首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
The partitioning of the total sediment load of a river into suspended load and bedload is an important problem in fluvial geomorphology, sedimentation engineering and sedimentology. Bedload transport rates are notoriously hard to measure and, at many sites, only suspended load data are available. Often the bedload fraction is estimated with ‘rule of thumb’ methods such as Maddock’s Table, which are inadequately field‐tested. Here, the partitioning of sediment load for the Pitzbach is discussed, an Austrian mountain stream for which high temporal resolution data on both bedload and suspended load are available. The available data show large scatter on all scales. The fraction of the total load transported in suspension may vary between zero and one at the Pitzbach, while its average decreases with rising discharge (i.e. bedload transport is more important during floods). Existing data on short‐term and long‐term partitioning is reviewed and an empirical equation to estimate bedload transport rates from measured suspended load transport rates is suggested. The partitioning averaged over a flood can vary strongly from event to event. Similar variations may occur in the year‐to‐year averages. Using published simultaneous short‐term field measurements of bedload and suspended load transport rates, Maddock’s Table is reviewed and updated. Long‐term average partitioning could be a function of the catchment geology, the fraction of the catchment covered by glaciers and the extent of forest, but the available data are insufficient to draw final conclusions. At a given drainage area, scatter is large, but the data show a minimal fraction of sediment transported in suspended load, which increases with increasing drainage area and with decreasing rock strength for gravel‐bed rivers, whereby in large catchments the bedload fraction is insignificant at ca 1%. For sand‐bed rivers, the bedload fraction may be substantial (30% to 50%) even for large catchments. However, available data are scarce and of varying quality. Long‐term partitioning varies widely among catchments and the available data are currently not sufficient to discriminate control parameters effectively.  相似文献   

2.
Hydrodynamics and sediment dynamics of The Wash embayment, eastern England   总被引:6,自引:0,他引:6  
Water and sediment movement in The Wash embayment has been determined from an extensive set of data, consisting of tidal current readings and suspended sediment concentration measurements. Instantaneous and residual currents in the embayment show a distinct lateral inhomogeneity, whereas vertically the water column is almost homogenous. The central deep water area (30–40 m) of the embayment is dominated by a residual landward water movement, whilst on the margins, the residual movement is seaward. Sediment is supplied predominantly in suspension from the north, through the northern extremity of Boston Deep. Suspended sediment pathways are coincident with the spring tide water movements and the subtidal channels act as the main conduits. Approximately 6·8 × 106 tonnes yr?1 of suspended sediments are supplied to the embayment from offshore areas. Bedload sediment supply is of lesser importance, ~ 1·4 × 104 tonnes yr?1. Whereas suspended sediment movement appears to be the dominant mode of transport throughout the embayment, bedload transport is important in reforming the sea bed into a variety of bedforms which are particularly well developed on the margins of channels and shoals.  相似文献   

3.
The nature of flow, sediment transport and bed texture and topography was studied in a laboratory flume using a mixed size-density sediment under equilibrium and non-equilibrium (aggradational, degradational) conditions and compared with theoretical models. During each experiment, water depth, bed and water surface elevation, flow velocity, bed shear stress, bedload transport and bed state were continuously monitored. Equilibrium, uniform flow was established with a discharge of about 0.05 m3 s?1, a flow depth of about 0.01 m, a flow velocity of about 0.81–0.88 m s?1, a spatially averaged bed shear stress of about 1.7–2.2 Pa and a sediment transport rate of about 0.005–0.013 kg m?1 s?1 (i.e. close to the threshold of sediment transport). Such equilibrium flow conditions were established prior to and at the end of each aggradation or degradation experiment. Pebble clusters, bedload sheets and low-lying bars were ubiquitous in the experiments. Heavy minerals were relatively immobile and occurred locally in high concentrations on the bed surface as lag deposits. Aggradation was induced by (1) increasing the downstream flow depth (flume tilting) and (2) sediment overloading. Tilt-induced aggradation resulted in rapid deposition in the downstream half of the flume of a cross-stratified deposit with downstream dipping pebbles (pseudo-imbricated). and caused a slight decrease in the equilibrium mean water surface slope and total bedload transport rate. These differences between pre- and post-aggradation equilibrium flow conditions are due to a decrease in the local grain roughness of the bed. Sediment overloading produced a downstream fining and thinning wedge of sediment with upstream dipping pebbles (imbricated), whereas the equilibrium flow and sediment transport conditions remained relatively unchanged. Degradation was induced by (1) decreasing the downstream flow depth (flume tilting) and (2) cutting off the sediment feed. Tilt-induced degradation produced rapid downstream erosion and upstream deposition due to flow convergence with little change to the equilibrium flow and sediment transport conditions. The cessation of sediment feed produced degradation and armour development, a reduction in the mean water surface slope and flow velocity, an increase in flow depth, and an exponential decrease in bedload transport rate as erosion proceeded. A bedload transport model predicted total and fractional transport rates extremely well when the coarse-grained (or bedform trough) areas of the bed are used to define the sediment available to be transported. A sediment routing model, MIDAS, also reproduced the equilibrium and non-equilibrium flow conditions, total and fractional bedload transport rates and changes in bed topography and texture very well.  相似文献   

4.
Sediments contained in the river bed do not necessarily contribute to morphological change. The finest part of the sediment mixture often fills the pores between the larger grains and can be removed without causing a drop in bed level. The discrimination between pore‐filling load and bed‐structure load, therefore, is of practical importance for morphological predictions. In this study, a new method is proposed to estimate the cut‐off grain size that forms the boundary between pore‐filling load and bed‐structure load. The method evaluates the pore structure of the river bed geometrically. Only detailed grain‐size distributions of the river bed are required as input to the method. A preliminary validation shows that the calculated porosity and cut‐off size values agree well with experimental data. Application of the new cut‐off size method to the river Rhine demonstrates that the estimated cut‐off size decreases in a downstream direction from about 2 to 0·05 mm, covariant with the downstream fining of bed sediments. Grain size fractions that are pore‐filling load in the upstream part of the river thus gradually become bed‐structure load in the downstream part. The estimated (mass) percentage of pore‐filling load in the river bed ranges from 0% in areas with a unimodal river bed, to about 22% in reaches with a bimodal sand‐gravel bed. The estimated bed porosity varies between 0·15 and 0·35, which is considerably less than the often‐used standard value of 0·40. The predicted cut‐off size between pore‐filling load and bed‐structure load (Dc,p) is fundamentally different from the cut‐off size between wash‐load and bed‐material load (Dc,w), irrespective of the method used to determine Dc,p or Dc,w. Dc,w values are in the order of 10?1 mm and mainly dependent on the flow characteristics, whereas Dc,p values are generally much larger (about 100 mm in gravel‐bed rivers) and dependent on the bed composition. Knowledge of Dc,w is important for the prediction of the total sediment transport in a river (including suspended fines that do not interact with the bed), whereas knowledge of Dc,p helps to improve morphological predictions, especially if spatial variations in Dc,p are taken into account. An alternative to using a spatially variable value of Dc,p in morphological models is to use a spatially variable bed porosity, which can also be predicted with the new method. In addition to the morphological benefits, the new method also has sedimentological applications. The possibility to determine quickly whether a sediment mixture is clast‐supported or matrix‐supported may help to better understand downstream fining trends, sediment entrainment thresholds and variations in hydraulic conductivity.  相似文献   

5.
The Tinto and Odiel rivers drain 100 km from the Rio Tinto sulphide mining district, and join at a 20-km long estuary entering the Atlantic Ocean. A reconnaissance study of heavy metal anomalies in channel sand and overbank mud of the river and estuary by semi-quantitative emission dc-arc spectrographic analysis shows the following upstream to downstream ranges in ppm (μg g?1): As 3,000 to <200, Cd 30 to <0.1, Cu 1,500 to 10, Pb 2,000 to <10, Sb 3000 to <150, and Zn 3,000 to <200. Organic-rich (1.3–2.6% total organic carbon, TOC), sandysilty overbank clay has been analyzed to represent suspended load materials. The high content of heavy metals in the overbank clay throughout the river and estuary systems indicates the importance of suspended sediment transport for dispersing heavy metals from natural erosion and anthropogenic mining activities of the sulfide deposit. The organic-poor (0.21–0.37% TOC) river bed sand has been analyzed to represent bedload transport of naturally-occurring sulfide minerals. The sand has high concentrations of metals upstream but these decrease an order of magnitude in the lower estuary. Although heavy metal contamination of estuary mouth beach sand has been diluted to background levels estuary mud exhibits increased contamination apparently related to finer grain size, higher organic carbon content, precipitation of river-borne dissolved solids, and input of anthropogenic heavy metals from industrial sources. The contaminated estuary mud disperses to the inner shelf mud belt and offshore suspended sediment, which exhibit metal anomalies from natural erosion and mining of upstream Rio Tinto sulphide lode sources (Pb, Cu, Zn) and industrial activities within the estuary (Fe, Cr, Ti). Because heavy metal contamination of Tinto-Odiel river sediment reaches or exceeds the highest levels encountered in other river sediments of Spain and Europe, a detailed analysis of metals in water and suspended sediment throughout the system, and epidemiological analysis of heavy metal effects in humans is appropriate.  相似文献   

6.
三峡水库蓄水运用后,城汉河段悬移质输沙量大幅度减少,推移质输沙量所占比重增加,造床作用日益凸显,故开展其推移质输沙率计算公式研究具有理论与实际意义。利用螺山和汉口水文站实测资料建立了推移质输沙率与流量之间的指数关系式,并据此推算了两站逐日推移质输沙率,结果表明:螺山站、汉口站输沙率均与流量的0.912 78次方成正比,多年(2009—2015年)平均推移质输沙量分别为137万t、152万t,主要集中在汛期。利用推移质实测资料对Engelund、Einstein、Yalin 3个公式进行了检验与修正,结果表明:修正前各公式计算结果比较分散,且与实测值偏差很大;修正后各公式计算精度显著提高,综合比较发现,修正后的Yalin公式精度最高,Engelund公式、指数关系式次之,Einstein公式精度相对较低。因此,修正后的Yalin公式更适合于城汉河段推移质输沙率计算,可用于该河段的演变分析与数学模型计算。  相似文献   

7.
We determined erosion rates on timescales of 101–104 years for two catchments in the northeastern Rhenish Massif, in order to unravel the Quaternary landscape evolution in a Variscan mountain range typical of central Europe. Spatially averaged erosion rates derived from in situ produced 10Be concentrations in stream sediment of the Aabach and M?hne watersheds range from 47 ± 6 to 65 ± 14 mm/ka and integrate over the last 9–13 ka. These erosion rates are similar to local rates of river incision and rock uplift in the Quaternary and to average denudation rates since the Mesozoic derived from fission track data. This suggests that rock uplift is balanced by denudation, i.e., the landscape is in a steady state. Short-term erosion rates were derived from suspended and dissolved river loads subsequent to (1) correcting for atmospheric and anthropogenic inputs, (2) establishing calibration curves that relate the amount of suspended load to discharge, and (3) estimating the amount of bedload. The resulting solid mass fluxes (suspended and bedload) agree with those derived from the sediment volume trapped in three reservoirs. However, resulting geogenic short-term erosion rates range from 9 to 25 mm/ka and are only about one-third of the rates derived from 10Be. Model simulations in combination with published sediment yield data suggest that this discrepancy is caused by at least three factors: (1) phases with higher precipitation and/or lower evapotranspiration, (2) rare flood events not captured in the short-term records, and (3) prolonged periods of climatic deterioration with increased erosion and sediment transport on hillslopes.  相似文献   

8.
Douglas Creek terminal splay, sited on the western shoreline of Lake Eyre North, central Australia, covers a surface area of approximately 4 km2 with a down‐system length of 2·5 km from the distributary channels terminus to the splay fringe. Two distributary channels feed two sediment lobes which have amalgamated to form the terminal splay. Three primary facies associations have been identified sub‐dividing the creek terminus into distributary channel, proximal and distal splay sections. Proximal splay sediments are characterized by erosionally based, relatively thick (> 100 mm), stacked sheets of coarse to medium sand which commonly display trough and planar cross‐bedding, whereas the distal splay is characterized by thin (generally < 50 mm) massive beds of very fine sand, silt and clay. The change in splay sedimentology is interpreted as reflecting the transition from bedload‐dominated deposition to suspended load‐dominated deposition from decelerating sheetfloods as they spread out from the channel onto the dry lake bed. A proximal to distal splay transition zone is also noted where deposits of both facies associations interfinger laterally and vertically. In scale, geometry and facies associations, the Douglas Creek terminal splay is very different to the often cited Neales terminal splay complex located 70 km to the north. It is suggested that these architectural differences reflect variations in discharge volume, input sediment distribution and the degree of vegetation cover. Understanding the variation in terminal splay architecture has very significant implications for the modelling of analogous subsurface petroleum systems, which at present relies on few modern‐day analogues.  相似文献   

9.
The stability of river channels and their suitability as habitat for aqueous organisms is strongly controlled by the rate of bedload transport. Quantification of bedload transport rates in rivers is difficult, not only because of the temporal variation in transport, but also because of the cross‐channel variation in transport. The objectives of this study were: (i) to determine the effect of cross‐channel variation in bedload transport on the uncertainty of width‐integrated transport rates; and to use this knowledge (ii) to improve guidelines for bedload sampling. This was done through a thorough statistical evaluation of stochastic and systematic uncertainties involved in bed‐load transport measurements. Based on this evaluation, new guidelines are presented for determination of the number of samples and sampling positions across the channel that are required for bedload measurements in several types of sand‐bed rivers and gravel‐bed rivers. The guidelines relate to bedload measurements made with pressure‐difference (Helley‐Smith type) samplers that require numerous bedload samples of short duration at several positions across the channel. The results show that generally more sampling positions across the channel are required in gravel‐bed rivers than in sand‐bed rivers. For gravel‐bed rivers with unknown cross‐channel distribution of transport, at least 10 sampling positions are recommended, whereas for most sand‐bed rivers five positions suffice. In addition, at least 12 short‐duration samples are required at each position to obtain bedload estimates with uncertainties below 20%. If the same level of uncertainty is desired in the case of high spatial and temporal variation in transport rates, the number of short‐duration samples needed per sampling position increases to 40.  相似文献   

10.
ABSTRACT In situ measurements of lakebed sediment erodibility were made on three sites in Hamilton Harbour, Lake Ontario, using the benthic flume Sea Carousel. Three methods of estimating the surface erosion threshold (τc(0)) from a Carousel time series were evaluated: the first method fits measures of bed strength to eroded depth (the failure envelope) and evaluates threshold as the surface intercept; the second method regresses mean erosion rate (Em) with bed shear stress and solves for the floc erosion rate (Ef) to derive the threshold for Em = Ef = 1 × 10?5 kg m?2 s?1; the third method extrapolates a regression of suspended sediment concentration (S) and fluid transmitted bed shear stress (τ0) to ambient concentrations. The first field site was undisturbed (C) and acted as a control; the second (W) was disturbed through ploughing and water injection as part of lakebed treatment, whereas the third site (OIP) was disturbed and injected with an oxidant used for remediation of contaminated sediment. The main objectives of this study were: (1) to evaluate the three different methods of deriving erosion threshold; (2) to compare the physical behaviour of lacustrine sediments with their marine estuarine counterparts; and (3) to examine the effects of ploughing and chemical treatment of contaminated sediment on bed stability. Five deployments of Sea Carousel were carried out at the control site. Mean erosion thresholds for the three methods were: τc(0) = 0·5 (±0·06), 0·27 (±0·01) and 0·34 (±0·03) Pa respectively. Method 1 overpredicted bed strength as it was insensitive to effects in the surface 1–2 mm, and the fit of the failure envelope was also highly subjective. Method 2 exhibited a wide scatter in the data (low correlation coefficients), and definition of the baseline erosion rate (Ef) is largely arbitrary in the literature. Method 3 yielded stable (high correlation coefficients), reproducible and objective results and is thus recommended for evaluation of the erosion threshold. The results of this method correlated well with sediment bulk density and followed the same trend as marine counterparts from widely varying sites. Mass settling rates, expressed as a decay constant, k, of S(t), were strongly related to the maximum turbidity at the onset of settling (Smax) and were also in continuity with marine counterparts. Thus, it appears that differences in salinity had little effect on mass settling rates in the examples presented, and that biological activity dominated any effects normally attributable to changes in salinity. Bedload transport of eroded aggregates (2–4 mm in diameter) took place by rolling below a mean tangential flow velocity (Uy) of 0·32 ms?1 and by saltation at higher velocities. Mass transport as bedload was a maximum at Uy = 0·4 ms?1, although bedload never exceeded 1% of the suspended load. The proportion of material moving as bedload was greatest at the onset of erosion but decreased as flow competence increased. Given the low bulk density and strength of the lakebed sediment, the presence of a bedload component is notable. Bedload transport over eroding cohesive substrates should be greater in estuaries, where both sediment density and strength are usually higher. Significant differences between the ploughed and control sites were apparent in both the erosion rate and the friction coefficient (φ), and suggest that bed recovery after disruption is rapid (< 24 h). τc(0) increased linearly with time after ploughing and recovered to the control mean value within 3 days. The friction coefficient was reduced to zero by ploughing (diagnostic of fluidization), but increased linearly with time, regaining control values within 6 days. No long‐term reduction in bed strength due to remediation was apparent.  相似文献   

11.
Bedload is moved down the East Fork River in distinct wavelike pulses that have the form of composite dune fields The moving material consists mostly of coarse sand and fine gravel The wavelengths of the pulses are about 500–600 m, a distance that is predetermined by the pattern of stoage of bed sediment in the river during low water As the river discharge increases, the bed sediment is scoured from the storage areas, and it is moved onto and across the interventing riffles As the river discharge decreases, the bed sediment is scoured off the riffles and moved into the next storage area downstream Each successive pulse of water discharge sets into motion a wave of bedload that continues to move unitil it reaches the next storage area  相似文献   

12.
ABSTRACT Sand transport measurements of bedload and suspended load in the Sizewell-Dunwich Banks area, East Anglia have shown that the suspended mode is dominant. The depth-integrated spring tidal residual is 5.66 g cm−1 sec−1, although the neap rate is only one-fifth of this. The calculated bedload transport rates also vary, from 0.012 to 0.040 g cm−1 sec−1, correlating with changing meteorological conditions.
In order to predict the bedload sediment circulation pattern from midwater current meter measurements, five sediment transport equations were calibrated, using fluorescent dyed sand. Yalin's relationship gave the best estimates. The bed shear stress was determined by extrapolating the velocity profile as a power law relationship, with an exponent equal to 0.1, from midwater down to 2 m and as a lognormal profile from 2 m to the sea-bed. Roughness length values appropriate to the substrate were used.
Although bedload transport residuals are mainly to the south, the banks trend northwards from the coast and have also elongated in this direction. This is thought to be in response to the dominance of the suspended sediment transport. It is suggested that a tidal residual eddy mechanism is responsible for the banks'maintenance, similar to the process operating in Start Bay, Devon. The well-documented westward movement of the banks is likely to be related to wave processes.  相似文献   

13.
Bedform geometry is widely recognized to be a function of transport stage. Bedform aspect ratio (height/length) increases with transport stage, reaches a maximum, then decreases as bedforms washout to a plane bed. Bedform migration rates are also linked to bedform geometry, in so far as smaller bedforms in coarser sediment tend to migrate faster than larger bedforms in finer sediment. However, how bedform morphology (height, length and shape) and kinematics (translation and deformation) change with transport stage and suspension have not been examined. A series of experiments is presented where initial flow depth and grain size were held constant and the transport stage was varied to produce bedload dominated, mixed‐load dominated and suspended‐load dominated conditions. The results show that the commonly observed pattern in bedform aspect ratio occurs because bedform height increases then decreases with transport stage, against a continuously increasing bedform length. Bedform size variability increased with transport stage, leading to less uniform bedform fields at higher transport stage. Total translation‐related and deformation‐related sediment fluxes all increased with transport stage. However, the relative contribution to the total flux changed. At the bedload dominated stage, translation‐related and deformation‐related flux contributed equally to the total flux. As the transport stage increased, the fraction of the total load contributed by translation increased and the fraction contributed by deformation declined because the bedforms got bigger and moved faster. At the suspended‐load dominated transport stage, the deformation flux increased and the translation flux decreased as a fraction of the total load, approaching one and zero, respectively, as bedforms washed out to a plane bed.  相似文献   

14.
The interaction between channel geometry, flow, sediment transport and deposition associated with a midstream island was studied in a braided to meandering reach of the Calamus River, Nebraska Sandhills. Hydraulic and sediment transport measurements were made over a large discharge range using equipment operated from catwalk bridges. The relatively low sinuosity channel on the right-hand side of the island carries over 70% of the water discharge at high flow stages and 50–60% at low flow stages. As a result, mean velocity, depth, bed shear stress and sediment transport rate tend to be greater here than in the more strongly curved left-hand channel. The loci of maximum flow velocity, depth and bed shear stress are near the centre of the channel upstream of the island, but then split and move towards the outer banks of both channels downstream. Variations in these loci depend on the flow stage. Topographically induced across-stream flows are generally stronger than the weak, curvature-induced secondary circulations. Water surface topography is controlled mainly by centrifugal accelerations and local changes in downstream flow velocity. The averaged water surface slope of the study reach varies very little with discharge, having values between 0·00075 and 0·00090. As bed shear stress generally varies in a similar way to mean velocity, friction coefficients vary little, normally being in the range 0·07–0·13. These values are similar to those in straight channels with sandy dune-covered beds. Bedload is moved mainly as dunes at all flow stages. Grain size is mainly medium sand with coarse sand moved in thalwegs adjacent to the cut banks, and with fine sand at the downstream end of the island. These patterns of flow velocity, depth, water surface topography, bed shear stress, bedload transport rate and mean grain size can be accurately predicted using theoretical models of flow, bed topography and sediment transport rate in single river bends, applied separately to the left and right channels. During high flow stages deposition occurs persistently near the downstream end of the island, and cut banks are eroded. Otherwise, erosion and deposition occurs only locally within the channel as discharge varies. Abandonment and filling of a strongly curved channel segment may occur by migration of an upstream bar into the channel entrance at a high flow stage.  相似文献   

15.
Preliminary results are reported from an experimental study of the interaction between turbulence, sediment transport and bedform dynamics over the transition from dunes to upper stage plane beds. Over the transition, typical dunes changed to humpback dunes (mean velocity 0–8 ms-1, depth 01 m, mean grain size 0.3 mm) to nominally plane beds with low relief bed waves up to a few mm high. All bedforms had a mean length of 0.7–0.8 m. Hot film anemometry and flow visualization clearly show that horizontal and vertical turbulent motions in dune troughs decrease progressively through the transition while horizontal turbulence intensities increase near the bed on dune backs through to a plane bed. Average bedload and suspended load concentrations increase progressively over the transition, and the near-bed transport rate immediately downstream of flow reattachment increases markedly relative to that near dune crests. This relative increase in sediment transport near reattachment appears to be due to suppression of upward directed turbulence by increased sediment concentration, such that velocity close to the bed can increase more quickly downstream of reattachment. Low-relief bedwaves on upper-stage plane beds are ubiquitous and give rise to laterally extensive, mm-thick planar laminae; however, within such laminae are laminae of more limited lateral extent and thickness, related to the turbulent bursting process over the downstream depositional surface of the bedwaves.  相似文献   

16.
River bifurcations strongly control the distribution of water and sediment over a river system. A good understanding of this distribution process is crucial for river management. In this paper, an extensive data set from three large bifurcations in the Dutch Rhine is presented, containing data on bed‐load transport, suspended bed sediment transport, dune development and hydrodynamics. The data show complex variations in sediment transport during discharge waves. The objective of this paper is to examine and explain these measured variations in sediment transport. It is found that bend sorting upstream of the bifurcations leads to supply limitation, particularly in the downstream branch that originates in the outer bend of the main channel. Tidal water level variations lead to cyclical variations in the sediment distribution over the downstream branches. Lags in dune development cause complex hysteresis patterns in flow parameters and sediment transport. All bifurcations show evidence of sediment waves, which probably are intrinsic bifurcation phenomena. The complex transport processes at the three bifurcations cause distinct discontinuities in the downstream fining trend of the river. Differences among the studied river bifurcations are mainly due to differences in sediment mobility (Shields value). Because the variations in sediment transport are complex and poorly correlated with the flow discharge, prediction of the sediment distribution with existing relationships for one‐dimensional models is problematic.  相似文献   

17.
A distinct suite of sand bedforms has been observed to occur in laboratory flows with limited sand supply. As sand supply to the bed progressively increases one observes sand ribbons, discrete barchans and, eventually, channel spanning dunes; but there are relatively few observations of this sequence from natural river channels. Furthermore, there are few observations of transitions from limited sand supply to abundant supply in the field. Bedforms developed under limited, but increasing, sand supply downstream of the abrupt gravel–sand transition in the Fraser River, British Columbia, are examined using multi‐beam swath‐bathymetry obtained at high flow. This is an ideal location to study supply‐limited bedforms because, due to a break in river slope, sand transitions from washload upstream of the gravel–sand transition to bed material load downstream. Immediately downstream, barchanoid and isolated dunes are observed. Most of the bedform field has gaps in the troughs, consistent with sand moving over a flat immobile or weakly mobile gravel bed. Linear, alongstream bedform fields (trains of transverse dunes formed on locally thick, linear deposits of sand) exhibit characteristics of sand ribbons with superimposed bedforms. Further downstream, channel spanning dunes develop where the bed is composed entirely of sand. Depth scaling of the dunes does not emerge in this data set. Only where the channel has accumulated abundant sand on the bed do the dunes exhibit scaling congruent with previous data compilations. The observations suggest that sediment supply plays an important, but often overlooked, role in bedform scaling in rivers.  相似文献   

18.
Suspended sediment was collected in the South Slough, National, Estuarine Research Reserve, Oregon, over 8 tidal cycles during and following a single runoff event. The sediment was analyzed for its radionuclide signature to determine the relative contributions of different sources of sediment to the efflux from the estuary. Suspended sediment in the estuary is a mixture of sediment from three potential sources: the river system, Coos Bay, and the estuarine bed. Each source material has a distinctive7Be:210Pbxs ratio. The ratios of the source sediments decreased, in magnitude in the following order: riverine >bay>bed. The ratios, of the suspended sediment collected within a subsection of the South Slough estuary reflected the relative mixture of the source areas. The7Be:210Pbxs ratios provided a means of not only differentiating, between resuspended bed sediment and freshly delivered sediment from both the river system and Coos Bay, but also calculating the relative amount of resuspended bed sediment in the suspended sediment collected in the estuary. The sampled subsection of the South Slough estuary was a net sink of sediment during a 100-h sampling period associated with the runoff event, but the radionuclide analysis suggests that approximately 39% of the sediment efflux was resuspended bed sediment.  相似文献   

19.
It is generally accepted that a gravel-bed river will aggrade if the supply of sediment to the river is increased. In a series of flume experiments using constant discharge and gravel feed rate, sand feed rates were increased to 6.1 times that of gravel. The slope of the bed decreased with increasing sand supply, indicating that the increased sediment load could be transported at the same rate due to a decrease in shear stresses. These results extend previous experiments to a wider range of boundary conditions. A recent surface transport model is used to predict the changes in bed composition and transport using the same sediment supply composition and feed rates as in the laboratory experiments. This model reasonably predicts a decrease in the reference shear stresses of the sand and gravel fractions as the sand supply is increased. An increase in sand supply can increase the mobility of gravel fractions in the stream bed, which can lead to bed degradation and preferential evacuation of these sediments from the river.  相似文献   

20.
238U-234U-230Th radioactive disequilibria were analyzed in suspended sediments (collected at different depths) from the Ganges River and one of its main tributaries: the Narayani-Gandak River. Results associated with bedload sediment data suggest that uranium-series (U-series) disequilibria in river sediments of the Ganges basin vary with grain size and sampling location. The range of observed U-series disequilibria is explained by a mixing model between a coarse-grained sediment end-member, represented by bedload and bank sediments, and a fine-grained end-member that both originate from Himalaya but undergo different transfer histories within the plain. The coarse-grained sediment end-member transits slowly (i.e. >several 100’s ky) in the plain whereas the fine-grained sediment end-member is transferred much faster (<20-25 ky), as indicated by the absence of significant variations in Th isotope composition of the fine-grained sediment end-members. These results show that U-series isotopes can be used to quantify the various transfer times of river sediments of different sizes and infer that there can be an order of magnitude of difference, or more, between the transfer time of suspended and bedload sediments. This underlines that a good knowledge of the proportion of suspended vs. bedload sediments transported in the river is required to accurately assess how fast erosion products are transferred in a catchment and how fast a catchment is likely to respond to external forcing factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号