首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to high intensity agricultural exploitation since the middle of the 20 th century, farmland gullies have become a pervasive form of water erosion in Northeast China. Yet few researches are concentrated on how topography and land use affect long-term gully development in this region. In this study, gully distribution in a village with an area of 24.2 km~2 in the central Mollisols area of Northeast China in different times were compared by Aerial photography(1968), Quickbird image(2009) and field survey, and factors affecting gully development including land use and topography were analyzed. The results showed that the total gully number decreased from 104 to 69, while occupying area rose from 34.8 ha to 78.4 ha from 1968 to 2009. Fundamental gully distribution had been formed by 1968 as most of 2009′s gullies were evolved from 1968′s gullies′ merge and width expansion process, and new gullies those initiated after 1968 occupied only 7% of total gully area in 2009. Gully area increasing ratio in grassland was the highest and that in forestland was the lowest. The threshold catchment area between simple and complex gully development was around 15 ha to 25 ha. This threshold value sets apart catchment areas that will develop simple or complex gullies in areas with similar environmental conditions. Gully control measurements were urgent because if appropriate gully control implements would not be applied, present gully erosion crisis could be doubled within 50 years.  相似文献   

2.
The gully is the most dynamic and changeable landform unit on the Loess Plateau, and the characteristics of gully landforms are key indicators of gully evolution. Different gully profiles are connected and combined through runoff nodes. Thus, it is necessary to cluster gully profiles into a gully profile combination(GPC) to reveal the spatial variation in gully landforms throughout the Loess Plateau. First, the gradient and gully evolution index(GEI) of two sample areas in Changwu and Suide in Shaanxi Province, China are calculated and analysed based on GPC. Then, the gradient and GEI are calculated by using 90-m-resolution digital elevation model(DEM) data for the severe soil erosion area with the basin as the research unit. On this basis, the spatial variation in the development degree is analysed with Getis-Ord Gi*. The results show that the degree of gully undercutting decreases from southeast to northwest under the influence of rainfall. Due to the soil properties, the loess in the northwest is more prone to collapse, resulting in the decrease of GEI from northwest to southeast. The development degree of gullies is closely related to rivers. The strong erosive capacity of rivers leads to greater differences in gullies within the basin. At the same time, the skewness and kurtosis of the gully index in the basin are correlated; when the distribution of the gully index in the basin is less normal, the distribution of the gully index is more concentrated. These results reveal the spatial variation characteristics of the Loess Plateau based on GPC.  相似文献   

3.
利用数字摄影测量方法估算半干旱区小流域沟谷侵蚀产沙   总被引:1,自引:0,他引:1  
土壤侵蚀不仅表现黄土高原强烈的现代地貌过程,也是其生态环境恶化的象征,其地貌演化和土壤侵蚀互为因果,现代研究表明黄土高原半干旱小流域的沟谷侵蚀产沙占其水土流失总量的重要部分,近年有关沟谷侵蚀的定量研究成果,加深了人们对沟道侵蚀危害的认识,为土地资源的合理利用、沟谷危害的评价等提供了科学依据。传统的沟谷侵蚀定量研究是采用实地量测的方法,现代的数字摄影测量技术的发展为估算沟谷侵蚀研究提供了一个经济高效方法。本研究采用的髙分辨率数字高程模型是由3期历史航空照片根据数字摄影测量方法制作而成,利用它对黄土高原半干旱区一个小流域的1959~1981年及1981~1999年两个时段内沟谷侵蚀产沙量进行估算,将流域侵蚀产沙的实测值与估算结果进行评价。并指出此方法在沟谷侵蚀产沙量估算方面的统计学意义及在未来应用时要注意的问题;根据流域侵蚀产沙结果分析历史时期人类活动的影响:人类活动在一定程度上改善了环境,绝大部分泥沙被拦截在流域里,同时沟道侵蚀加剧,如何采取措施减少流域坡面和沟道的侵蚀,是目前人们所面对的问题;此外,结合流域水沙统计数据的DEM的侵蚀空间分析,结果表明坡面流、重力侵蚀及沟谷的下切是导致流域土壤侵蚀的主要原因。  相似文献   

4.
In order to study the karstological processes within the karst ecological system,the geohazards and degradation of karst landscapes on the karst areas of the Bakony mountains(Hungary),we investigated the abiotic elements of the environment,soil and cover deposits,erosion soil decay;the changes in the quantity and quality of karst waters:contamination at swallow holes,contamination of karst springs;and the biogenic factors:surface vegetation coverage by the corine land cover method,plant-ecological examinations,qualification of surface waters with the help of biological water labeling.We recognized that the increasing human activities during the past few centuries have had significant impact on the investigated landscapes of karst areas because of their spatial sensitivity.In the scope of our research we concluded that the landscape changes due to natural and human effects can vary strongly on the different karst areas.These differences can arise from the climatic and geomorphologic situation,the coverlayer’s qualities,etc.,but primarily from the different utilization of the investigated karst areas(e.g.the intensity,characteristics and territorial extension of utilization).On the spot investigation we detected traces of new and fast geomorphological processes(gully formation,landslides,collapses,new sinkhole development) and landforms(sinkholes,gullies,swallow holes),which are clear evidences of the effect of climatic changes.  相似文献   

5.
The morphology of the gully longitudinal profile (GLP) is an important topographic index of the gully bottom associated with the evolution of the gullies. This index can be used to predict the development trend and evaluate the eroded volumes and soil losses by gullying. To depict the morphology of GLP and understand its controlling factors, the Global Positioning System Real-time Kinematic (GPS RTK) and the total station were used to measure the detail points along the gully bottom of 122 gullies at six sites of the Yuanmou dry-hot Valley. Then, nine parameters including length (Lt), horizontal distance (Dh), height (H), vertical erosional area (A), vertical curvature (Cv), concavity (Ca), average gradient (Ga), gully length-gradient index (GL), normalized gully length-gradient index (Ngl), were calculated and mapped using CASS, Excel and SPSS. The results showed that this study area is dominated by slightly concave and medium gradient GLPs, and the lithology of most gullies is sandstone and siltstone. Although different types of GLPs appear at different sites, all parameters present a positively skewed distribution. There are relatively strong correlations between several parameters: namely Lt and H, Dh and H, Lt and A, Dh and A, H and GL. Most GLPs, except three, have a best fit of exponential functions with quasistraight shapes. Soil properties, vegetation coverage, piping erosion and topography are important factors to affect the GLP morphology. This study provides useful insight into the knowledge of GLP morphology and its influential factors that are of critical importance to prevent and control gully erosion.  相似文献   

6.
Gully erosion regionalization of black soil area in northeastern China   总被引:7,自引:0,他引:7  
Gully erosion is the frequent and main form of soil erosion in the black soil area of the northeastern China, which is one of the most important commodity grain production bases in China. It is encroaching upon the fertile farmland there. Regionalization of gully erosion can reveal the spatial distribution and regularity of the development of gully erosion. Based on the eco-geographical regional background features of the black soil area, this study combined the regionalization with influencing factors of the development of gully erosion. GIS spatial analysis, geostatistical analysis, spatial statistics, reclassification, debris polygon processing and map algebra methods were employed. As a result, the black soil area was divided into 12 subregions. The field survey data on type, length, volume and other characteristics indicators of gully erosion were used to calibrate the results. Then the features of every subregion, such as where the gully erosion is, how serious it is, and why it happens and develops, were expounded. The result is not only an essential prerequisite for gully erosion surveys and monitoring, but also an important basis for gully erosion prevention.  相似文献   

7.
Anthropogenic activities have become more and more important in characterizing the landscape, but their impacts are still restricted by natural environments. This paper discusses the interactions of anthropogenic activity, vegetation activity and topography through describing the spatial distribution of land cover and vegetation activity (represented by Normalized Difference Vegetation Index, NDVI) along topographic gradient in a mountainous area of southwestern China. Our results indicate that the existing landscape pattern is controlled by anthropogenic activities as well as topographic factors. Intensive anthropogenic activities mainly occur in areas with relatively low elevation, gentle and concave slopes, as these areas are easy and convenient to attain for human. Because of the destruction by human, some land cover types (mainly grassland and shrub) are only found in relatively harsher environments. This study also finds that topographic wetness index (W) used in other places only reflects runoff generation capacity, but not indicate the real spatial pattern of soil water content in this area. The relationships between NDVI and W, and NDVI and length slope factor (LSF) show that runoff and erosion have complex effects on vegetation activity. Greater values of W and LSF will lead to stronger capacity to produce runoff and transport sediment, and thereby increase soil water content and soil deposition, whereas beyond a certain threshold runoff and erosion are so strong that they would destruct vegetation growth. This study provides information needed to successfully restore native vegetation, improve land management, and promote sustainable development in mountainous areas, especially for developing regions.  相似文献   

8.
贵州省喀斯特地区泥石流灾害易发性评价   总被引:1,自引:0,他引:1  
贵州省独特的喀斯特山地环境对地质灾害的孕育有其特有的作用机理。本文初选了10个相关因子进行GIS的方差分析及相关性分析,以筛选喀斯特山区泥石流灾害的主要影响因子及灾害易发性评价。结果表明,研究区内土壤侵蚀因子对泥石流灾害的贡献作用最为显著,断层的影响作用不明显。土壤侵蚀、坡度、坡向、岩石性质、土地利用方式、归一化植被指数(NDVI)、到沟谷的距离及>25 mm日数8个影响因子,具有良好的独立性和代表性,是研究区内泥石流易发性评价的最佳指标;泥石流主要分布在贵州西部云贵高原边境、北部大娄山、东北雾灵山及苗岭等地带,占全省面积的29.51%,贵州中部及东南部泥石流易发程度较低;极高易发区泥石流的分布密度是极低易发区的19倍,其主要的环境特征表现为坡度大、植被覆盖率较低,旱地与工矿用地分布多,土壤侵蚀严重;加强旱地、工矿用地及低植被覆盖区的合理利用及管理,是减少泥石流灾害发生的有效途径。  相似文献   

9.
Application of simple and locally based erosion assessment methods that fit to the local condition is necessary to improve the performance and efficiency of soil conservation practices. In this study, rill erosion formation and development was investigated on the topo-sequence of three catchments(300-500 m slope length); and on agricultural fields(6 m and 14 m slope lengths) with different crop-tillage surfaces during erosive storms.Rill density and rill erosion rates were measured using rill cross section survey and close range digital photogrammetry. Rill formation and development was commonly observed on conditions where there is wider terrace spacing, concave slope shapes and unstable stone terraces on steep slopes. At field plot level, rill development was controlled by the distribution and abrupt change in the soil surface roughness and extent of slope length. At catchment scale, however, rill formation and development was controlled by landscape structures, and concavity and convexity of the slope. Greater rill cross sections and many small local rills were associated to the rougher soil surfaces. For instance, relative comparison of crop tillage practices have showed that faba-beantillage management was more susceptible to seasonal rill erosion followed by Teff and wheat tillage surfaces under no cover condition. Surface roughness and landscape structures played a net decreasing effect on the parallel rill network development. This implies that spatial and temporal variability of the rill prone areas was strongly associated with the nature and initial size of surface micro-topography or tillage roughness. Thus, it is necessary to account land management practices, detail micro-topographic surfaces and landscape structures for improved prediction of rill prone areas under complex topographic conditions. Application of both direct rill cross section survey and close range digital photogrammetric techniques could enhance field erosion assessment for practical soil conservation improvement.  相似文献   

10.
To quantify the impacts of native vegetation on the spatial and temporal variations in hydraulic properties of bank gully concentrated flows, a series of in situ flume experiments in the bank gully were performed at the Yuanmou Gully Erosion and Collapse Experimental Station in the dry-hot valley region of the Jinsha River, Southwest China. This experiment involved upstream catchment areas withone-and two-year native grass(Heteropogon contortus) and bare land drained to bare gully headcuts, i.e., Gullies 1, 2 and 3. In Gully 4, Heteropogon contortus and Agave sisalana were planted in the upstream catchment area and gully bed, respectively. Among these experiments, the sediment concentration in runoff in Gully 3 was the highest and that in Gully 2 was the lowest, clearly indicating that the sediment concentration in runoff obviously decreased and the deposition of sediment obviously increased as the vegetation cover increased. The concentrated flows were turbulent in response to the flow discharge. The concentrated flows in the gully zones with native grass and bare land were sub-and supercritical, respectively. The flow rate and shear stress in Gully 3 upstream catchment area were highest among the four upstream catchment areas, while the flow rate and shear stress in the gully bed of Gully 4 were lowest among the four gully beds, indicating that native grass notably decreased the bank gully flow rate and shear stress. The Darcy–Weisbach friction factor(resistance f) and flow energy consumption in the gully bed of Gully 4 were notably higher than those in the other three gully beds, clearly indicating that native grass increased the bank gully surface resistance and flow energy consumption. The Reynolds number(Re), flow rate, shear stress, resistance f, and flow energy consumption in the gully beds and upstream areas increased over time, while the sediment concentration in runoff and Froude number(Fr) decreased. Overall, increasing vegetation cover in upstream catchment areas and downstream gully beds of the bank gully is essential for gully erosion mitigation.  相似文献   

11.
Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model (DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.  相似文献   

12.
Post-fire field measurements of sediment and run off yield were undertaken in natural rainfall event-basis during five rainy months in Korea on a total of 15 small plots: four replica burned unseeded plots, six replica burned seeded plots, and five replica unburned plots. The main aim was to evaluate the effects of vegetation recovery and spatial distribution patterns on sediment and runoff response between and within the treatment replica erosion plots. Six-years after the wildfire, total sediment and runoff yield in the burned unseeded plots with 20%-30% vegetation cover was still 120.8 and 20.6 times higher than in the unburned treatment plots with 100% ground cover, 8.3 and 6.7 times higher than in the burned seeded plots with 70%-80% vegetation cover, while only 1.6 and 2.0 times higher than in the burned seeded plots with 50%-60% vegetation cover, respectively. The differences in sediment and runoff yield between the treatment plots was proportional to total vegetation cover, distance of bare soil to vegetation cover, magnitude of rainfall characteristics and changes in soil properties, but not slope gradient. Three out of the six within-treatment pairs of two replica plots showed large differences in sediment and runoff yield of up to 6.0 and 4.2 times and mean CV of up to 99.1% and 62.2%, respectively. This was due to differences in the spatial distribution patterns of surface cover features, including aggregation of vegetation and litter covers, the distance of bare soil exposed to vegetation cover closer to the plot sediment collector and micro topographic mounds and sinks between pairs of replica plots. Small differences in sediment and runoff of only 0.9-1.4 folds and mean CV of 8.6%-25% were observed where the within-treatment pairs of replica plots had similar slope, total surface cover components and comparable spatial distribution pattern of vegetation and bare soil exposed surface covers. The results indicated that post-fire hillslopes undergoing effective vegetation recovery have the potential to reduce sediment and runoff production nearer to unburned levels within 6-years after burning while wildfire impacts could last more than 6-years on burned unseeded ridge slopes undergoing slow vegetation recovery.  相似文献   

13.
Topographic feature points and lines are the framework of topography, and their spatial distance relationship is an breakthrough in the study of topographical geometry, internal structure and development level. Proximity distance(PD) is an indicator to describe the distance between the gully source point(GSP) and the watershed boundary. In the upstream catchment area, PDs can be expressed by the streamline proximity distance(SPD), as well as by the horizontal proximity distance(HPD) and the vertical proximity distance(VPD) in the horizontal and vertical dimensions, respectively. The series of indicators(e.g., SPD, HPD and VPD) are important for quantifying the geomorphological development process of a loess basin because of the headward erosion of loess gullies. In this study, the digital elevation model data with 5 m resolution and a digital topographic analysis method are used for the statistical analyses of the SPD, VPD and HPD in 50 sample areas of 6 geomorphic types in the Loess Plateau of northern Shaanxi. The spatial characteristics and the influencing factors are also analysed. Results show that: 1) Central tendencies for the HPDs and the VPDs for the whole study area and the six typical loess landforms are evident. 2) Spatial patterns of the HPDs and the VPDs exhibit evident trends and zonal distributions over the whole study area. 3) The HPDs have a strong positive correlation with gully density(GD) and hypsometric integral. The VPDs also correlates with GD to an extent. Vegetation cover, mean annual precipitation and loess thickness have stronger effects on the VPD than on the HPD.  相似文献   

14.
沟谷侵蚀是塑造黄土地表侵蚀形态的主要动力,沟谷的发育过程深刻地影响着黄土地貌的发育及演化。本文在黄土高原选择6个典型地貌样区,以样区的数字高程模型为基本数据源提取沟谷系统。将沟谷系统中的沟谷节点、沟谷源点和流域出水口点作为网络节点,网络节点之间的空间拓扑关系为边,高程差为权值,构建黄土高原沟谷加权复杂网络模型。对黄土沟谷地貌的节点特征和空间结构进行定量刻画和分析,得到黄土高原不同地貌类型网络特征的空间格局及其变化,并进一步映射地貌的发育过程及演化机理。研究结果表明:① 黄土高原沟谷加权网络的点强度累积概率分布呈指数分布,相关性系数皆达到0.80以上,该网络正处于向无标度网络转化的过渡期;② 样区从南到北,沟谷特征点的点强度值呈现逐渐减小的态势,且点强度的分布具有不对称性,沟谷右侧侵蚀强度较高,点强度分布较多;③ 平均路径长度和网络结构熵值在绥德一带最大,分别为30.94、6.31,并向南北两侧呈减少的趋势,网络密度值的变化与之相反;3个指标分别从网络结构的连通性、稳定性和紧密性反映了不同沟谷地貌类型的侵蚀程度以及地貌系统的演化机理;④ 网络指标与传统地貌指标的相关性系数均超过0.85,其可以科学、准确地表达地貌形态的复杂性及地貌的发育阶段,有望作为沟谷地貌地学特征研究的参数。该方法考虑了沟谷地貌的空间拓扑关系以及系统的整体性,为复杂表面形态的地貌研究提出了一种新的思路和方法。  相似文献   

15.
Gully erosion has caused soil degradation and even reduced soil productivity.However,only few studies on the effects of gully erosion and artificial controlling measures on soil degradation in the Black Soil Region of Northeast China are available.Thus,this study explores the relationships between gully erosion,gully filling and soil parameters.Two sets of soil samples were collected in the field at:(1) 72 sample points in the gully erosion study area,60 sample points in the ephemeral and classical gully erosion area(3,518 m2),12 sample points in the deposition zone(443 m2),(2)10 reference points along a slope unaffected by gully erosion representing the original situation before the gully was formed.All soil samples were analyzed for gravel content(GC),soil organic matter(SOM),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),and available potassium(AK).The soil property values on unaffected slope were fitted by the polynomial curves as the reference values in no gully erosion area.The interpolated soil property values in gully eroded study area were compared with these polynomial curves,respectively,and then,changes of soil property values were analyzed.Gully erosion caused an increase in GC and a decrease in SOM,TN,AN,AP and AK.The change of GC,SOM,TN,AN,AP,AK was 8.8%,-9.04 g kg-1,-0.92 g kg-1,-62.28 mg kg-1,-29.61 mg kg-1,-79.68 mg kg-1.The soil property values in the study area were below optimal values.Thus,we concluded that gully erosion and gully filling caused both on-site and off-site soil degradation.Soil degradation area was 0.65 % of the cultivated land.In addition,it was proved that gully filling were an improper soil and water conservation measure,which seems to exacerbate the problem.Thus,it is suggested that soil where soil is deep is moved to fill the gully,and then the area around the filled gullies should be covered by grass for preventing the formation and development of the gully.  相似文献   

16.
This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China and the Volga River Basin in Eastern Europe. In the Upper Yangtze River Basin, natural factors including topography, climate,lithology and tectonic activity are responsible for the spatial variation in the magnitude of denudation rates.Human disturbances have contributed to the temporal changes of soil erosion and fluvial SSY during the past decades. On one hand, land use change caused by deforestation and land reclamation has played an important role in the acceleration of sediment production from the central hilly area and lower Jinsha catchment; On the other hand, diverse soil conservation practices(e.g., reforestation,terracing) have contributed to a reduction of soil erosion and sediment production since the late 1980 s.It was difficult to explicitly decouple the effect of mitigation measures in the Lower Jinsha River Basindue to the complexity associated with sediment redistribution within river channels(active channel migration and significant sedimentation). The whole basin can be subdivided into seven sub-regions according to the different proportional inputs of principal denudation processes to riverine SSY. In the Volga River Basin, anthropogenic sheet, rill and gully erosion are the predominant denudation processes in the southern region, while channel bank and bed erosion constitutes the main source of riverine suspended sediment flux in the northern part of the basin. Distribution of cultivated lands significantly determined the intensity of denudation processes.Local relief characteristics also considerably influence soil erosion rates and SSY in the southern Volga River Basin. Lithology, soil cover and climate conditions determined the spatial distribution of sheet, rill and gully erosion intensity, but they play a secondary role in SSY spatial variation.  相似文献   

17.
This study aimed to identify indicator species and explore the most important environmental and management variables contributing to vegetation distribution in a hilly upper dam landscape in Zagros Mountain chain, Iran. A stratified random sampling method was used to collect topographic, edaphic, management and vegetation data. The density and cover percentage of perennial species were measured quantitatively. Indicator species were identified using the two-way indicator species analysis. Besides calculating physiognomic factors in sample sites, 24 soil samples were collected from 0 to 30 cm of soil depth and analyzed in terms of gravel percentage, texture, saturation moisture, organic matter, pH and electrical conductivity in saturation extract, lime percentage, soluble calcium and magnesium, available phosphorus, Cation Exchange Capacity(CEC) and soluble sodium and potassium. Multivariate techniques including Canonical Correspondence Analysis and Multi-Dimensional Scaling were used to explore the relationships of species with environmental and management variables. Seven plants were identified as indicator species due to being significantly correlated with management(grazing or non-grazing) and edaphic variables such as CEC, soil texture, pH, CaCO_3 percentage and physiographic variable including slope, elevation, and convex and concave formations(p 0.05). Overall, overgrazing and its subsequent effects on soil characteristics, loss of vegetation cover and trampling were found as the major causes of deterioration. Sustainable and integrated management practices such as the implementation of appropriate grazing systems were suggested to enhance soil quality and reduce the accelerated erosion in upper dam zones.  相似文献   

18.
The Longchi area with the city of Dujiangyan, in the Sichuan province of China, is composed of Permian stone and diorites and Triassic sandstones and mudstones intercalated with slates. An abundance of loose co-seismic materials were present on the slopes after the May 12, 2008 Wenchuan earthquake, which in later years served as source material for rainfall-induced debris flows or shallow landslides. A total of 48 debris flows, all triggered by heavy rainfall on 13th August 20l0, are described in this paper. Field investigation, supported by remote sensing image interpretation, was conducted to interpret the co-seismic landslides in the debris flow gullies. Specific characteristics of the study area such as slope, aspect, elevation, channel gradient, lithology, and gully density were selected for the evaluation of debris flow susceptibility. A score was given to all the debris flow gullies based on the probability of debris flow occurrence for the selected factors. In order to get the contribution of the different factors, principal component analyses were applied. A comprehensive score was obtained for the 48 debris flow gullies which enabled us to make a susceptibility map for debris flows with three classes. Twenty-two gullies have a high susceptibility, twenty gullies show a moderate susceptibility and six gullies have a low susceptibility for debris flows.  相似文献   

19.
黄土沟谷是黄土地貌中最有活力、最具变化、最富特色的对象单元,黄土高原千沟万壑的地貌形态以及触目惊心的侵蚀状态也让区域内沟谷地貌的形成、发育及演化问题成为研究中焦点及前沿性科学问题。近年来,诸多学者采用地学测年法、特征表达法、监测模拟法力图实现对黄土沟谷发育演化进程中“过去-现代-未来”的科学认知。这些研究在相当程度上丰富了黄土沟谷发育过程的认知。本文梳理了黄土高原沟谷地貌演化相关研究的现状,并从黄土高原地貌演化、黄土沟谷发育、基于DEM的沟谷信息提取与表达等研究进行了系统的回顾、梳理与分析。此外,本文提出“黄土沟道剖面群组”概念与方法,试图从新的视角审视黄土沟谷地貌发育演化过程。沟道剖面在黄土沟谷发育演化进程中传递物质能量和累积地形动力,并通过径流节点的串联实现剖面群的连接与组合,形成独特的剖面“群组”模式;该沟道剖面群组是集黄土沟谷地貌特征与过程于一体的综合信息集成体,其三维空间结构是对黄土沟谷地貌发育演化的高度抽象与映射,并可望进一步丰富黄土高原数字地形分析理论与方法体系,为黄土高原黄土地貌成因机理与空间分异格局带来创新的认识。  相似文献   

20.
Spatial distribution and abundance of small fishes were studied in autumn 2007 in the Xiaosihai Lake, a shallow lake along the middle reach of the Changjiang (Yangtze) River. Based on the plant cover, the lake was divided into three major habitats: Myriophyllum spicatum habitat (MS habitat), Trapa bispinosa habitat (TB habitat), and non-vegetation habitat (NV habitat). A modified pop-net was used for quantitative sampling of small fishes in the three habitats, and the Zippin’s removal method was used for estimating densities of the small fishes. A total of 13 species belonging to 5 families were collected, with 11 species in MS habitat, 7 species in TB habitat, and 5 species in NV habitat. Habitat type had significant effect on the spatial distribution of small fishes. The Shannon-Wiener diversity index in the MS, TB and NV habitats were 1.28, 0.56 and 0.54, respectively. The total density and biomass of small fishes were significantly higher in the MS habitat (13.68 ind/m2 and 4.44 g/m2) than in the TB habitat (1.41 ind/m2 and 0.54 g/m2) and the NV habitat (1.08 ind/m2 and 0.40 g/m2), and were not significantly different between the TB habitat and the NV habitat. Water depth had no significant effect on spatial distribution of the small fishes. It was suggested that vegetation type played an important role in habitat selectivity of small fishes, and the presence of submersed vegetation should be of significance in the conservation of small fish diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号