首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— New model organic microparticles are used to assess the thermal ablation that occurs during aerogel capture at speeds from 1 to 6 km s?1. Commercial polystyrene particles (20 μm diameter) were coated with an ultrathin 20 nm overlayer of an organic conducting polymer, polypyrrole. This overlayer comprises only 0.8% by mass of the projectile but has a very strong Raman signature, hence its survival or destruction is a sensitive measure of the extent of chemical degradation suffered. After aerogel capture, microparticles were located via optical microscopy and their composition was analyzed in situ using Raman microscopy. The ultrathin polypyrrole overlayer survived essentially intact for impacts at ~1 km s?1, but significant surface carbonization was found at 2 km s?1, and major particle mass loss at ≥3 km s?1. Particles impacting at ~6.1 km s?1 (the speed at which cometary dust was collected in the NASA Stardust mission) were reduced to approximately half their original diameter during aerogel capture (i.e., a mass loss of 84%). Thus significant thermal ablation occurs at speeds above a few km s?1. This suggests that during the Stardust mission the thermal history of the terminal dust grains during capture in aerogel may be sufficient to cause significant processing or loss of organic materials. Further, while Raman D and G bands of carbon can be obtained from captured grains, they may well reflect the thermal processing during capture rather than the pre‐impact particle's thermal history.  相似文献   

2.
Microrater frequencies caused by fast (? 3 km s?1) ejecta have been determined using secondary targets in impact experiments. A primary projectile (steel sphere, diam 1.58 mm, mass 1.64 × 10?2 g) was shot in Duran glass with a velocity of 4.1 km s?1 by means of a light gas gun. The angular distribution of the secondary crater number densities shows a primary maximum around 25°, and a secondary maximum at about 60° from the primary target surface. The fraction of mass ejected at velocities of ? 3 km s?1 is only a factor of 7.5 × 10?5 of the primary projectile mass. A conservative calculation shows that the contribution of secondary microcraters (caused by fast ejecta) to primary microcrater densities on lunar rock surfaces (caused by interplanetary particles) is on the statistical average below 1% for any lunar surface orientation. Calculation of the interplanetary dust flux enhancement caused by Moon ejecta turned out to be in good agreement with Lunar Explorer 35in situ measurements.  相似文献   

3.
Abstract– The Stardust mission captured comet Wild 2 particles in aerogel at 6.1 km s?1. We performed high‐resolution three‐dimensional imaging and X‐ray fluorescence mapping of whole cometary tracks in aerogel. We present the results of a survey of track structures using laser scanning confocal microscopy, including measurements of track volumes, entry hole size, and cross‐sectional profiles. We compare various methods for measuring track parameters. We demonstrate a methodology for discerning hypervelocity particle ablation rates using synchrotron‐based X‐ray fluorescence, combined with mass and volume estimates of original impactors derived from measured track properties. Finally, we present a rough framework for reconstruction of original impactor size, and volume of volatilized material, using our measured parameters. The bulk of this work is in direct support of nondestructive analysis and identification of cometary grains in whole tracks, and its eventual application to the reconstruction of the size, shape, porosity, and chemical composition of whole Stardust impactors.  相似文献   

4.
Abstract– The extra‐large light‐gas gun (XLLGG) at the Fraunhofer Ernst‐Mach‐Institut (EMI, Efringen‐Kirchen, Germany) is a two‐stage light‐gas gun that can accelerate projectile masses of up to 100 g up to velocities of 6 km s?1. The accelerator’s set‐up allows various combinations of pump and launch tubes for applications in different fields of hypervelocity impact research. In the framework of the MEMIN (Multidisciplinary Experimental and Modeling Impact Research Network) program, the XLLGG is used for mesoscale cratering experiments with projectiles made of steel and of iron meteorites, and targets consisting of sandstone and other rocks. The craters produced with this equipment reach a diameter of up to 40 cm, a size unique in laboratory cratering research. With the implementation of neural networks, the acceleration process is being optimized, currently yielding peak velocities of 7.8 km s?1 for a 100 g projectile. Here, we summarize technical aspects of the XLLGG.  相似文献   

5.
Abstract– We present initial results from hydrocode modeling of impacts on Al‐1100 foils, undertaken to aid the interstellar preliminary examination (ISPE) phase for the NASA Stardust mission interstellar dust collector tray. We used Ansys’ AUTODYN to model impacts of micrometer‐scale, and smaller projectiles onto Stardust foil (100 μm thick Al‐1100) at velocities up to 300 km s?1. It is thought that impacts onto the interstellar dust collector foils may have been made by a combination of interstellar dust particles (ISP), interplanetary dust particles (IDP) on comet, and asteroid derived orbits, β micrometeoroids, nanometer dust in the solar wind, and spacecraft derived secondary ejecta. The characteristic velocity of the potential impactors thus ranges from <<1 to a few km s?1 (secondary ejecta), approximately 4–25 km s?1 for ISP and IDP, up to hundreds of km s?1 for the nanoscale dust reported by Meyer‐Vernet et al. (2009) . There are currently no extensive experimental calibrations for the higher velocity conditions, and the main focus of this work was therefore to use hydrocode models to investigate the morphometry of impact craters, as a means to determine an approximate impactor speed, and thus origin. The model was validated against existing experimental data for impact speeds up to approximately 30 km s?1 for particles ranging in density from 2.4 kg m?3 (glass) to 7.8 kg m?3 (iron). Interpolation equations are given to predict the crater depth and diameter for a solid impactor with any diameter between 100 nm and 4 μm and density between 2.4 and 7.8 kg m?3.  相似文献   

6.
Abstract– We carried out hypervelocity cratering experiments with steel projectiles and sandstone targets to investigate the structural and mineralogical changes that occur upon impact in the projectile and target. The masses of coherent projectile relics that were recovered in different experiments ranged between 58% and 92% of their initial projectile masses. A significant trend between impact energy, the presence of water in the target, and the mass of projectile relics could not be found. However, projectile fragmentation seems to be enhanced if the target contains substantial amounts of water. Two experiments that were performed with 1 cm sized steel projectiles impacting at 3400 and 5300 m s?1 vertically onto dry Seeberger sandstone were investigated in detail. The recovered projectiles are intensely plastically deformed. Deformation mechanisms include dislocation glide and dislocation creep. The latter led to the formation of subgrains and micrometer‐sized dynamically recrystallized grains. In case of the 5300 m s?1 impact experiment, this deformation is followed by grain annealing. In addition, brittle fracturing and friction‐controlled melting at the surface along with melting and boiling of iron and silica were observed in both experiments. We estimated that heating and melting of the projectile impacting at 5300 m s?1 consumed 4.4% of the total impact energy and was converted into thermal energy and heat of fusion. Beside the formation of centimeter‐sized projectile relics, projectile matter is distributed in the ejecta as spherules, unmelted fragments, and intermingled iron‐silica aggregates.  相似文献   

7.
Abstract— Mercury is difficult to observe because it is so close to the Sun. However, when the angle of the ecliptic is near maximum in the northern hemisphere, and Mercury is near its greatest eastern elongation, it can be seen against the western sky for about a half hour after sunset. During these times, we were able to map sodium D2 emission streaming from the planet, forming a long comet‐like tail. On 2001 May 26 (U.T.) we mapped the tail downstream to a distance of ?40 000 km. Sodium velocities in the tail increased to ?11 km s?1 at 40 000 km as the result of radiation pressure acceleration. On 2000 June 5 (U.T.) we mapped the cross‐sectional extent of the tail at a distance of ?17 500 km downstream. At this distance, the half‐power full‐width of the emission was ?20 000 km. We estimated the transverse velocity of sodium in the tail to range from 2 to 4 km s?1. The velocities we observed imply source velocities from the planet surface of the order of 5 km s?1, or 4 eV. Particle sputtering is a likely candidate for production of sodium atoms at these velocities. The total flux of sodium in the tail was ?1 times 1023 atoms s?1, which corresponds to 1 to 10% of the estimated total production rate of sodium on the planet.  相似文献   

8.
This study introduces an experimental approach using direct laser irradiation to simulate the virtually instantaneous melting of target rocks during meteorite impacts. We aim at investigating the melting and mixing processes of projectile (iron meteorite; steel) and target material (sandstone) under idealized conditions. The laser experiments (LE) were able to produce features very similar to those of impactites from meteorite craters and cratering experiments, i.e., formation of lechatelierite, partial to complete melting of sandstone, and injection of projectile droplets into target melts. The target and projectile melts have experienced significant chemical modifications during interaction of these coexisting melts. Emulsion textures, observed within projectile‐contaminated target melts, indicate phase separation of silicate melts with different chemical compositions during quenching. Reaction times of 0.6 to 1.4 s could be derived for element partitioning and phase‐separation processes by measuring time‐depended temperature profiles with a bolometric detector. Our LE allow (i) separate melting at high temperatures to constrain primary melt heterogeneities before mixing of projectile and target, (ii) quantification of element partitioning processes between coexisting projectile and target melts, (iii) determination of cooling rates, and (iv) estimation of reaction times. Moreover, we used a thermodynamic approach to calculate the entropy gain during laser melting. The entropy changes for laser‐melting of sandstone and iron meteorite correspond to shock pressures and particle velocities produced during the impact of an iron projectile striking a quartz target at a minimum impact velocity of ~6 km s?1, inducing peak shock pressures of ~100 GPa in the target.  相似文献   

9.
We shocked calcite in an unconfined environment by launching small marble cylinders at 0.8–5.5 km s?1 into aluminum or copper plates, producing shock stresses between 5 and 79 GPa. The resulting 5–20 mm craters contained intimately mixed clastic and molten projectile residues over the entire pressure range, with melting commencing already at 5 GPa. Stoichiometrically pure calcite melts were not observed as all melts contained target metal. Some of these residues were distinctly depleted in CO2 and some contained even tiny CaO crystals, thus illustrating partial to complete loss of CO2. We interpret a thin seam of finely crystalline calcite to be the product of back reactions between CaO and CO2. The amount of carbonate residue in these craters, especially those at low velocities (<2 km s?1), is dramatically less than that of silicate impactors in similar cratering experiments, and we suggest that this is due to substantial outgassing of CO2. Similarly, the volume of carbonate melts relative to the volume of limestone or dolomite in many terrestrial crater structures seems insignificant as well, as is the volume of carbonate melt compared to the volume of impact melts derived from silicates. These volume considerations suggest that volatilization of CO2 is the dominant process in carbonate‐containing targets. Because we have difficulties in explaining naturally occurring calcite melts by shock processes in dolomite‐dominated targets, we speculate—essentially via process of elimination—that such carbonate melt blebs might be condensation products from an impact‐produced vapor cloud.  相似文献   

10.
Some meteorites consist of a mix of components of various parent bodies that were presumably brought together by past collisions. Impact experiments have been performed to investigate the degree of target fragmentation during such collisions. However, much less attention has been paid to the fate of the impactors. Here, we report the results of our study of the empirical relationship between the degree of projectile fragmentation and the impact conditions. Millimeter‐sized pyrophyllite and basalt projectiles were impacted onto regolith‐like sand targets and an aluminum target at velocities of up to 960 m s?1. Experiments using millimeter‐sized pyrophyllite blocks as targets were also conducted to fill the gap between this study and the previous studies of centimeter‐sized rock targets. The catastrophic disruption threshold for a projectile is defined as the energy density at which the mass of the largest fragment is the half of the original mass. The thresholds with the sand target were 4.5 ± 1.1 × 104 and 9.0 ± 1.9 × 104 J kg?1, for pyrophyllite and basalt projectiles, respectively. These values are two orders of magnitude larger than the threshold for impacts between pyrophyllite projectiles onto aluminum targets, but are qualitatively consistent with the fact that the compressive and tensile strengths of basalt are larger than those of pyrophyllite. The threshold for pyrophyllite projectiles and the aluminum target agrees with the threshold for aluminum projectiles and pyrophyllite targets within the margin of error. Consistent with a previous result, the threshold depended on the size of the rocks with a power of approximately ?0.4 (Housen and Holsapple 1999). Destruction of rock projectiles occurred when the peak pressure was about ten times the tensile strength of the rocks.  相似文献   

11.
Abstract– A Devonian siltstone from Orkney, Scotland, shows survival of biomarkers in high‐velocity impact experiments. The biomarkers were detected in ejecta fragments from experiments involving normal incidence of steel projectiles at 5–6 km s?1, and in projectile fragments from impact experiments into sand and water at 2–5 km s?1. The associated peak shock pressures were calculated to be in the range of 110–147 GPa for impacts of the steel projectiles into the siltstone target, and hydrocode simulations are used to show the variation of peak pressure with depth in the target and throughout the finite volume projectiles. Thermally sensitive biomarker ratios, including ratios of hopanoids and steranes, and the methylphenanthrene ratio, showed an increase in thermal maturity in the ejecta, and especially the projectile, fragments. Measurement of absolute concentrations of selected biomarkers indicates that changes in biomarker ratios reflect synthesis of new material rather than selective destruction. Their presence in ejecta and projectile fragments suggests that fossil biomarkers may survive hypervelocity impacts, and that experiments using biomarker‐rich rock have high potential for testing survival of organic matter in a range of impact scenarios.  相似文献   

12.
The space velocities of 200 long-period (P>5 days) classical Cepheids with known proper motions and line-of-sight velocities whose distances were estimated from the period-luminosity relation have been analyzed. The linear Ogorodnikov-Milne model has been applied, with the Galactic rotation having been excluded from the observed velocities in advance. Two significant gradients have been found in the Cepheid velocities, ?W/?Y = ?2.1 ± 0.7 km s?1 kpc?1 and ?V/?Z = 27 ± 10 km s?1 kpc?1. In such a case, the angular velocity of solid-body rotation around the Galactic X axis directed to the Galactic center is ?15 ± 5 km s?1 kpc?1.  相似文献   

13.
We present the results of our observations of the H2O maser emission toward the complex source ON2 associated with an active star-forming region. The observations were performed in a wide range of radial velocities, from ?75 to 90 km s?1. We have detected an emission with flux densities of 9.2, 4, and 26 Jy at radial velocities of ?33.5, ?24.4, and ?18.8 km s?1, respectively, at which no emission has been observed previously. The detected emission is most likely associated with a hitherto unknown cluster of maser spots located between the northern (N) and southern (S) components of the source ON2 (closer to the northern one). This cluster may be associated with one of the three CO molecular outflows in the ON2 region. We have also detected an emission at ?22 and ?14.5 km s?1 in N and at 12.6 km s?1 in S, which has extended significantly the velocity ranges of the maser emission in these sources and allowed their models to be improved.  相似文献   

14.
Abstract— In this paper, we present numerical simulations aimed at reproducing the Baptistina family based on its properties estimated by observations. A previous study by Bottke et al. (2007) indicated that this family is probably at the origin of the K/T impactor, is linked to the CM meteorites and was produced by the disruption of a parent body 170 km in size due to the head‐on impact of a projectile 60 km in size at 3 km s?1. This estimate was based on simulations of fragmentation of non‐porous materials, while the family was assumed to be of C taxonomic type, which is generally interpreted as being formed from a porous body. Using both a model of fragmentation of non‐porous materials, and a model that we developed recently for porous ones, we performed numerical simulations of disruptions aimed at reproducing this family and at analyzing the differences in the outcome between those two models. Our results show that a reasonable match to the estimated size distribution of the real family is produced from the disruption of a porous parent body by the head‐on impact of a projectile 54 km in size at 3 km s?1. Thus, our simulations with a model consistent with the assumed dark type of the family requires a smaller projectile than previously estimated, but the difference remains small enough to not affect the proposed scenario of this family history. We then find that the break‐up of a porous body leads to different outcomes than the disruption of a non‐porous one. The real properties of the Baptistina family still contain large uncertainties, and it remains possible that its formation did not involve the proposed impact conditions. However, the simulations presented here already show some range of outcomes and once the real properties are better constrained, it will be easy to check whether one of them provides a good match.  相似文献   

15.
The orbit of Cosmos 482 has been determined at 55 epochs during the period August 1975–October 1977. Inclined at 52° to the Equator, of eccentricity exceeding 0.3 and perigee height near 210 km, this high drag and high eccentricity orbit is the most eccentric as yet analysed by PROP. The combination of the orbital characteristics, restricted global coverage of observational data, and the many observations of angular measurement at extreme range proved to be troublesome. Cleared of other perturbations, the inclination is analysed to determine the atmospheric rotation rate, λ rev day?1, of the zonal winds at a height near 235 km. Results reveal a diurnal and seasonal dependence, including a summer value, averaged over local time, of λ = 0.9 and an evening value of λ = 1.4 in the winter months. The resultant wind velocities vary between 48 m s?1 East to West and 193 m s?1 West to East, with an average of 48 m s?1 West to East.  相似文献   

16.
The superfine structure of the active region in Orion KL has been investigated in the H2O maser line at two epochs, December 23, 1998, and April 24, 1999, with an angular resolution as high as 0.01 mas. A bright central source, a bipolar outflow ejector with two nozzles spaced 0.008 mas apart, has been identified. The impact of the ejected flows causes precession of the rotation axis and gives rise to a jet structure in the shape of diverging helixes of opposite signs. The longitudinal velocities of the flows differ by 0.12 km s?1. The flow emission at the exit from the nozzles is linearly polarized and oriented at an angle of 22° relative to the rotation axis or parallel to the flow velocities. Their brightness temperature exceeds T b > 1018 K. The width of the emission line profiles is 0.43 km s?1, their relative shift is ±0.06 km s?1, and the orientations of the polarization planes differ by 45°, which determines the extraordinary rotation of the polarization plane, 25°/km s?1.  相似文献   

17.
In this paper we show that by modifying a conventional lined hollow charge, such that the explosive is asymmetrically distributed, it is possible to form projectiles of controllable mass (up to ~1 g) moving in the forward direction with speeds of the order of 10 km s?1. Measurements of the projectile speed and estimates of its mass are found to agree well with the predictions of the one dimensional theory of Carleone and Chou (1974). A comparison is made of the crater formation obtained by firing both modified and unmodified lined hollow charges at basalt. We indicate how it should be possible to increase the velocity of the projectile up to ~14 km s?1 and the application that such a technique would have to problems in both cratering physics and planetary studies.  相似文献   

18.
Abstract– In the context of the MEMIN project, a hypervelocity cratering experiment has been performed using a sphere of the iron meteorite Campo del Cielo as projectile accelerated to 4.56 km s?1, and a block of Seeberger sandstone as target material. The ejecta, collected in a newly designed catcher, are represented by (1) weakly deformed, (2) highly deformed, and (3) highly shocked material. The latter shows shock‐metamorphic features such as planar deformation features (PDF) in quartz, formation of diaplectic quartz glass, partial melting of the sandstone, and partially molten projectile, mixed mechanically and chemically with target melt. During mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co yielding a Fe/Ni that is generally higher than Fe/Ni in the projectile. This fractionation results from the differing siderophile properties, specifically from differences in reactivity of Fe, Ni, and Co with oxygen during projectile‐target interaction. Projectile matter was also detected in shocked quartz grains. The average Fe/Ni of quartz with PDF (about 20) and of silica glasses (about 24) are in contrast to the average sandstone ratio (about 422), but resembles the Fe/Ni‐ratio of the projectile (about 14). We briefly discuss possible reasons of projectile melting and vaporization in the experiment, in which the calculated maximum shock pressure does not exceed 55 GPa.  相似文献   

19.
A sample of classical Cepheids with known distances and line-of-sight velocities has been supplemented with proper motions from the Gaia DR1 catalogue. Based on the velocities of 260 stars, we have found the components of the peculiar solar velocity vector (U, V, W) = (7.90, 11.73, 7.39) ± (0.65, 0.77, 0.62) km s?1 and the following parameters of the Galactic rotation curve: Ω0 = 28.84 ± 0.33 km s?1 kpc?1, Ω′0 = ?4.05 ± 0.10 km s?1 kpc?2, and Ω″0 = 0.805 ± 0.067 km s?1 kpc?3 for the adopted solar Galactocentric distance R 0 = 8 kpc; the linear rotation velocity of the local standard of rest is V 0 = 231 ± 6 km s?1.  相似文献   

20.
We discuss the distribution of radial velocities of galaxies belonging to the Local Group. Two independent samples of galaxies as well as several methods of reduction from the heliocentric to the galactocentric radial velocities are explored. We applied the power spectrum analysis using the Hann function as a weighting method, together with the jackknife error estimation. We performed a detailed analysis of this approach. The distribution of galaxy redshifts seems to be non‐random. An excess of galaxies with radial velocities of ∼24 km s–1 and ∼36 km s–1 is detected, but the effect is statistically weak. Only one peak for radial velocities of ∼24 km s–1 seems to be confirmed at the confidence level of 95%. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号