首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithian ferrian enstatite with Li2O = 1.39 wt% and Fe2O3 7.54 wt% was synthesised in the (MgO–Li2O–FeO–SiO2–H2O) system at P = 0.3 GPa, T = 1,000°C, fO2 = +2 Pbca, and a = 18.2113(7), b = 8.8172(3), c = 5.2050(2) Å, V = 835.79(9) Å3. The composition of the orthopyroxene was determined combining EMP, LA-ICP-MS and single-crystal XRD analysis, yielding the unit formula M2(Mg0.59Fe 0.21 2+ Li0.20) M1(Mg0.74Fe 0.20 3+ Fe 0.06 2+ ) Si2O6. Structure refinements done on crystals obtained from synthesis runs with variable Mg-content show that the orthopyroxene is virtually constant in composition and hence in structure, whereas coexisting clinopyroxenes occurring both as individual grains or thin rims around the orthopyroxene crystals have variable amounts of Li, Fe3+ and Mg contents. Structure refinement shows that Li is ordered at the M2 site and Fe3+ is ordered at the M1 site of the orthopyroxene, whereas Mg (and Fe2+) distributes over both octahedral sites. The main geometrical variations observed for Li-rich samples are actually due to the presence of Fe3+, which affects significantly the geometry of the M1 site; changes in the geometry of the M2 site due to the lower coordination of Li are likely to affect both the degree and the kinetics of the non-convergent Fe2+-Mg ordering process in octahedral sites.  相似文献   

2.
The optical anomalies, and surface and lamellar textures of a birefringent grossular garnet crystal from the Eden Mills, Belvidere Mountain, Vermont, USA, have been investigated by optical polarizing microscope, electron-probe micro-analyzer, back-scattered electron imaging, infrared spectroscopy, and single-crystal X-ray diffractometer from the standpoint of crystal growth. This grossular shows one-to-one correlation between natural surface features and its internal textures under crossed polarizers. Electron-probe micro-analyzer (EPMA) gave average chemical composition in (110) thin section, of bright lamella {Ca2.97Mn0.06}∑3.03 [Al1.59Fe0.37Ti0.01]∑1.97(Si3.00)∑3.00 (Gros79.5And18.9Sps1.6) and of dark host {Ca2.99Mn 0.06}∑3.05 [Al1.73Fe0.26 Ti0.01]∑2.00(Si2.97OH0.03)∑3.00 (Gros85.4And13Sps1.6). The correspondence of surface features and the internal textures with spiral or pyramidal growth mechanism suggest that the internal textures of the Eden Mills grossular are formed during growth process. The optical vibrational orientations and the growth steps inclination along [001] and \( \left[\overset{-}{1}10\right] \) directions predict monoclinic symmetry. With X-ray diffractometer (XRD) method, pseudocubic parameters are a = 11.839(2) Å, b = 11.855(1) Å, and c = 11.868(2) Å with interaxial angles α = 90.00(1)°, β = 89.99(1)°, and γ = 90.02(2)° that show orthorhombic symmetry of this crystal. Lamellar texture of Al3+-rich host with Fe3+-rich lamella infers cation ordering at octahedral site of the garnet structure. IR data favors the non-cubic orientation of [(OH) 4] at tetrahedral position in this grossular structure.  相似文献   

3.
Unusual Ti–Cr–Zr-rich garnet crystals from high-temperature melilitic skarn of the Maronia area, western Thrace, Greece, were investigated by electron-microprobe analysis, powder and single-crystal X-ray diffraction, IR, Raman and Mössbauer spectroscopy. Chemical data showed that the garnets contain up to 8 wt.% TiO2, 8 wt.% Cr2O3 and 4 wt.% ZrO2, representing a solid solution of andradite (Ca3Fe3+ 2Si3O12 ≈46 mol%), uvarovite (Ca3Cr2Si3O12 ≈23 mol%), grossular (Ca3Al2Si3O12 ≈10 mol%), schorlomite (Ca3Ti2[Si,(Fe3+,Al3+)2]O12 ≈15 mol%), and kimzeyite (Ca3Zr2[Si,Al2]3O12 ≈6 mol%). The Mössbauer analysis showed that the total Fe is ferric, preferentially located at the octahedral site and to a smaller extent at the tetrahedral site. Single-crystal XRD analysis, Raman and IR spectroscopy verified substitution of Si mainly by Al3+, Fe3+ and Ti4+. Cr3+ and Zr4+ are found at the octahedral site along with Fe3+, Al3+ and Ti4+. The measured H2O content is 0.20 wt.%. The analytical data suggest that the structural formula of the Maronia garnet can be given as: (Ca2.99Mg0.03)Σ=3.02(Fe3+ 0.67Cr0.54Al0.33Ti0.29Zr0.15)Σ=1.98(Si2.42Ti0.24Fe0.18Al0.14)Σ=2.98O12OH0.11. Ti-rich garnets are not common and their crystal chemistry is still under investigation. The present work presents new evidence that will enable the elucidation of the structural chemistry of Ti- and Cr-rich garnets.  相似文献   

4.
Synthetic melilites on the join Ca2MgSi2O7 (åkermanite: Ak)-Ca2Fe3+AlSiO7 (ferrialuminium gehlenite: FAGeh) were studied using X-ray powder diffraction and 57Fe Mössbauer spectroscopic methods to determine the distribution of Fe3+ between two different tetrahedral sites (T1 and T2), and the relationship between ionic substitution and incommensurate (IC) structure. Melilites were synthesized from starting materials with compositions of Ak100, Ak80FAGeh20, Ak70FAGeh30 and Ak50FAGeh50 by sintering at 1,170–1,350 °C and 1 atm. The average chemical compositions and end-member components, Ak, FAGeh and Geh (Ca2Al2SiO7), of the synthetic melilites were Ca2.015Mg1.023Si1.981O7 (Ak100), Ca2.017Mg0.788Fe 0.187 3+ Al0.221Si1.791O7 (Ak78FAGeh19Geh3), Ca1.995Mg0.695Fe 0.258 3+ Al0.318Si1.723O7 (Ak69FAGeh25Geh6) and Ca1.982Mg0.495Fe 0.449 3+ Al0.519Si1.535O7 (Ak49FAGeh44Geh7), respectively. Rietveld refinements using X-ray powder diffraction data measured using CuK α -radiation at room temperature converged successfully with goodness-of-fits of 1.15–1.26. The refined Fe occupancies at the T1 and T2 sites and the Mg and Si contents determined by electron microprobe analysis gave the site populations of [0.788Mg + 0.082Fe3+ + 0.130Al]T1[0.104Fe3+ + 0.104Al + 1.792Si]T2 for Ak78FAGeh19Geh3, [0.695Mg + 0.127Fe3+ + 0.178Al]T1[0.132Fe3+ + 0.144Al + 1.724Si]T2 for Ak69FAGeh25Geh6 and [0.495Mg + 0.202Fe3+ + 0.303Al]T1[0.248Fe3+ + 0.216Al + 1.536Si]T2 for Ak49FAGeh44Geh7 (apfu: atoms per formula unit), respectively. The results indicate that Fe3+ is distributed at both the T1 and the T2 sites. The mean T1–O distance decreases with the substitution of Fe3+ + Al3+ for Mg2+ at the T1 site, whereas the mean T2–O distance increases with substitution of Fe3+ + Al3+ for Si4+ at the T2 site, causing decrease in the a dimension and increase in the c dimension. However, in spite of the successful Rietveld refinements for the X-ray powder diffraction data measured using CuK α-radiation at room temperature, each Bragg reflection measured using CuK α1-radiation at room temperature showed weak shoulders, which were not observed in those measured at 200 °C. The Mössbauer spectra of the melilites measured at room temperature consist of two doublets assigned to Fe3+ at the T1 site and two or three doublets to Fe3+ at the T2 site, implying the existence of multiple T1 and T2 sites with different site distortions. These facts can be interpreted in terms of the IC structure in all synthetic melilites at room temperature, respectively. The results of Mössbauer analysis indicate that the IC structure in melilite is caused by not only known multiple T1 site, but also multiple T2 site at room temperature.  相似文献   

5.
The transformation of vivianite and the direct synthesis starting from pure chemicals lead to the formation of lipscombite {Fe x 2+ Fe 3?x 3+ [(OH)3?x/(PO4)2]} with varying Fe2+/Fe3+ molar ratios. The influence of this ratio on the Mössbauer spectra, solubility, electrokinetic potential and infrared spectra has been studied. By means of Mössbauer spectroscopy, the distribution of the Fe2+ and Fe3+ ions between the octahedral sites I and II has been investigated. The unit cell dimensions have been determined from Guinier-Hägg X-ray diffraction patterns. The crystal system is tetragonal for synthetic lipscombite with a=5.3020±0.0005 Å and c=12.8800±0.0005 Å. Lipscombite has been found to show a negative and time-dependent zeta-potential which, moreover, is influenced by the pH of the suspension and the Fe2+/Fe3+ molar ratio. An explanation of the time-dependence of the zeta-potential on variations of solubility is proposed. Infrared absorption spectrum only is characterized by two absorption bands: v OH(3,500 cm?1) and v P?O(1,100-960 cm?1). The density at 25° C is determined in toluene as 3.36±0.01 g·cm?3.  相似文献   

6.
Magnesium silicate perovskite is the predominant phase in the Earth’s lower mantle, and it is well known that incorporation of iron has a strong effect on its crystal structure and physical properties. To constrain the crystal chemistry of (Mg, Fe)SiO3 perovskite more accurately, we synthesized single crystals of Mg0.946(17)Fe0.056(12)Si0.997(16)O3 perovskite at 26 GPa and 2,073 K using a multianvil press and investigated its crystal structure, oxidation state and iron-site occupancy using single-crystal X-ray diffraction and energy-domain Synchrotron Mössbauer Source spectroscopy. Single-crystal refinements indicate that all iron (Fe2+ and Fe3+) substitutes on the A-site only, where \( {\text{Fe}}^{ 3+ } /\Upsigma {\text{Fe}}\sim 20\,\% \) based on Mössbauer spectroscopy. Charge balance likely occurs through a small number of cation vacancies on either the A- or the B-site. The octahedral tilt angle (Φ) calculated for our sample from the refined atomic coordinates is 20.3°, which is 2° higher than the value calculated from the unit-cell parameters (a = 4.7877 Å, b = 4.9480 Å, c = 6.915 Å) which assumes undistorted octahedra. A compilation of all available single-crystal data (atomic coordinates) for (Mg, Fe)(Si, Al)O3 perovskite from the literature shows a smooth increase of Φ with composition that is independent of the nature of cation substitution (e.g., \( {\text{Mg}}^{ 2+ } - {\text{Fe}}^{ 2+ } \) or \( {\text{Mg}}^{ 2+ } {\text{Si}}^{ 4+ } - {\text{Fe}}^{ 3+ } {\text{Al}}^{ 3+ } \) substitution mechanism), contrary to previous observations based on unit-cell parameter calculations.  相似文献   

7.
A natural sample of clinochlore from the Longitudinal Valley area of northeastern Taiwan has been characterized by using the powder X-ray diffraction (XRD), differential thermal analysis and electron paramagnetic resonance (EPR) spectroscopic techniques. The lattice parameters of the monoclinic (IIb) clinochlore with the composition (Mg2.988 Al1.196 Fe1.6845 Mn0.026)5.8945 (Si2.559 Al1.441)4 O10 (OH)8 have been calculated from the powder XRD data and are found to be a = 5.347 Å, b = 9.223 Å, c = 14.250 Å, β = 97.2° and Z = 2. The thermal behaviour of the sample showed the typical behaviour of clinochlore with a hydroxyl content of 12.5 wt%. The EPR spectrum at room temperature exhibits two resonance signals centred at g ≈ 2.0 and g ≈ 8.0. The signal at g ≈ 2.0 shows a six-line hyperfine structure which is a characteristic of Mn2+ ions in octahedral symmetry. The resonance signal at g ≈ 8.0 is a characteristic of Fe3+ ions. The EPR spectra have also been recorded at different temperatures (123–295 K). The population of spin levels (N) has been calculated for g ≈ 2.0 and g ≈ 8.0 resonance signals. It is observed that N increases with decreasing temperature. From EPR spectra, the spin-Hamiltonian parameters have been evaluated. The zero-field splitting parameter (D) is found to be temperature dependent. The peak-to-peak width of the g ≈ 8.0 resonance signal is found to increase with decrease in temperature.  相似文献   

8.
Sapphirine II     
The crystal structure of aP21/a polymorph of sapphirine (a=11.286(3),b=14.438(2),c=9.957(2) Å, β=125.4(2) °) of composition [Mg3.7Fe 0.1 2+ Al4.1- Fe 0.1 3+ ]IV[Si1.8Al4.2]IVO20 was refined using structure factors determined by both neutron and x-ray diffraction methods to conventionalR factors of 0.067 and 0.031. respectively, forF obs>2σ. The results of the two refinements agree reasonably well, but a half-normal probability plot (Abrahams, 1974) comparing the two data sets indicates that the pooled standard deviations of the atomic coordinates have been underestimated by a factor of two. The structure of sapphirine, solved initially by Moore (1969), consists of cubic closest packed oxygens with octahedral and predominantly tetrahedral layers alternately stacked along [100]. The layer in which 70% of the octahedral sites are occupied has an Mg-Al distribution characterized by Mg-rich octahedra sharing edges mainly with Al-rich octahedra. Mean octahedral bond lengths correlate well with Al occupancy determined by neutron site refinement if the relative number of shared octahedral edges is taken into account (see Table 1). The predominantly tetrahedral layer has 10% of the octahedral sites occupied by Al and 30% of the tetrahedral sites occupied by Al-Si in the ratio 2.33∶1. There are single chains of Al-Si tetrahedra parallel toz with corner-sharing wing tetrahedra (T5 andT6) on either side in the (100) plane. The meanT-O distance is highly correlated with Al occupancy, XAl, as determined from the neutron site refinement: $$\langle T - O\rangle = 1.656 + 0.105X_{Al} (r^2 = 0.995).$$ Details of the neutron refinement are summarized below.  相似文献   

9.
Wadeite-type K2Si4O9 was synthesized with a cubic press at 5.4 GPa and 900 °C for 3 h. Its unit-cell parameters were measured by in situ high-T powder X-ray diffraction up to 600 °C at ambient P. The TV data were fitted with a polynomial expression for the volumetric thermal expansion coefficient (αT = a 0 + a 1 T), yielding a 0 = 2.47(21) × 10?5 K?1 and a 1 = 1.45(36) × 10?8 K?2. Compression experiments at ambient T were conducted up to 10.40 GPa with a diamond-anvil cell combined with synchrotron X-ray radiation. A second-order Birch–Murnaghan equation of state was used to fit the PV data, yielding K T = 97(3) GPa and V 0 = 360.55(9) Å3. These newly determined thermal expansion data and compression data were used to thermodynamically calculate the PT curves of the following reactions: 2 sanidine (KAlSi3O8) = wadeite (K2Si4O9) + kyanite (Al2SiO5) + coesite (SiO2) and wadeite (K2Si4O9) + kyanite (Al2SiO5) + coesite/stishovite (SiO2) = 2 hollandite (KAlSi3O8). The calculated phase boundaries are generally consistent with previous experimental determinations.  相似文献   

10.
A crystallographic and m?ssbauer spectroscopy study of Fe   总被引:1,自引:0,他引:1  
The crystal chemistry of garnet solid solutions on the Fe 3 2+ Al2Si3O12-Fe 3 2+ Fe 2 3+ Si3O12 (almandine-“skiagite”) and Ca3Fe 2 3+ Si3O12-Fe 3 2+ Fe 2 3+ Si3O12 (andradite-“skiagite”) joins have been investigated by single-crystal X-ray structure refinements and M?ssbauer spectroscopy. Together, these two solid solution series encompass the complete range in Fe3+/ΣFe from 0.0 to 1.0. All garnets are isotropic and were re0fined in the Ia d space group. Small excess volumes of mixing are observed in andradite-“skiagite” solid solutions (W v =1.0±0.2 cm3 mol-1) and along the almandine-“skiagite” join (W v =-0.77±0.17cm3 mol-1). The octahedral (Al, Fe3+)-O bond lengths show a much greater variation across the almandine-skiagite join compared to the andradite-skiagite garnets. The dodecahedral (X)-O bond lengths show the opposite behaviour. In andradite-“skiagite” solid solutions, the octahedral site passes from being flattened to elongated parallel to the 3 axis of symmetry with increasing “skiagite” content. A perfect octahedron occurs in a composition of ≈35 mol% “skiagite”. The occupancy of the neighboring dodecahedral sites has the greatest effect on octahedral distortion and vice versa. The M?ssbauer hyperfine parameters of Fe2+remain constant in both solid solutions. The hyperfine parameters of Fe3+ (at room temperature: centre shift=0.32–0.40 mm/sec, quadrupole splitting (QS)≈0.21–0.55 mm/ sec) indicate that all Fe3+ is in octahedral coordination. The Fe3+ parameters are nearly constant in almandine-“skiagite” solid solutions, but vary significantly across the andradite-“skiagite” join. The structural unit that contributes to the electric field gradient of the octahedral site is different from that of the coordinating oxygen polyhedron, probably involving the neighboring dodeca-hedral sites.  相似文献   

11.
A well crystallized and homogeneous specimen of lizardite from Monte Fico, Elba, Italy, has been studied by Mössbauer and Fourier transform infrared (FTIR) spectrometries. One of the aims was the determination of the oxidation state and the distribution of iron in the structure of this reference sample. Mössbauer data indicate the presence of octahedral ferrous iron, octahedral ferric iron and tetrahedral ferric iron (59.9, 31.3 and 8.8% of total iron, respectively). The existence of only one octahedral site, previously suggested by X-ray structure refinement, is confirmed. The occurrence of tetrahedrally coordinated iron is indicated also by FTIR spectrometry, in particular by the presence of an absorption band at 790 cm–1. Based also on new electron microprobe data, the improved crystal chemical formula for lizardite from Monte Fico is: (Mg2.74Fe2+ 0.10Fe3+ 0.05Al0.11)Σ=3.00 ?· (Si1.94Al0.05Fe3+ 0.01)Σ=2.00O5.05(OH)3.95.  相似文献   

12.
Manganoan lipscombite (Fe x /2+ , M y /2+ ) Fe 3?(x +y)/3+ [OH)3?(x+y)(PO4)2] was synthesized from pure chemicals. From the study of the Mn2+/Fe2+ atomic ratio by Mössbauer spectra, solubility, and electrokinetic properties, it was found that the crystal structure of lipscombite is not changed substantially by the manganese substitution. The unit cell parameters were determined from Guinier-Hägg X-ray diffraction patterns, which are identical for both synthetic ferrous-ferric and manganoan lipscombite. The two compounds crystallize in the tetragonal system with a=5.3020±0.0005 Å and c=12.8800±0.0005 Å.  相似文献   

13.
The effects of temperature on the crystal structure of a natural epidote [Ca1.925 Fe0.745Al2.265Ti0.004Si3.037O12(OH), a = 8.890(6), b = 5.630(4), c = 10.150(6) Å and β = 115.36(5)°, Sp. Gr. P21 /m] have been investigated by means of neutron single-crystal diffraction at 293 and 1,070 K. At room conditions, the structural refinement confirms the presence of Fe3+ at the M3 site [%Fe(M3) = 73.1(8)%] and all attempts to refine the amount of Fe at the M(1) site were unsuccessful. Only one independent proton site was located. Two possible hydrogen bonds, with O(2) and O(4) as acceptors [i.e. O(10)–H(1)···O(2) and O(10)–H(1)···O(4)], occur. However, the topological configuration of the bonds suggests that the O(10)–H(1)···O(4) is energetically more favourable, as H(1)···O(4) = 1.9731(28) Å, O(10)···O(4) = 2.9318(22) Å and O(10)–H(1)···O4 = 166.7(2)°, whereas H(1)···O(2) = 2.5921(23) Å, O(10)···O(2) = 2.8221(17) Å and O(10)–H(1)···O2 = 93.3(1)°. The O(10)–H(1) bond distance corrected for “riding motion” is 0.9943 Å. The diffraction data at 1,070 K show that epidote is stable within the T-range investigated, and that its crystallinity is maintained. A positive thermal expansion is observed along all the three crystallographic axes. At 1,070 K the structural refinement again shows that Fe3+ share the M(3) site along with Al3+ [%Fe(M3)1,070K = 74(2)%]. The refined amount of Fe3+ at the M(1) is not significant [%Fe(M1)1,070K = 1(2)%]. The tetrahedral and octahedral bond distances and angles show a slight distortion of the polyhedra at high-T, but a significant increase of the bond distances compared to those at room temperature is observed, especially for bond distances corrected for “rigid body motions”. The high-T conditions also affect the inter-polyhedral configurations: the bridging angle Si(2)–O(9)–Si(1) of the Si2O7 group increases significantly with T. The high-T structure refinement shows that no dehydration effect occurs at least within the T-range investigated. The configuration of the H-bonding is basically maintained with temperature. However, the hydrogen bond strength changes at 1,070 K, as the O(10)···O(4) and H(1)···O(4) distances are slightly longer than those at 293 K. The anisotropic displacement parameters of the proton site are significantly larger than those at room condition. Reasons for the thermal stability of epidote up to 1,070 K observed in this study, the absence of dehydration and/or non-convergent ordering of Al and Fe3+ between different octahedral sites and/or convergent ordering on M(3) are discussed.  相似文献   

14.
We investigated the valence state and spin state of iron in an Al-bearing ferromagnesian silicate perovskite sample with the composition (Mg0.88Fe0.09)(Si0.94Al0.10)O3 between 1 bar and 100 GPa and at 300 K, using diamond cells and synchrotron Mössbauer spectroscopy techniques. At pressures below 12 GPa, our Mössbauer spectra can be sufficiently fitted by a “two-doublet” model, which assumes one ferrous Fe2+-like site and one ferric Fe3+-like site with distinct hyperfine parameters. The simplest interpretation that is consistent with both the Mössbauer data and previous X-ray emission data on the same sample is that the Fe2+-like site is high-spin Fe2+, and the Fe3+-like site is high-spin Fe3+. At 12 GPa and higher pressures, a “three-doublet” model is necessary and sufficient to fit the Mössbauer spectra. This model assumes two Fe2+-like sites and one Fe3+-like site distinguished by their hyperfine parameters. Between 12 and 20 GPa, the fraction of the Fe3+-like site, Fe3+/∑Fe, changes abruptly from about 50 to 70%, possibly due to a spin crossover in six-coordinate Fe2+. At pressures above 20 GPa, the fractions of all three sites remain unchanged to the highest pressure, indicating a fixed valence state of iron within this pressure range. From 20 to 100 GPa, the isomer shift between the Fe3+-like and Fe2+-like sites increases slightly, while the values and widths of the quadruple splitting of all three sites remain essentially constant. In conjunction with the previous X-ray emission data, the Mössbauer data suggest that Fe2+ alone, or concurrently with Fe3+, undergoes pressure-induced spin crossover between 20 and 100 GPa.  相似文献   

15.
The electronic and magnetic structure of the chain silicate orthoferrosilite Fe 2 2+ Si2O6 has been investigated by electronic structure calculations in the local spin density approximation. All calculations are based on experimentally determined geometrical data at room temperature. The calculated spin-allowed dd excitation energies and hyperfine parameters are in quantitative agreement with the respective experimental data from optical absorption and Mössbauer spectroscopy. Inside one ribbon that is parallel to the crystallographic c axis and contains two non-equivalent M1 and M2 sites, all iron spins are ferromagnetically coupled with coupling constants of about +16 cm?1. Between these ribbons within the (bc)-plane a weak ferromagnetic coupling of about +2 cm?1 is obtained. Neighboured (bc)-planes are coupled antiferromagnetically via chains of Si B -tetrahedra but ferromagnetically via chains of Si A -tetrahedra. Such a theoretically determined "double-plane antiferromagnetic" spin structure is at variance with an experimentally derived magnetic structure. This discrepancy is attributed to differences between the geometry at room temperature and at temperatures below the Néel temperature currently not available.  相似文献   

16.
The blue colors of several minerals and gems, including aquamarine (beryl, Be3Al2Si6O18) and cordierite (Al3(Mg, Fe)2Si5AlO18), have been attributed to charge transfer (CT) between adjacent Fe2+ and Fe3+ cations, while Fe2+→Ti4+ CT has been proposed for blue kyanites (Al2SiO5). Such assignments were based on chemical analyses and on polarization-dependent absorption bands measured in visible-region spectra. We have attempted to characterize the Fe cations in each of these minerals by Mössbauer spectroscopy (MS). In blue kyanites, significant amounts of both Fe2+ and Fe3+ were detected with MS, indicating that Fe2+→Fe3+ CT, Fe2+→Ti4+ CT, and Fe2+ and Fe3+ crystal field transitions each could contribute to the electronic spectra. In aquamarines, coexisting Fe2+ and Fe3+ ions were resolved by MS, supporting our assignment of the broad, relatively weak band at 16,100 cm?1 in Ec spectra to Fe2+→Fe3+ CT between Fe cations replacing Al3+ ions 4.6Å apart along c. A band at 17,500 cm?1 in Ec spectra of cordierite is generally assigned to Fe2+ (oct)→Fe3+ (tet) CT between cations only 2.74 Å apart. However, no Fe3+ ions were detected in the MS at 293K of several blue cordierites showing the 17,500 cm?1 band and reported to contain Fe3+. A quadrupole doublet with parameters consistent with tetrahedral Fe3+ appears in 77K MS, but the Fe3+/Fe2+ ratios from MS are much smaller than values from chemical analysis. These results sound a cautionary note when correlating Mössbauer and chemically determined Fe3+/Fe2+ ratios for minerals exhibiting Fe2+→Fe3+ CT.  相似文献   

17.
Geometrical changes induced by cation substitutions {Si4+/Al3+}[Mg2+/Al3+], {2Si4+/2Al3+} [2Mg2+/2Al3+], {Si4+/Fe3+} [Mg2+/Al3+] or [Mg2+/Fe3+], where {} and [] indicate tetrahedral and octahedral sheet in lizardite 1T, are studied by ab-initio quantum chemistry calculations. The majority of the models are based on the chemical compositions reported for various lizardite polytypes with the amount of Al in the tetrahedral sheets reported to vary from 3.5% to 8% in the 1T and 2H 1, up to ~30% in the 2H 2 polytype. Si4+ by Fe3+ substitution in the tetrahedral sheet with an Al3+ (Fe3+) in the role of a charge compensating cation in the octahedral sheet is also examined. The cation substitutions result in the geometrical changes in the tetrahedral sheets, while the octahedral sheets remain almost untouched. Substituted tetrahedra are tilted and their basal oxygens pushed down from the plane of basal oxygens. Ditrigonal deformation of tetrahedral sheets depends on the substituting cation and the degree of substitution.  相似文献   

18.
The crystal structure and chemical composition of a crystal of (Mg14?x Cr x )(Si5?x Cr x )O24 (x ≈ 0.30) anhydrous Phase B (Anh-B) synthesized in the model system MgCr2O4–Mg2SiO4 at 12 GPa and 1600 °C have been investigated. The compound was found to be orthorhombic, space group Pmcb, with lattice parameters a = 5.900(1), b = 14.218(2), c = 10.029(2) Å, V = 841.3(2) Å3 and Z = 2. The structure was refined to R 1 = 0.065 using 1492 independent reflections. Chromium was found to substitute for both Mg at the M3 site (with a mean bond distance of 2.145 Å) and Si at the octahedral Si1 site (mean bond distance: 1.856 Å), according to the reaction Mg2+ + Si4+ = 2Cr3+. Such substitutions cause a reduction in the volume of the M3 site and an increase in the volume of the Si-dominant octahedron with respect to the values typically observed for pure Anh-B and Fe2+-bearing Anh-B. Taking into account that Cr3+ is not expected to be Jahn–Teller active, it appears that both the Cr3+–for–Mg and Cr3+–for–Si substitutions in the Anh-B structure decrease the distortion of the octahedra. Electron microprobe analysis gave the Mg13.66(8)Si4.70(6)Cr0.62(4)O24 stoichiometry for the studied phase. The successful synthesis of this phase provides new information for the possible mineral assemblages occurring in the Earth’s deep upper mantle and shed new light on the so-called X discontinuity that has been observed at 275–345 km depth in several subcontinental and subduction zone environments.  相似文献   

19.
Two samples of cronstedtite, a mixed valence serpentine with ideal formula {Fe 2 2+ ,Fe3+}[Si,Fe3+]O5(OH)4, have been examined by X-ray and neutron diffraction, thermopiezic analysis, magnetization and susceptibility measurements and Mössbauer spectroscopy. The conductivity is thermally activated, with activation energies of 0.25 eV in the basal plane and 0.37 eV in the perpendicular direction. The shape of paramagnetic Mössbauer spectra above 200 K is influenced by charge fluctuations in octahedral sites and fits of spectra at temperatures up to 410 K with a stochastic relaxation model give an activation energy of 0.19 eV. Static charge ordering sets in progressively below about 100 K. Cronstedtite orders antiferromagnetically below 12 K in a structure with antiferromagnetic octahedral sheets and moments perpendicular to the a-axis. Magnetic and charge-ordered structures are proposed for the ideal composition.  相似文献   

20.
This study is devoted to the physicochemical and mineralogical characterizations of palygorskite from Marrakech High Atlas, Morocco. The raw clay and its Na+-saturated <2 μm fraction were characterized using chemical, structural, and thermal analytical techniques. Measurements of specific surface area and porous volume are reported. The clay fraction was found to be made up of 95 % of palygorskite and 5 % of sepiolite. An original feature of this palygorskite is its deficiency in zeolitic H2O. The half-cell structural formula of its dehydrated form was determined on the basis of 21 oxygens to be (Si7.92Al0.08)(Mg2.15Al1.4Fe0.4Ti0.05 $ \square_{1} $ )(Ca0.03Na0.08K0.04)O21, while the hydrated form could be formulated as (Si7.97Al0.03)(Mg2.17Al1.46Fe0.40Ti0.05)(Ca0.03Na0.07K0,03)O20.18(OH)1.94(OH2)3.88·2.43 H2O. These formulas show that the (Al3++Fe3+)/Mg2+ ratio is around 0.84, revealing a pronounced dioctahedral character. Further, inside its octahedral sheet, it was determined that the inner M1 sites are occupied by vacancies, whereas the M2 sites are shared between 90 % of trivalent cations (78 % for Al3+ and 22 % for Fe3+), 7.5 % of Mg2+, and 2.5 % of Ti4+, all of them linked to 1.94 of structural hydroxyls. The two remaining Mg2+ by half-cell occupy edge M3 sites and are coordinated to 3.88 molecules of OH2. Channels of this palygorskite are deficient in zeolitic H2O since they contain only 2.43 H2O molecules. A correlation was found between these results and the observation of very intense and well-resolved FTIR bands arising from dioctahedral domains (mainly Al2OH, Fe2OH, and AlFeOH) along with very small responses from a trioctahedral domain (Mg3OH). Accordingly, a schematic representation of the composition of the octahedral sheet was proposed. The cation exchange capacity, specific surface area, and total pore volume were also assessed to be ca. 21.2 meq/100 g, 116 m2/g, and 0.458 cm3/g, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号