strain zones in the Pembroke Granulite, an otherwise low‐strain outcrop of volcanic arc lower crust exposed in Fiordland, New Zealand. These high‐strain zones display compositional layering, flaser‐shaped mineral grains, and closely spaced foliation planes indicative of high‐strain deformation. Asymmetric leucosome surrounding peritectic garnet grains suggest deformation was synchronous with minor amounts of in situ partial melting. High‐strain zones lack typical mylonite microstructures and instead display typical equilibrium microstructures, such as straight grain boundaries, 120° triple junctions, and subhedral grain shapes. We identify five key microstructures indicative of the former presence of melt within the high‐strain zones: (a) small dihedral angles of interstitial phases; (b) elongate interstitial grains; (c) small aggregates of quartz grains with xenomorphic plagioclase grains connected in three dimensions; (d) fine‐grained, K‐feldspar bearing, multiphase aggregates with or without augite rims; and (e) mm‐ to cm‐scale felsic dykelets. Preservation of key microstructures indicates that deformation ceased as conditions crossed the solidus, breaking the positive feedback loop between deformation and the presence of melt. We propose that microstructures indicative of the former presence of melt, such as the five identified above, may be used as a tool for recognising rocks formed during melt‐present high‐strain deformation where low (<5%) volumes of leucosome are “frozen” within the high‐strain zone.  相似文献   

17.
Myrmekite is extensively developed along strain gradients of continuous, lower amphibolite facies shear zones in metagranites of the Gran Paradiso unit (Western Alps). To evaluate the role of stress, strain energy and fluid phase in the formation of myrmekite, we studied a sample suite consisting of weakly deformed porphyric granites (WDGs), foliated granites (FGs) representative of intermediate strains, and mylonitic granites (MGs). In the protolith, most K‐feldspar is microcline with different sets of perthite lamellae and fractures. In the WDGs, abundant quartz‐oligoclase myrmekite developed inside K‐feldspar only along preexisting perthite lamellae and fractures oriented at a high angle to the incremental shortening direction. In the WDGs, stress played a direct role in the nucleation of myrmekites along interfaces already characterized by high stored elastic strain because of lattice mismatch between K‐feldspar and albite. In the FGs and MGs, K‐feldspar was progressively dismembered along the growing network of microshear zones exploiting the fine‐grained recrystallized myrmekite and perthite aggregates. This was accompanied by a more pervasive fluid influx into the reaction surfaces, and myrmekite occurs more or less pervasively along all the differently oriented internal perthites and fractures independently of the kinematic framework of the shear zone. In the MGs, myrmekite forms complete rims along the outer boundary of the small K‐feldspar porphyroclasts, which are almost completely free of internal reaction interfaces. Therefore, we infer that the role of fluid in the nucleation of myrmekite became increasingly important as deformation progressed and outweighed that of stress. Mass balance calculations indicate that, in Al–Si‐conservative conditions, myrmekite growth was associated with a volume loss of 8.5%. This resulted in microporosity within myrmekite that enhanced the diffusion of chemical components to the reaction sites and hence the further development of myrmekite.  相似文献   

18.
Migmatites from Cone Peak, California, USA and the Satnur-Sangam road, Southern Karnataka, India contain coarser grained orthopyroxene-bearing leucosomes with subordinate biotite in finer grained hornblende-biotite-pyroxene-bearing hosts. At both localities the leucosomes are enriched in quartz and feldspar and have a higher ratio of pyroxene to hornblende + biotite compared to the host rocks. Biotite grains in leucosomes along the Satnur-Sangam road are concentrated at the margins of orthopyroxene grains and have lower abundances of Ti, Fe, and Cl and a higher abundance of F than biotite grains from the host rock. Fluorapatite grains in all rocks from both localities contain monazite inclusions similar to those produced experimentally by metasomatically induced dissolution and reprecipitation. Some fluorapatite grains at both localities are partially rimmed by allanite. The only compositional differences found between fluorapatite grains in the leucosomes and host rocks were higher concentrations of Cl in grains in leucosomes from Cone Peak. The mineralogies of the rocks suggest that the leucosomes formed by dehydration melting reactions that consumed feldspar, quartz, hornblende, and biotite and produced orthopyroxene. Allanite rims at the margins of fluorapatite grains may have formed by the later retrogression of monazite rims formed by incongruent dissolution of fluorapatite in the melt. Biotite grains at the margins of orthopyroxene crystals in the leucosomes from the Satnur-Sangam road apparently formed by retrogression of orthopyroxene upon the solidification of the anatectic melt. A similar high-grade retrogression did not affect orthopyroxene crystals at Cone Peak, indicating that H2O was removed from the crystallizing leucosomes probably in a low H2O activity fluid. Compositional differences between the paleosome and neosomes at Cone Peak are best explained by metasomatic interaction with concentrated brines while elevated Cl concentrations in fluorapatites in the leucosome suggest interaction with a Cl-bearing fluid. Brines may have been responsible for an exchange of elements between the host rock along the Satnur-Sangam road and zones of melt generation now marked by leucosomes, but fluid flow appears to have been less vigorous than at Cone Peak.  相似文献   

19.
This work presents the stratigraphy and facies analysis of an interval of about 2500 m in the Langhian and Serravallian stratigraphic succession of the foredeep turbidites of the Marnoso‐arenacea Formation. A high‐resolution stratigraphic analysis was performed by measuring seven stratigraphic logs between the Sillaro and Marecchia lines (60 km apart) for a total thickness of about 6700 m. The data suggest that the stratigraphy and depositional setting of the studied interval was influenced by syndepositional structural deformations. The studied stratigraphic succession has been subdivided into five informal stratigraphic units on the basis of how structurally controlled topographic highs and depocentres, a consequence of thrust propagation, change over time. These physiographic changes of the foredeep basin have also been reconstructed through the progressive appearance and disappearance of thrust‐related mass‐transport complexes and of five bed types interpreted as being related to structurally controlled basin morphology. Apart from Bouma‐like Type‐4 beds, Type‐1 tripartite beds, characterized by an internal slurry unit, tend to increase especially in structurally controlled stratigraphic units where intrabasinal topographic highs and depocentres with slope changes favour both mud erosion and decelerations. Type‐2 beds, with an internal slump‐type chaotic unit, characterize the basal boundary of structurally controlled stratigraphic units and are interpreted as indicating tectonic uplift. Type‐3 beds are contained‐reflected beds that indicate different degrees of basin confinement, while Type‐5 are thin and fine‐grained beds deposited by dilute reflected turbulent flows able to rise up the topographic highs. The vertical and lateral distribution of these beds has been used to understand the synsedimentary structural control of the studied stratigraphic succession, represented in the Marnoso‐arenacea Formation by subtle topographic highs and depocentres created by thrust‐propagation folds and emplacements of large mass‐transport complexes.  相似文献   

20.
The Tres Arboles ductile fault zone in the Eastern Sierras Pampeanas, central Argentina, experienced multiple ductile deformation and faulting events that involved a variety of textural and reaction hardening and softening processes. Much of the fault zone is characterized by a (D2) ultramylonite, composed of fine‐grained biotite + plagioclase, that lacks a well‐defined preferred orientation. The D2 fabric consists of a strong network of intergrown and interlocking grains that show little textural evidence for dislocation or dissolution creep. These ultramylonites contain gneissic rock fragments and porphyroclasts of plagioclase, sillimanite and garnet inherited from the gneissic and migmatitic protolith (D1) of the hangingwall. The assemblage of garnet + sillimanite + biotite suggests that D1‐related fabrics developed under upper amphibolite facies conditions, and the persistence of biotite + garnet + sillimanite + plagioclase suggests that the ultramylonite of D2 developed under middle amphibolite facies conditions. Greenschist facies, mylonitic shear bands (D3) locally overprint D2 ultramylonites. Fine‐grained folia of muscovite + chlorite ± biotite truncate earlier biotite + plagioclase textures, and coarser‐grained muscovite partially replaces relic sillimanite grains. Anorthite content of shear band (D3) plagioclase is c. An30, distinct from D1 and D2 plagioclase (c. An35). The anorthite content of D3 plagioclase is consistent with a pervasive grain boundary fluid that facilitated partial replacement of plagioclase by muscovite. Biotite is partially replaced by muscovite and/or chlorite, particularly in areas of inferred high strain. Quartz precipitated in porphyroclast pressure shadows and ribbons that help define the mylonitic fabric. All D3 reactions require the introduction of H+ and/or H2O, indicating an open system, and typically result in a volume decrease. Syntectonic D3 muscovite + quartz + chlorite preferentially grew in an orientation favourable for strain localization, which produced a strong textural softening. Strain localization occurred only where reactions progressed with the infiltration of aqueous fluids, on a scale of hundreds of micrometre. Local fracturing and microseismicity may have induced reactivation of the fault zone and the initial introduction of fluids. However, the predominant greenschist facies deformation (D3) along discrete shear bands was primarily a consequence of the localization of replacement reactions in a partially open system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号