首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 407 毫秒
1.
Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.  相似文献   

2.
Abstract

Wildfire is a major disturbance agent in Mediterranean Type Ecosystems (MTEs). Providing reliable, quantitative information on the area of burns and the level of damage caused is therefore important both for guiding resource management and global change monitoring. Previous studies have successfully mapped burn severity using remote sensing, but reliable accuracy has yet to be gained using standard methods over different vegetation types. The objective of this research was to classify burn severity across several vegetation types using Landsat ETM imagery in two areas affected by wildfire in southern California in June 1999. Spectral mixture analysis (SMA) using four reference endmembers (vegetation, soil, shade, non‐photosynthetic vegetation) and a single (charcoal‐ash) image endmember were used to enhance imagery prior to burn severity classification using decision trees. SMA provided a robust technique for enhancing fire‐affected areas due to its ability to extract sub‐pixel information and minimize the effects of topography on single date satellite data. Overall kappa classification accuracy results were high (0.71 and 0.85, respectively) for the burned areas, using five canopy consumption classes. Individual severity class accuracies ranged from 0.5 to 0.94.  相似文献   

3.
Long-term observation of the earth is essential for studying the factors affecting global environmental changes. Digital earth technology can facilitate the monitoring of global environmental change with its ability to process vast amounts of information. In this study, we map the forest cover change of Myanmar from 2000 to 2005 using a training data automation procedure and support vector machines algorithm. Our results show that Myanmar's forests have declined 0.68% annually over this six-year period. We validated our derived change results and found the overall accuracy to be greater than 88%. We also assessed forest loss from protected areas, areas close to roads, and areas subject to fire, which were most likely to lose forested area. The results revealed the main reasons for forest losses in some hotspots to be increased agricultural conversion, fire, and the construction of highways. This information is useful for identifying the driving forces behind forest changes and to support environmental policy development in Myanmar.  相似文献   

4.
长时间序列多源遥感数据的森林干扰监测算法研究进展   总被引:2,自引:2,他引:2  
沈文娟  李明诗  黄成全 《遥感学报》2018,22(6):1005-1022
时空意义明确的森林干扰和恢复信息是评价森林生态系统碳动态的关键因素之一。然而由于诸多的现实困难,多尺度的森林干扰定量化时空信息相对缺乏。Landsat数据具备光谱、时间和空间分辨率上的优势,以及可以免费获取的特点,使其成为主要的长时间序列动态监测的遥感数据源之一,为长时间周期内提供具有合适的空间细节和时间频率的森林干扰信息成为可能。特别是基于Landsat时间序列堆栈(LTSS)的森林干扰自动分析算法的出现,更为森林生态系统的近实时监测提供强有力的工具。本文全面评述了长时间序列遥感数据准备和预处理技术以及国内外基于遥感数据源的多时相森林干扰监测方法,重点分析了基于Landsat的多种指数监测和自动化方法的优缺点,并总结了其与多源数据结合的扩展应用,最后就现有方法与国内外新的数据、技术手段的关联进行了展望,以期为推广中国本土卫星影像应用于森林干扰监测提供理论借鉴。  相似文献   

5.
Land cover classification of finer resolution remote sensing data is always difficult to acquire high-frequency time series data which contains temporal features for improving classification accuracy. This paper proposed a method of land cover classification with finer resolution remote sensing data integrating temporal features extracted from time series coarser resolution data. The coarser resolution vegetation index data is first fused with finer resolution data to obtain time series finer resolution data. Temporal features are extracted from the fused data and added to improve classification accuracy. The result indicates that temporal features extracted from coarser resolution data have significant effect on improving classification accuracy of finer resolution data, especially for vegetation types. The overall classification accuracy is significantly improved approximately 4% from 90.4% to 94.6% and 89.0% to 93.7% for using Landsat 8 and Landsat 5 data, respectively. The user and producer accuracies for all land cover types have been improved.  相似文献   

6.
Remote sensing is a useful tool for monitoring changes in land cover over time. The accuracy of such time-series analyses has hitherto only been assessed using confusion matrices. The matrix allows global measures of user, producer and overall accuracies to be generated, but lacks consideration of any spatial aspects of accuracy. It is well known that land cover errors are typically spatially auto-correlated and can have a distinct spatial distribution. As yet little work has considered the temporal dimension and investigated the persistence or errors in both geographic and temporal dimensions. Spatio-temporal errors can have a profound impact on both change detection and on environmental monitoring and modelling activities using land cover data. This study investigated methods for describing the spatio-temporal characteristics of classification accuracy. Annual thematic maps were created using a random forest classification of MODIS data over the Jakarta metropolitan areas for the period of 2001–2013. A logistic geographically weighted model was used to estimate annual spatial measures of user, producer and overall accuracies. A principal component analysis was then used to extract summaries of the multi-temporal accuracy. The results showed how the spatial distribution of user and producer accuracy varied over space and time, and overall spatial variance was confirmed by the principal component analysis. The results indicated that areas of homogeneous land cover were mapped with relatively high accuracy and low variability, and areas of mixed land cover with the opposite characteristics. A multi-temporal spatial approach to accuracy is shown to provide more informative measures of accuracy, allowing map producers and users to evaluate time series thematic maps more comprehensively than a standard confusion matrix approach. The need to identify suitable properties for a temporal kernel are discussed.  相似文献   

7.
Measuring and progressing toward international goals of curbing deforestation and improving livelihoods of people who depend on forests requires nuanced understanding of forests and the processes surrounding deforestation and degradation. Despite rapid improvements in Earth Observation technology, monitoring of tropical forests remains hindered by persistent cloud cover, heterogeneous landscapes, long wet seasons, and small and ephemeral clearings masked by rapid growth. A hybrid method is presented that combines elements of both time-series and compositing approaches to best overcome these obstacles to map forest cover and change in the Republic of Panama based on Landsat imagery. The resulting Panama Vegetation-Cover Time-Series (PVCTS) maps depict forest cover in Panama from 1990 to 2016 at 30 m resolution. Acknowledging the fuzzy boundary between forest and non-forest classes, these maps employ a hierarchical classification scheme that reflects the natural process of regeneration and can accommodate different definitions of forest and deforestation. Classification accuracy is 97–98 % between forest/non-forest categories and 76–81 % for deforestation events. The maps show a slight greening of Panama from 1990 to 2016 caused by expansion of young secondary growth. The annual rate of deforestation in mature forest has remained around -0.6 %/yr, although young forests have matured at a similar rate such that there is no net loss of forest. While estimates of total forest cover are similar to official national estimates depending on forest definition, there is little agreement in location of deforestation events.  相似文献   

8.
Soil erosion is a prominent cause of land degradation and desertification in Mediterranean countries. The detrimental effects of soil erosion are exemplified in climate (in particular climate change), topography, human activities, and natural disasters. Forest fires, which are an integral part of Mediterranean ecosystems, are responsible for the destruction of above-and below-ground vegetation that protects against soil erosion. Under this perspective, the estimation of potential soil erosion, especially after fire events, is critical for identifying watersheds that require management to prevent sediment loss, flooding, and increased ecosystem degradation. The objective of this study was to model the potential post-fire soil erosion risk following a large and intensive wildland fire, in order to prioritize protection and management actions at the watershed level in a Mediterranean landscape. Burn severity and preand post-fire land cover/uses were mapped using an ASTER image acquired two years before the fire, air photos acquired shortly after the fire, and a Landsat TM image acquired within one month after-fire. We estimated pre-and post-fire sediment loss using an integrated GIS-based approach, and additionally we analyzed landscape erosion patterns. The overall accuracy of the severity map reached 83%. Severe and heavy potential erosion classes covered approximately 90% of the total area following the fire, compared to 55% before. The fire had a profound effect on the spatial erosion pattern by altering the distribution of the potential erosion classes in 21 out of 24 watersheds, and seven watersheds were identified as being the most vulnerable to post-fire soil erosion. The spatial pattern of the erosion process is important because landscape cover heterogeneity induced especially by fire is a dominant factor controlling runoff generation and erosion rate, and should be considered in post-fire erosion risk assessment.  相似文献   

9.
Monitoring ecological indicators is important for assessing impacts of human activities on ecosystems. A means of identifying and applying appropriate indicators is a prerequisite for: environmental assessment; better assessment and understanding of ecosystem health; elucidation of biogeochemical trends; and more accurate predictions of future responses to global change, particularly those due to anthropogenic disturbance. The challenge is to derive meaningful indicators of change that capture the complexities of ecosystems yet can be monitored consistently over large areas and across time. In this study, methods for monitoring indicators of land cover (LC) and forest change were developed using multi-sensor Landsat imagery. Mapping and updating procedures were applied to the Humber River Basin (HRB) in Newfoundland and Labrador, one of four test sites in Canada selected for testing the development of national-scale methods. Procedures involved unsupervised clustering and labeling of baseline imagery, followed by image-to-image spectral clustering to derive binary change masks within which new LC types were classified for non-baseline imagery. Updated maps were compatible with the baseline map and reflected change in LC for three time periods: 1976–1990, 1990–2001, and 2001–2007. From the LC products, several change indicators were quantified including: forest depletion, forest regeneration, forest change, net forest change, and annual rates of change. The procedures were validated using field plots to assess the accuracy of the 2007 LC product (74.2% for 10 LC classes) and change classes observed from 2001 to 2007 (87.8% for four change classes: depletion, regeneration, non-treed class no change, and treed class no change). Methods were considered to be highly efficient and operationally feasible over large areas spanning multiple Landsat scenes. Specific results for the test site provided trend information supporting land and resource management in the HRB region.  相似文献   

10.
Monitoring wetland as one of the important parts of the global ecosystem is necessary for conservational programs. But, usually, collecting in situ data is restricted in these areas because of their remote locations, vast area and dynamic conditions. Remote sensing provides a cost effective tool to investigate hydrological patterns and the seasonal trend of changes in wetlands. In this paper, Land-use/land-cover change during water inundation period of Hamun wetland was investigated in order to determine change trend during this period. Hamun wetland is an unsustainable ecosystem, and monitoring this wetland is essential for conservation goals. This trend is critical for decision makers in order to plan the conservational scheme in all unsustainable ecosystems. To reach this objective, the land-use/land-cover maps during inundation period of Hamun were produced using Landsat 8 time series images. The results of accuracy assessment showed the classification of water and vegetation have the highest accuracy (94% and 93%, respectively). And the accuracy of plants in the water classes was the lowest (water–veg?=?89.9%, veg–water 1?=?88.8%, veg–water 2?=?87.6%). This means the higher misclassification is in determining the vegetation in the water. Then, the changes in the land-cover classes in relation to wetland inundation were investigated. Results of land-use/land-cover change illustrate the regions that were suitable for water birds but lost their suitability when the wetland dried out. These areas are crucial for water bird’s conservation. Satellite data determined these areas with acceptable accuracy.  相似文献   

11.
In this study, we assessed land cover land use (LCLU) changes and their potential environmental drivers (i.e., precipitation, temperature) in five countries in Eastern & Southern (E&S) Africa (Rwanda, Botswana, Tanzania, Malawi and Namibia) between 2000 and 2010. Landsat-derived LCLU products developed by the Regional Centre for Mapping of Resources for Development (RCMRD) through the SERVIR (Spanish for “to serve”) program, a joint initiative of NASA and USAID, and NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to evaluate and quantify the LCLU changes in these five countries. Given that the original development of the MODIS land cover type standard products included limited training sites in Africa, we performed a two-level verification/validation of the MODIS land cover product in these five countries. Precipitation data from CHIRPS dataset were used to evaluate and quantify the precipitation changes in these countries and see if it was a significant driver behind some of these LCLU changes. MODIS Land Surface Temperature (LST) data were also used to see if temperature was a main driver too.Our validation analysis revealed that the overall accuracies of the regional MODIS LCLU product for this African region alone were lower than that of the global MODIS LCLU product overall accuracy (63–66% vs. 75%). However, for countries with uniform or homogenous land cover, the overall accuracy was much higher than the global accuracy and as high as 87% and 78% for Botswana and Namibia, respectively. In addition, the wetland and grassland classes had the highest user’s accuracies in most of the countries (89%–99%), which are the ones with the highest number of MODIS land cover classification algorithm training sites.Our LCLU change analysis revealed that Botswana’s most significant changes were the net reforestation, net grass loss and net wetland expansion. For Rwanda, although there have been significant forest, grass and crop expansions in some areas, there also have been significant forest, grass and crop loss in other areas that resulted in very minimal net changes. As for Tanzania, its most significant changes were the net deforestation and net crop expansion. Malawi’s most significant changes were the net deforestation, net crop expansion, net grass expansion and net wetland loss. Finally, Namibia’s most significant changes were the net deforestation and net grass expansion.The only noticeable environmental driver was in Malawi, which had a significant net wetland loss and could be due to the fact that it was the only country that had a reduction in total precipitation between the periods when the LCLU maps were developed. Not only that, but Malawi also happened to have a slight increase in temperature, which would cause more evaporation and net decrease in wetlands if the precipitation didn’t increase as was the case in that country. In addition, within our studied countries, forestland expansion and loss as well as crop expansion and loss were happening in the same country almost equally in some cases. All of that implies that non-environmental factors, such as socioeconomics and governmental policies, could have been the main drivers of these LCLU changes in many of these countries in E&S Africa. It will be important to further study in the future the detailed effects of such drivers on these LCLU changes in this part of the world.  相似文献   

12.
基于NDVI序列影像精化结果的植被覆盖变化研究   总被引:5,自引:0,他引:5  
植被归一化指数(NDVI)是地表植被覆盖特征的重要指标之一。本文以三峡库区2001-2003年MODIS遥感数据反演的NDVI时间序列影像为例,研究NDVI影像序列的精化问题,包括降云及去噪处理的有效方法。在改进的BISE技术降云处理的基础上,采用小波软阈值降噪方法提取有效变化趋势。然后进行库区2001-2003年植被变化的变化矢量分析,采用阈值分割的方法将库区变化强度影像分为未变化、小变化、中等变化与剧烈变化四个类型。研究成果可为三峡库区宏观生态环境变化的掌握提供一定的依据。  相似文献   

13.
通过攀西林区云南松林的一系列旧火烧迹地的更新恢复和生态变化的遥感调查,对各生态因子的空间分布特征及生态变化的影响规律进行分析,确定了评价因子(变量)及其评价标准,利用遥感信息,以及地形、土壤、林分和林木受害程度等要素的8个因子的模糊综合评判结果和火烧年限等为变量,通过多组数据的多元统计分析,建成森林火灾后生态变化遥感监测评价模型,经野外调查结果验证分析,达到了预期的攻关目标。为使该模型能适应森林生态遥感监测运行系统的需要,对各监测因子数据的获取、植被指数的提取等方面进行了深入的方法探索。  相似文献   

14.
遥感探测到的小目标信号一般是弱信号,利用传统的高光谱异常变化检测方法直接抑制背景来突出异常变化目标,往往导致小目标弱信号同时被抑制,造成目标探测率低、虚警率高。基于独立成分分析方法,研究了弱信号小目标的高光谱变化检测模型,该模型首先通过投影寻踪将异常变化影像投影到独立成分,突出异常变化目标,然后再抑制背景,从而达到异常变化目标和背景的有效分离。该模型可以有效降低虚警率,提高探测率。利用模拟数据和真实数据进行了精度验证,结果表明,利用模拟数据得到的探测精度为99%,利用真实数据得到的检测精度为86%,与传统异常变化检测算法相比,精度最高提高了9%。本文研究方法适用于弱信号小目标的高光谱异常变化检测。  相似文献   

15.
梅莹莹  张景雄 《测绘学报》2018,47(5):644-651
提出了一种面向土地覆盖变化信息局域精度评估的自适应型抽样策略。结合待研究地图的土地覆盖变化信息局部特征(如土地覆盖变化类别、斑块大小、异质性和优势度),探讨与土地覆盖变化信息精度显著相关的协变量,以预测精度的标准误差作为判断标准,识别需要提高精度预测结果可靠性的区域,以自适应地和逐步定位的方式进行样本采集。基于武汉地区的精度评价结果,自适应的抽取增加100个训练样本使得预测精度的确定系数提高了50.66%,而简单随机抽取的增加样本使得预测精度的确定系数提高了17.22%。试验表明,自适应型抽样策略能显著提高土地覆盖变化信息局域精度预测的抽样效益,减少预测精度的不确定性。模型选择的结果表明,土地覆盖变化类别和优势度指数是最优的协变量组合。  相似文献   

16.
Optical data is broadly used for change detection studies, despite being hindered by atmospheric conditions. Synthetic Aperture Radar (SAR) data can be useful for change detection in areas with frequent cloud coverage as SAR systems are capable of obtaining images almost independently from atmospheric conditions. This study aims to verify the difference in results of using SAR data instead of optical data for change detection purposes. Different levels of one hierarchical legend and both pixel and region-based classifiers were used. Change results were evaluated considering the use of rectangular matrices to incorporate the occurrence of impossible changes and relative comparison between change maps. Although the change maps obtained using only optical data were more accurate than those using either one or two land cover classifications based on L-band SAR data, the difference in the accuracy of change maps decreases with the use of less detailed legends. Additionally, results indicate that L-band SAR and multi-sensor approaches are adequate for deforestation identification even if post-classification results did not achieve global accuracy values superior to 0.86. The most accurate change detection results obtained in this work were not associated with the overall accuracy of land cover classifications, but with the distribution and accuracy of specific land cover classes.  相似文献   

17.
Remote sensing indices of burn area and fire severity have been developed and tested for forest ecosystems, but not sparsely vegetated, desert shrub-steppe in which large wildfires are a common occurrence and a major issue for land management. We compared the performance of remote sensing indices for detecting burn area and fire severity with extensive ground-based cover assessments made before and after the prescribed burning of a 3 km2 shrub-steppe area. The remote sensing indices were based on either Landsat 7 ETM+ or SPOT 5 data, using either single or multiple dates of imagery. The indices delineating burned versus unburned areas had better overall, User, and Producer's accuracies than indices delineating levels of fire severity. The Soil Adjusted Vegetation Index (SAVI) calculated from SPOT had the greatest overall accuracy (100%) in delineating burned versus unburned areas. The relative differenced Normalized Burn Ratio (RdNBR) using Landsat ETM+ provided the highest accuracies (73% overall accuracy) for delineating fire severity. Though SPOT's spatial resolution likely conferred advantages for determining burn boundaries, the higher spectral resolution (particularly band 7, 2.21 μm) of Landsat ETM+ may be necessary for detecting differences in fire severity in sparsely vegetated shrub-steppe.  相似文献   

18.
This study presents a modified low-cost approach, which integrates the spectral angle mapper and image difference algorithms in order to enhance classification maps for the purpose of monitoring and analysing land use/land cover change between 2000 and 2015 for the Emirate of Dubai. The approach was modified by collecting 320 training samples from QuickBird images with a spatial resolution of 0.6 m, as well as carrying out field observations, followed by the application of a 3?×?3 Soble filter, sieving classes, majority/minority analysis, and clump classes of the obtained classification maps. The accuracy assessment showed that the targeted 2000, 2005, 2010 and 2015 classification maps have 88.1252%, 89.0699%, 90.1225% and 96.0965% accuracy, respectively. The results showed that the built-up area increased by 233.721?km2 (5.81%) between 2000 and 2005 and continues to increase even up and till the present time. The assessment of changes in the periods 2000–2005 and 2010–2015 confirmed that net vegetation area losses were more pronounced from 2000 to 2005 than from 2010 to 2015, dropping from 47,618 to 40,820?km2, respectively. This study is aimed to assist urban planners and decision-makers, as well as research institutes.  相似文献   

19.
遥感时间序列影像变化检测研究进展   总被引:2,自引:0,他引:2  
同一区域、不同时期大量历史数据的积累,以及同一区域能够方便地获取高时间分辨率遥感数据,使遥感时间序列影像变化检测成为近年来遥感技术与应用的研究热点。本文系统总结和评述了当前遥感时间序列影像变化检测的相关研究进展和应用状况,在阐明遥感时间序列分析的意义,以及时间序列影像在变化检测中的优势的基础上,从非遥感领域时间序列变化检测方法出发,针对遥感时间序列影像变化检测的需求,明确和归纳了遥感时间序列变化检测的问题与类型,并对当前最新研究进行了综述,总结了各种方法的优点与不足,重点介绍了基于经验模态分解的遥感时间序列影像异常信息检测方法和基于隐马尔可夫模型的土地利用/覆盖变化检测方法,以期能够为相关研究提供参考。最后总结了该研究领域的发展趋势和存在问题,并对今后的研究工作和未来发展方向进行了展望。  相似文献   

20.
综合多特征的Landsat 8时序遥感图像棉花分类方法   总被引:3,自引:0,他引:3  
传统的多时相遥感图像分类大多拘泥于单一特征,本文基于多时相的Landsat 8遥感数据,开展了综合多特征的特征提取与特征选择方法研究。综合了NDVI时间序列、最佳时相反射率光谱特征以及纹理特征作为初始分类特征,并采用基于属性重要度的粗糙集特征选择算法对其进行特征约简。分类结果表明:(1)利用初始分类特征,分类的总体精度达到92.81%,棉花提取精度达87.4%,与仅利用NDVI时间序列相比,精度分别提高5.53%和5.05%;(2)利用粗糙集选择后的特征分类,分类总体精度可达93.66%,棉花分类精度达92.73%,与初始分类特征提取结果相比,棉花分类精度提高5.33%。基于属性重要度的粗糙集特征选择不仅提高了分类精度,同时有效降低了分类器的计算复杂度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号