首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day 1-km vegetation index products, daily temperature, photosynthetically active radiation (PAR), and precipitation from 2001 to 2004 were utilized to analyze the temporal variations of the MODIS normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), as well as their correlations with climate over the evergreen forested sites in Zhejiang-a humid subtropical region in the southeast of China. The results showed that both NDVI and EVI could discern the seasonal variation of the evergreen forests. Attributed to the sufficient precipitation in the study area, the growth of vegetation is mainly controlled by energy; as a result, NDVI, and especially EVI, is more correlated with temperature and PAR than precipitation. Compared with NDVI, EVI is more sensitive to climate condition and is a better indicator to study vegetation variations in the study region  相似文献   

2.
Climate dominantly controls vegetation over most regions at most times, and vegetation responses to climate change are often asymmetric with temporal effects. However, systematic analysis of the time-lag and time-accumulation effects of climate on vegetation growth, has rarely been conducted, in particular for different vegetation growing phases. Thus, this study aimed to leverage normalized difference vegetation index (NDVI) to determine the spatiotemporal patterns of climatic effects on global vegetation growth considering various scenarios of time-lag and/or accumulation effects. The results showed that (i) climatic factors have time-lag and -accumulation effects as well as their combined effects on global vegetation growth for the whole growing season and its subphases (i.e., the growing and senescent phases). However, these effects vary with climatic factors, vegetation types, and regions. Compared with those of temperature, both precipitation and solar radiation display more significant time-accumulation effects in the whole growing season worldwide, but behave differently in the growing and senescent phases in the middle-high latitudes of the Northern Hemisphere; (ii) compared to the scenario without time effects, considering time-lag and -accumulation effects as well as their combined effects increased by 17 %, 15 %, and 19 % the overall explanatory power of vegetation growth by climate change for the whole growing season, the growing phase, and senescent phase, respectively; (iii) considering the time-lag and -accumulation effects as well as their combined effects, climate change controls 70 % of areas with a significant NDVI variation from 1982 to 2015, and the primary driving factor was temperature, followed by solar radiation and precipitation. This study highlights the significant time-lag and -accumulation effects of climatic factors on global vegetation growth. We suggest that these effects need to be incorporated into dynamic vegetation models to better understand vegetation growth under accelerating climate change.  相似文献   

3.
A growing number of studies have focused on variations in vegetation phenology and their correlations with climatic factors. However, there has been little research on changes in spatial heterogeneity with respect to the end of the growing season (EGS) and on responses to climate change for alpine vegetation on the Qinghai–Tibetan Plateau (QTP). In this study, the satellite-derived normalized difference vegetation index (NDVI) and the meteorological record from 1982 to 2012 were used to characterize the spatial pattern of variations in the EGS and their relationship to temperature and precipitation on the QTP. Over the entire study period, the EGS displayed no statistically significant trend; however, there was a strong spatial heterogeneity throughout the plateau. Those areas showing a delaying trend in the EGS were mainly distributed in the eastern part of the plateau, whereas those showing an advancing trend were mostly scattered throughout the western part. Our results also showed that change in the vegetation EGS was more closely correlated with air temperature than with precipitation. Nonetheless, the temperature sensitivity of the vegetation EGS became lower as aridity increased, suggesting that precipitation is an important regulator of the response of the vegetation EGS to climate warming. These results indicate spatial differences in key environmental influences on the vegetation EGS that must be taken into account in current phenological models, which are largely driven by temperature.  相似文献   

4.
ABSTRACT

Climatic factors such as rainfall and temperature play a vital role in the growth characteristics of vegetation. While the relationship between climate and vegetation growth can be accurately predicted in instances where vegetation is homogenous, this becomes complex to determine in heterogeneous vegetation environments. The aim of this paper was to study the relationship between remotely-sensed monthly vegetation indices (i.e. Normalized Difference Vegetation Index and Enhanced Vegetation Index) and climatic variables (temperature and precipitation) using time-series analysis at the biome-level. Specifically, the autoregressive distributed lag model (ARDL1 and ARDL2, corresponding respectively to one month and two month lags) and the Koyck-transformed distributed lag model were used to build regression models. All three models estimated NDVI and EVI fairly accurately in all biomes (Relative Root-Mean-Squared-Error (RMSE): 12.0–26.4%). Biomes characterized by relative homogeneity (Grassland, Savanna, Indian Ocean Coastal Belt and Forest Biomes) achieved the most accurate estimates due to the dominance of a few species. Comparisons of lag size (one month compared to two months) generally showed similarities (Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and log-likelihood) with quite high comparability in certain biomes – this indicates the utility of the ARDL1 and ARDL2 model, depending on the availability of appropriate data. These findings demonstrate the variation in estimation linked to the biome, and thus the validity of biome-level correlation of climatic data and vegetation indices.  相似文献   

5.
The Asia-Pacific (AP) region has experienced faster warming than the global average in recent decades and has experienced more climate extremes, however little is known about the response of vegetation growth to these changes. The updated Global Inventory Modeling and Mapping Studies third-generation global satellite Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index dataset and gridded reanalysis climate data were used to investigate the spatiotemporal changes in both trends of vegetation dynamic indicators and climatic variables. We then further analyzed their relations associated with land cover across the AP region. The main findings are threefold: (1) at continental scales the AP region overall experienced a gradual and significant increasing trend in vegetation growth during the last three decades, and this NDVI trend corresponded with an insignificant increasing trend in temperature; (2) vegetation growth was negatively and significantly correlated with the Pacific Decadal Oscillation index and the El Niño/Southern Oscillation (ENSO) in AP; and (3) at pixel scales, except for Australia, both vegetation growth and air temperature significantly increased in the majority of study regions and vegetation growth spatially correlated with temperature; In Australia and other water-limited regions vegetation growth positively correlated with precipitation.  相似文献   

6.
Satellite derived vegetation vigour has been successfully used for various environmental modeling since 1972. However, extraction of reliable annual growth information about natural vegetation (i.e., phenology) has been of recent interest due to their important role in many global models and free availability of time-series satellite data. In this study, usability of Moderate Resolution Imaging Spectro-radiometer (MODIS) and Global Inventory Modelling and Mapping Studies (GIMMS) based products in extracting phenology information about evergreen, semi-evergreen, moist deciduous and dry deciduous vegetation in India was explored. The MODIS NDVI and EVI time-series data (MOD13C1: 5.6 km spatial resolution with 16 day temporal resolution—2001 to 2010) and GIMMS NDVI time-series data(8 km spatial resolution with 15 day temporal resolution—2000 to 2006) were used. These three differently derived vegetation indices were analysed to extract and understand the vegetative growth rhythm over different regions of India. Algorithm was developed to derive onset of greenness and end of senescence automatically. The comparative analysis about differences in the results from these products was carried out. Due to dominant noise in the values of NDVI from GIMMS and MODIS during monsoon period the phenology rhythm were wrongly depicted, especially for evergreen and semi-evergreen vegetation in India. Hence, care is needed before using these data sets for understanding vegetative dynamics, biomass cestimation and carbon studies. MODIS EVI based results were truthful and comparable to ground reality. The study reveals spatio-temporal patterns of phenology, rate of greening, rate of senescence, and differences in results from these three products.  相似文献   

7.
In this paper, we apply lagged correlation analysis to study the effects of vegetation cover on the summer climate in different zones of China, using NOAA/AVHRR normalized difference vegetation index (NDVI) data during the time period from 1982 to 2001 and climate data of 365 meteorological stations across China (precipitation from 1982 to 2001 and temperature from 1982 to 1998). The results show that there are positive correlations between spring NDVI and summer climate (temperature and precipitation) in most zones of China; these suggest that, when the vegetation cover increases, the summer precipitation will increase, and the lagged correlations show a significant difference between zones. The stronger correlations between NDVI in previous season and summer climate occur in three zones (Mid-temperate zone, Warm-temperate zone and Plateau climate zone), and this implies that vegetation changes have more sensitive feedback effects on climate in the three zones in China.  相似文献   

8.
This paper investigated spatiotemporal dynamic pattern of vegetation, climate factor, and their complex relationships from seasonal to inter-annual scale in China during the period 1982–1998 through wavelet transform method based on GIMMS data-sets. First, most vegetation canopies demonstrated obvious seasonality, increasing with latitudinal gradient. Second, obvious dynamic trends were observed in both vegetation and climate change, especially the positive trends. Over 70% areas were observed with obvious vegetation greening up, with vegetation degradation principally in the Pearl River Delta, Yangtze River Delta, and desert. Overall warming trend was observed across the whole country (>98% area), stronger in Northern China. Although over half of area (58.2%) obtained increasing rainfall trend, around a quarter of area (24.5%), especially the Central China and most northern portion of China, exhibited significantly negative rainfall trend. Third, significantly positive normalized difference vegetation index (NDVI)–climate relationship was generally observed on the de-noised time series in most vegetated regions, corresponding to their synchronous stronger seasonal pattern. Finally, at inter-annual level, the NDVI–climate relationship differed with climatic regions and their long-term trends: in humid regions, positive coefficients were observed except in regions with vegetation degradation; in arid, semiarid, and semihumid regions, positive relationships would be examined on the condition that increasing rainfall could compensate the increasing water requirement along with increasing temperature. This study provided valuable insights into the long-term vegetation–climate relationship in China with consideration of their spatiotemporal variability and overall trend in the global change process.  相似文献   

9.
Abstract

The purpose of this paper is to develop Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modelling and Mapping Studies (GIMMS) Normalised Difference Vegetation Index (NDVI; AVHRR GIMMS NDVI for short) based fraction of absorbed photosynthetically active radiation (FPAR) from 1982 to 2006 and focus on their seasonal and spatial patterns analysis. The available relationship between FPAR and NDVI was used to calculate FPAR values from 1982 to 2006 and validated by Moderate-resolution Imaging Spectroradiometer (MODIS) FPAR product. Then, the seasonal dynamic patterns were analysed, as well as the driving force of climatic factors. Results showed that there was an agreement between FPAR values from this study and those of the MODIS product in seasonal dynamic, and the spatial patterns of FPAR vary with vegetation type distribution and seasonal cycles. The time series of average FPAR revealed a strong seasonal variation, regular periodic variations from January 1982 to December 2006, and opposite patterns between the Northern and Southern Hemispheres. Evergreen vegetation FPAR values were close to 0.7. A clear single-peak curve was observed between 30°N and 80°N – an area covered by deciduous vegetation. In the Southern Hemisphere, the time series fluctuations of FPAR averaged by 0.7° latitude zones were not clear compared to those in the Northern Hemisphere. A significant positive correlation (P<0.01) was observed between the seasonal variation of temperature and precipitation and FPAR over most other global meteorological sites.  相似文献   

10.
Global climate change has led to significant vegetation changes in the past half century. North China Plain, the most important grain production base of china, is undergoing a process of prominent warming and drying. The vegetation coverage, which is used to monitor vegetation change, can respond to climate change (temperature and precipitation). In this study, GIMMS (Global Inventory Modelling and Mapping Studies)-NDVI (Normalized Difference Vegetation Index) data, MODIS (Moderate-resolution Imaging Spectroradiometer) – NDVI data and climate data, during 1981–2013, were used to investigate the spatial distribution and changes of vegetation. The relationship between climate and vegetation on different spatial (agriculture, forest and grassland) and temporal (yearly, decadal and monthly) scales were also analyzed in North China Plain. (1) It was found that temperature exhibiting a slight increase trend (0.20 °C/10a, P < 0.01). This may be due to the disappearance of 0 °C isotherm, the rise of spring temperature. At the same time, precipitation showed a significant reduction trend (−1.75 mm/10a, P > 0.05). The climate mutation period was during 1991–1994. (2) Vegetation coverage slight increase was observed in the 55% of total study area, with a change rate of 0.00039/10a. Human activities may not only accelerate the changes of the vegetation coverage, but also c effect to the rate of these changes. (3) Overall, the correlation between the vegetation coverage and climatic factor is higher in monthly scale than yearly scale. The correlation analysis between vegetation coverage and climate changes showed that annual vegetation coverage was better correlatend with precipitation in grassland biome; but it showed a better correlated with temperature i the agriculture biome and forest biome. In addition, the vegetation coverage had sensitive time-effect respond to precipitation. (4) The vegetation coverage showed the same increasing trend before and after the climatic variations, but the rate of increase slowed down. From the vegetation coverage point of view, the grassland ecological zone had an obvious response to the climatic variations, but the agricultural ecological zones showed a significant response from the vegetation coverage change rate point of view. The effect of human activity in degradation region was higher than that in improvement area. But after the climate abruptly changing, the effect of human activity in improvement area was higher than that in degradation region, and the influence of human activity will continue in the future.  相似文献   

11.
基于遥感的植被年际变化及其与气候关系研究进展   总被引:61,自引:0,他引:61  
马明国  王建  王雪梅 《遥感学报》2006,10(3):421-431
植被具有明显的年际变化和季节变化特点,对植被的动态监测可以从一定程度上反映气候变化的趋势,因此监测植被动态变化以及分析这种变化与气候的关系已经成为全球变化研究的一个重要领域.随着遥感卫星获得长时间系列逐日观测数据,许多国际组织和机构制定了全球卫星数据接收、处理和生成数据集计划,所产生的标准数据集则极大地促进了该项研究.大量研究在全球尺度、洲际尺度(北美洲和欧亚大陆)以及区域尺度上广泛开展.在阅读国内外大量文献的基础上,比较分析了常用于植被监测的卫星传感器和主要数据集,汇总了植被年际变化及其与气候关系研究的主要研究方法和研究结果.结果表明近20年来全球植被活动明显增强,表现为北半球普遍存在增加的趋势,南半球干旱半干旱区出现降低的植被光合作用,但这些变化因空间位置不同和研究尺度不一样体现出不同的动态变化特征.气温和降水是影响植被变化的最主要的因素.  相似文献   

12.
In this paper, we apply lagged correlation analysis to study the effects of vegetation cover on the summer climate in different zones of China, using NOAA/AVHRR normalized difference vegetation index (NDVI) data during the time period from 1982 to 2001 and climate data of 365 meteorological stations across China (precipitation from 1982 to 2001 and temperature from 1982 to 1998). The results show that there are positive correlations between spring NDVI and summer climate (temperature and precipitation) in most zones of China; these suggest that, when the vegetation cover increases, the summer precipitation will increase, and the lagged correlations show a significant difference between zones. The stronger correlations between NDVI in previous season and summer climate occur in three zones (Mid-temperate zone, Warm-temperate zone and Plateau climate zone), and this implies that vegetation changes have more sensitive feedback effects on climate in the three zones in China. Supported by the National 973 Program of China (No.2006CB701300), the National Natural Science Foundation of China (No.40721001), the Sino-Germany Joint Project (No. 2006DFB91920), the Open Fund of Shanghai Leading Academic Discipline Project (T0102) and the Open Fund of LIESMARS, Wuhan University.  相似文献   

13.
In this paper, we apply lagged correlation analysis to study the effects of vegetation cover on the summer climate in different zones of China, using NOAA/AVHRR normalized difference vegetation index (NDVI) data during the time period from 1982 to 2001 and climate data of 365 meteorological stations across China (precipitation from 1982 to 2001 and temperature from 1982 to 1998). The results show that there are positive correlations between spring NDVI and summer climate (temperature and precipitation) in m...  相似文献   

14.
Climate change scenarios predict that Central Asia may experience an increase in the frequency and magnitude of temperature and precipitation extremes by the end of the 21st century, but the response regularity of different types of vegetation to climate extremes is uncertain. Based on remote-sensed vegetation index and in-situ meteorological data for the period of 2000–2012, we examined the diverse responses of vegetation to climate mean/extremes and differentiated climatic and anthropogenic influence on the vegetation in Central Asia. Our results showed that extensive vegetation degradation was related to summer water deficit as a result of the combined effect of decreased precipitation and increased potential evapotranspiration. Water was a primary climatic driver for vegetation changes regionally, and human-induced changes in vegetation confined mainly to local areas. Responses of vegetation to water stress varied in different vegetation types. Grasslands were most responsive to water deficit followed by forests and desert vegetation. Climate extremes caused significant vegetation changes, and different vegetation types had diverse responses to climate extremes. Grasslands represented a symmetric response to wet and dry periods. Desert vegetation was more responsive during wet years than in dry years. Forests responded more strongly to dry than to wet years due to a severe drought occurred in 2008. This study has important implications for predicting how vegetation ecosystems in drylands respond to climate mean/extremes under future scenarios of climate change.  相似文献   

15.
Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000–2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000–2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.  相似文献   

16.
基于MODIS-NDVI数据分析澜沧江流域生长季植被NDVI时空特征和变化趋势,结合地形数据、气象站点数据和植被类型数据,利用趋势分析和相关性分析法研究植被NDVI变化对气候因子的响应。结果表明:1)2000-2017年澜沧江流域生长季植被NDVI均值为0.592,整体呈现出由西北向东南波动增加趋势,增长速率为0.09%/10年;2) 2000-2017年澜沧江流域气温呈上升趋势,降水呈下降趋势,植被NDVII总体与平均气温的相关性高于累积降水量;3)澜沧江流域生长季植被NDVI驱动因子分析表明,气候驱动中以气温降水联合驱动为主,流域植被NDVI变化整体为非气候驱动。  相似文献   

17.
MODIS NDVI和AVHRR NDVI 对草原植被变化监测差异   总被引:5,自引:0,他引:5  
以草地作为研究载体,对比分析草原植被AVHRR NDVI和MODIS NDVI两种NDVI序列的年内、年际变化特征,讨论两种NDVI序列对降水量、平均气温和水汽压3种气候因子的响应差异,为合理选择NDVI序列对植被进行监测研究提供参考。结果表明:(1)两种NDVI序列所反映的草原植被年内变化趋势相似,但MODIS NDVI对各类草原的区分度优于AVHRR NDVI;(2)两种NDVI序列所反映的2000年—2003年草原植被年际变化差异明显。较之于MODIS NDVI,AVHRR NDVI变化趋势分类图表现出更强的植被改善趋势,植被改善面积在AVHRR NDVI变化趋势分类图中占94.25%,在MODIS NDVI中为83.33%;两种NDVI变化趋势分类图反映的植被变化趋势吻合度为52.88%。(3)两种NDVI序列与水汽压、降水量相关性差异显著。MODIS NDVI与各站点平均气温的相关系数均大于GIMMS NDVI;而MODIS NDVI与水汽压的相关系数83%(10个站点)小于GIMMS NDVI,与降水量的相关系数67%(8个站点)小于GIMMS NDVI。  相似文献   

18.
全球热带森林分布区NPP变化及其气候响应分析   总被引:1,自引:0,他引:1  
杨瑞芳  尹思阳 《测绘通报》2021,(5):49-53,110
本文基于MODIS遥感数据,利用掩膜分析提取了研究区的NNP数据;并结合气象因子数据,利用地理信息技术及数学统计方法,对比分析了2001—2013年全球3个主要热带森林分布区森林NPP变化及其气候响应的异同。结果表明,研究区NPP总量整体呈减少趋势。对比3个区域NPP与温度、降水和光合有效辐射(PAR)的相关关系,亚马孙流域研究区和刚果河流域研究区NPP对PAR变化更为敏感,东南亚研究区NPP对降水变化更为敏感;东南亚研究区NPP对气候变化响应的敏感性较高,刚果河流域研究区次之,亚马孙流域研究区最低。该研究对于进一步了解全球热带森林变化与气候的相关关系具有一定的参考价值。  相似文献   

19.
齐丹宁  胡政军  赵尚民 《测绘通报》2021,(9):98-102,107
研究采矿扰动区内植被变化规律,能够为矿区生态修复提供理论依据。本文以山西省西山煤田为研究区,通过设立对比试验区,利用MODIS/NDVI(2001-2019年)结合同期的气温、降水气候因子,分别从植被指数的时空变化及与气象因子之间的关系等方面展开对比,用于探究采矿扰动区内植被变化情况。研究结果表明:①19年来西山煤田与间接影响区及校验区的植被均呈增加趋势,但西山煤田相比于校验区NDVI均值低11.42%。②西山煤田相较于自然生态条件下植被增长率为-5.53%。③西山煤田与校验区的NDVI值均受到气温、降水两种气象因子的影响,但是与降水的相关性更高,即受降水影响更大。  相似文献   

20.
Remote sensing of vegetation gross primary production (GPP) is an important step to analyze terrestrial carbon (C) cycles in response to changing climate. The availability of global networks of C flux measurements provides a valuable opportunity to develop remote sensing based GPP algorithms and test their performances across diverse regions and plant functional types (PFTs). Using 70 global C flux measurements including 24 non-forest (NF), 17 deciduous forest (DF) and 29 evergreen forest (EF), we present the evaluation of an upscaled remote sensing based greenness and radiation (GR) model for GPP estimation. This model is developed using enhanced vegetation index (EVI) and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and global course resolution radiation data from the National Center for Environmental Prediction (NCEP). Model calibration was achieved using statistical parameters of both EVI and LST fitted for different PFTs. Our results indicate that compared to the standard MODIS GPP product, the calibrated GR model improved the GPP accuracy by reducing the root mean square errors (RMSE) by 16%, 30% and 11% for the NF, DF and EF sites, respectively. The standard MODIS and GR model intercomparisons at individual sites for GPP estimation also showed that GR model performs better in terms of model accuracy and stability. This evaluation demonstrates the potential use of the GR model in capturing short-term GPP variations in areas lacking ground measurements for most of vegetated ecosystems globally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号