首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes. The catastrophic debris flow that occurred in Qipan gully(Wenchuan,Southwest China) on July 11,2013 was caused by intense rainfall and upstream cascading bursting of landslide dams. To gain an understanding of the processes of dam bursting and subsequent debris flow scale amplification effect,we attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process. The results showed that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm,respectively. The event highlights the fact that lower rainfall intensity can trigger debris flows after the earthquake. Calculations of the debris flow peak discharge showed that the peak discharges after the dams-bursting were 1.17–1.69 times greater than the upstream peak discharge. The peak discharge at the gully outlet reached 2553 m~3/s which was amplified by 4.76 times in comparison with the initial peak discharge in the upstream. To mitigate debris flow disasters,a new drainage channel with a trapezoidal V-shaped cross section was proposed. The characteristic lengths(h1 and h2) under optimal hydraulic conditions were calculated as 4.50 m and 0.90 m,respectively.  相似文献   

2.
Debris flows form deposits when they reach an alluvial fan until they eventually stop.However,houses located in the alluvial fan might affect the debris flow flooding and deposition processes.Few previous studies have considered the effects of houses on debris flow flooding and deposition.This study conducted model experiments and numerical simulations using the Kanako2D debris flow simulator to determine the influence of houses on debris flow flooding and deposition.The model experiments showed that when houses are present,the debris flow spreads widely in the cross direction immediately upstream of the houses,especially when the flow discharge is large or the grain size is small.Houses located in the alluvial fan also influence the deposition area.The presence of houses led to flooding and deposition damage in some places and reduced the damage in others.The simulation also demonstrated the influence of houses.Both the model experiment and the simulation showed that houses change the flooding and deposition areas.  相似文献   

3.
Peak discharge plays an important role in triggering channelized debris flows. The rainfall regimes and rainfall characteristics have been demonstrated to have important influences on peak discharge. In order to explore the relationship between rainfall regimes and peak discharge, a measuring system was placed at the outlet of a small, debris flow-prone catchment. The facility consisted of an approximately rectangular stilling basin, ending with a sharp-crested weir. Six runoff events were recorded which provided a unique opportunity for characterizing the hydrological response of the debris flow-prone catchment. Then, a rainfall–runoff model was tested against the flow discharge measurements to have a deep understanding of hydrological response. Based on the calibrated rainfall-runoff model, twelve different artificially set rainfall patterns were regarded as the input parameters to investigate the effect of rainfall regimes on peak discharge. The results show that the rainfall patterns have a significant effect on peak discharge. The rainfall regimes which have higher peak rainfall intensity and peak rainfall point occur at the later part of rainfall process are easy to generate larger peak discharge in the condition of the same cumulative rainfall and duration. Then, in order to explore the relationship between rainfall characteristics and peak discharge under different cumulative precipitation and different duration, 167 measured rainfall events were also collected. On the basis of rainfall depth, rainfall duration, and maximum hourly intensity, all the rainfall events were classified into four categories by using K-mean clustering. Rainfall regime 1 was composed of rainfall events with a moderate mean P(precipitation), a moderate D(duration), and a moderate I_(60)(maximum hourly intensity). Rainfall regime 2 was the group of rainfall events with a high mean P, long D. Rainfall regime 3, however, had a low P and a long D. The characteristic of Rainfall regime 4 was high I_(60) and short duration with large P. The results show that the rainfall regime 2 and 4 are easier to generate peak discharge as the rainfall intensity plays an important role in generating peak discharge. The results in this study have implications for improving peak discharge prediction accuracy in debris flow gully.  相似文献   

4.
Debris flows and landslides, extensively developing and frequently occurring along Parlung Zangbo, seriously damage the Highway from Sichuan to Tiebt(G318) at Bomi County. The disastrous debris flows of the Tianmo Watershed on Sept. 4, 2007, July 25, 2010 and Sept. 4, 2010, blocked Parlung Zangbo River and produced dammed lakes, whose outburst flow made 50 m high terrace collapse at the opposite bank due to intense scouring on the foot of the terrace. As a result, the traffic was interrupted for 16 days in 2010 because that 900 m highway base was destructed and 430 m ruined. These debris flows were initiated by the glacial melting which was induced by continuous higher temperature and the following intensive rainfall, and expanded by moraines along channels and then blocked Parlung Zangbo. At the outlet of watershed,the density, velocity and peak discharge of debris flow was 2.06 t/m3, 12.7 m/s and 3334 m3/s, respectively. When the discharge at the outlet and the deposition volume into river exceeds 2125 m3/s and 126×103 m3, respectively, debris flow will completely blocked Parlung Zangbo. Moreover,if the shear stress of river flow on the foot of terrace and the inclination angel of terrace overruns 0. 377 N/m2 and 26°, respectively, the unconsolidated terrace will be eroded by outburst flow and collapse. It was strongly recommended for mitigation that identify and evade disastrous debris flows, reduce the junction angel of channels between river and watershed, build protecting wall for highway base and keep appropriate distance between highway and the edge of unconsolidated terrace.  相似文献   

5.
High-magnitude glacial debris flows in small basins in Himalayas have a significant impact on landscape.The Peilong catchment,a tributary of the Parlung Zangbo river in southeastern Tibet,was chosen as a case study of topographic response to multi-period glacial debris flows.There are few large debris flow records in the catchment before 1983,but four large-scale glacial debris flows with peak discharge up to 8195 m3/s blocked the river during 1983–1985 and in 2015.A combination of field survey,examination of historical records and interpretation of multi-period remote sensing images was used to assess triggering factors and geomorphic impact of the events.The results show that the debris flows during 1983 and 1985 may be attributed to seismic events in 1981 and 1982,while the event in 2015 resulted from large amount of landslide deposits caused by glacier retreat during 1993~2013 and high precipitation in 2015.In the upper-midstream broad valley,erosion and accumulation of the debris flows changed the channel morphology,resulting in course diversion.In the lower-midstream narrow valley,lateral erosion of debris flows induced a large number of landslides but had little impact on the channel longitudinal profile.The ability of massive glacial debris flows to change valley topography is more than ten times that of regular water flows.The landscape of the accumulation fan at the outlet of the valley is controlled by the interaction between the sediment transportation capacity of debris flows and erosional capacity of the main river.The sediment transport capacity of the Peilong river is greater than the delivery capacity of the Parlung Zangbo river,resulting in continuous aggradation of the confluence zone.  相似文献   

6.
Debris flow can cause serious damages to roads, bridges, buildings and other infrastructures.Arranging several rows of deceleration baffles in the significant influence on the mobility and deposition characteristic of debris flow. The deposit amount first increased then decreased when the flow density rises,flow path can reduce the flow velocity and ensure better protection of life and property. In debris flow prevention projects, deceleration baffles can effectively reduce the erosion of the debris flow and prolong the running time of the drainage channel.This study investigated the degree to which a 6 m long flume and three rows of deceleration baffles reduce the debris flow velocity and affect the energy dissipation characteristics. The influential variables include channel slope, debris flow density, and spacing between baffle rows. The experimental results demonstrated that the typical flow pattern was a sudden increase in flow depth and vertical proliferation when debris flow flows through the baffles. Strong turbulence between debris flow and baffles can contribute to energy dissipation and decrease the kinematic velocity considerably. The results showed that the reduction ratio of velocity increased with the increase in debris flow density,channel slope and spacing between rows. Tests phenomena also indicated that debris flow density hasand the deposit amount of debris flow density of 1500kg/m~3 reached the maximum when the experimental flume slope is 12°.  相似文献   

7.
The Wenchuan Earthquake of May 12,2008 triggered large numbers of geo-hazards.The heavy rain on 13 August 2010 triggered debris flows with total volume of more than 6 million cubic meters and the debris flows destroyed 500 houses and infrastructure built after the Wenchuan Earthquake.The study area Qingping Town was located in the northwestern part of the Sichuan Basin of China,which needs the second reconstructions and the critical evaluation of debris flow.This study takes basin as the study unit and defines collapse,landslide and debris flow hazard as a geo-hazard system.A multimode system composed of principal series system and secondary parallel system were established to evaluate the hazard grade of debris flow in 138 drainage basins of Qingping Town.The evaluation result shows that 30.43% of study basins(42 basins) and 24.58% of study area,are in extremely high or high hazard grades,and both percentage of basin quantity and percentage of area in different hazard grades decrease with the increase of hazard grade.According to the geo-hazard data from the interpretation of unmanned plane image with a 0.5-m resolution and field investigation after the Wenchuan Earthquake and 8.13 Big Debris Flow,the ratio of landslides and collapses increased after the Wenchuan Earthquake and the ratios of extremely high or high hazard grades were more than moderate or low hazard grades obviously.23 geo-hazards after8.13 Big Debris Flow in Qingping town region all occurred in basins with extremely high or high hazard grades,and 9 debris flows were in basins with extremely high hazard grade.The model of multimode system for critical evaluation could forecast not only the collapse and landslide but also the debris flow precisely when the basin was taken as the study unit.  相似文献   

8.
We investigate experimentally the depositions of two contiguous debris flows flowing into a main river reach.The aim of the present experimental research is to analyze the geometry and the mutual interactions of debris flow deposits conveyed by these tributaries in the main channel.A set of 19 experiments has been conducted considering three values of the confluence angle,two slopes of the tributary,and three different triggering conditions(debris flows occurring simultaneously in the tributaries,or occurring first either in the upstream or in the downstream tributary).The flow rate along the main channel was always kept constant.During each experiment the two tributaries had the same slope and confluence angle.The analysis of the data collected during the experimental tests indicates that the volume of the debris fan is mainly controlled by the slope angle,as expected,while the shape of the debris deposit is strongly influenced by the confluence angle.Moreover,in the case of multiple debris flows,the deposit shape is sensitive to the triggering conditions.Critical index for damming formation available in literature has been considered and applied to the present case,and,on the basis of the collected data,considerations about possible extension of such indexes to the case of multiple confluences are finally proposed.  相似文献   

9.
The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic explanations, but progress has been limited because the physical-mechanical properties, movement laws and erosion characteristics are different from those of sediment-laden flow. Using infinite slope theory, this research examines the process and mechanism of downcutting erosion over a moveable bed in a viscous debris flow gully. It focuses specifically on the scour depth and the critical slope for viscous debris flow,and formulas for both calculations are presented.Both scour depth and the critical conditions of downcutting erosion are related to debris flow properties(sand volume concentration and flow depth) and gully properties(longitudinal slope,viscous and internal friction angle of gully materials,and coefficient of kinetic friction). In addition, a series of flume experiments was carried out to characterize the scouring process of debris flows with different properties. The calculated values agreed well with the experimental data. These theoretical formulas are reasonable, and using infinite slope theory to analyze down cutting erosion from viscous debris flow is feasible.  相似文献   

10.
Influences of the Wenchuan Earthquake on sediment supply of debris flows   总被引:2,自引:2,他引:0  
The 5.12 Wenchuan Earthquake and the subsequent rainstorms induced a large number of landslides, which later were transformed into debris flows. To evaluate the effect of the earthquake on the sediment supply of debris flows, eight debris flow basins near Beichuan City, Sichuan Province, China were chosen as the study area. The area variations of the debris flow source after the Wenchuan Earthquake and the subsequent rainstorm are analyzed and discussed in this paper. Interpretations of aerial photographs (after the 5.12 Wenchuan Earthquake) and SPOT5 images (after the rainstorm event of September 24, 2008) as well as field investigations were compared to identify the transformation of landslide surface in the study area, indicating that the landslide area in the eight debris flow basins significantly increased. The loose sediment area on the channel bed increased after the rainstorm event. In order to estimate the relationship of the landslide area with the rainfall intensity in different return periods, a model proposed by Uchihugi was adopted. Results show that new landslide area induced by heavy rainfall with 50-year and 100-year return period will be 0.87 km2 and 1.67 km2, respectively. The study results show the Wenchuan earthquake had particular influences on subsequent rainfall-induced debris flow occurrence.  相似文献   

11.
Debris flows have caused serious human casualties and economic losses in the regions strongly affected by the Ms8.0 Wenchuan earthquake of 2008. Debris flow mitigation and risk assessment is a key issue for reconstruction.The existing methods of inundation simulation are based on historical disasters and have no power of prediction.The rain-flood method can not yield detailed flow hydrograph and does not meet the need of inundation simulation. In this paper,the process of water flow was studied by using the Arc-SCS model combined with hydraulic method,and then the debris flow runoff process was calculated using the empirical formula combining the result from Arc-SCS.The peak discharge and runoff duration served as input of inundation simulation. Then,the dangerous area is predicted using kinematic wave method and Manning equation.Taking the debris flow in Huashiban gully in Beichuan County,Sichuan Province,China on 24 Sep.2008 as example,the peak discharge of water flow and debris flow were calculated as 35.52 m3·s-1 and 215.66 m3·s-,with error of 4.15%compared to the measured values.The simulated area of debris-flow deposition was 161,500 m2,vs.the measured area of 144,097 m2,in error of 81.75%.The simulated maximum depth was 12.3 m,consistent with the real maximum depth between 10 and 15 m according to the field survey.The minor error is mainly due to the flow impact on buildings and variations in cross-section configuration.The present methodology can be applied to predict debris flow magnitude and evaluate its risk in other watersheds inthe earthquake area.  相似文献   

12.
Debris flow often causes enormous loss to life and property,especially on alluvial fans.Engineering structures such as retention check dams are essential to reduce the damage.In hazard mitigation evaluation and planning it is of significance to determine the location,size and type of dam and the effects of damage mitigation.We present a numerical simulation method using Kanako simulator for hazard mitigation planning of debris flow disaster in Tanjutani Gully,Kyoto City,Japan.The simulations were carried out for three situations:1) the simulations of erosion,deposition,hydrograph changing and inundation when there were no mitigation measures;2) the simulations of check dams in four locations(470 m,810 m,1,210 m and 1,610 m from the upstream end) to identify the best location;3) the simulations of check dams of three types(closed,slit and grid) to analyze their effects on sediment trapping and discharge reduction.Based on the simulations,it was concluded that two closed check dams(located at 470 m and 1,610 m from the upstream end) in the channel and a drainage channel on the alluvial fan can reduce the risk on the alluvial fan to an acceptable level.  相似文献   

13.
Debris flow is a common natural hazard in the mountain areas of Western China due to favorable natural conditions,and also exacerbated by mountainous exploitation activities.This paper concentrated on the characteristics,causes and mitigation of a catastrophic mine debris flow hazard at Longda Watershed in Songpan County,Sichuan Province,on 21 July 2011.This debris flow deposited in the front of the No.1 dam,silted the drainage channel for flood and then rushed into tailing sediment reservoir in the main channel and made the No.2 dam breached.The outburst debris flow blocked Fu River,formed dammed lake and generated outburst flood,which delivered heavy metals into the lower reaches of Fu River,polluted the drink water source of the population of over 1 million.The debris flow was characterized with a density of 1.87~2.15 t/m 3 and a clay content of less than 1.63%.The peak velocity and flux at Longda Gully was over 10.0~10.9 m/s and 429.0~446.0 m 3 /s,respectively,and the flux was about 700 m 3 /s in main channel,equaling to the flux of the probability of 1%.About 330,000m 3 solid materials was transported by debris flow and deposited in the drainage tunnel(120,000~130,000 m 3),the front of No.1 dam(100,000 m 3) and the mouth of the watershed(100,000~110,000 m 3),respectively.When the peak flux and magnitude of debris flow was more than 462 m 3 /s and 7,423 m 3,respectively,it would block Fu River and produce a hazard chain which was composed of debris flow,dammed lake and outburst flood.Furthermore,the 21 July large-scale debris flow was triggered by rainstorm with an intensity of 21.2 mm/0.5 h and the solid materials of debris flow were provided by landslides,slope deposits,mining wastes and tailing sediments.The property losses were mainly originated from the silting of the drainage tunnel for flash flood but not for debris flow and the irrational location of tailing sediment reservoir.Therefore,the mitigation measures for mine debris flows were presented:(1) The disastrous debris flow watershed should be identified in planning period and prohibited from being taken as the site of mining factories;(2) The mining facilities are constructed at the safe areas or watersheds;(3) Scoria plots,concentrator factory and tailing sediment reservoir are constructed in safe areas where the protection measures be easily made against debris flows;(4) The appropriate system and plan of debris flow mitigation including monitoring,remote monitoring and early-warning and emergency plan is established;(5) The stability of waste dump and tailing sediment reservoir are monitored continuously to prevent mining debris flows.  相似文献   

14.
On 23 July 2009, a catastrophic debris flows were triggered by heavy rainfall in Xiangshui gully, Kangding county, southwestern China. This debris flow originating shortly after a rainstorm with an intensity of 28 mm per hour transported a total volume of more than 480×103 m3 debris, depositing the poorly sorted sediment including boulders up to 2-3 m in diameter both onto an existing debris fans and into the river. Our primary objective for this study was to analyze the characteristics of the triggering ra...  相似文献   

15.
Characteristics of clustering debris flows in Wenchuan earthquake zone   总被引:1,自引:1,他引:0  
Clustering debris-flow events, namely many debris flows simultaneously triggered by a regional rainstorm in a large-scale mountainous area, occurred in four regions of Wenchuan earthquake stricken areas in 2008 and 2010. The characteristics of the clustering debris flows are examined with regard to triggering rainfall, formation process, and relationship with the earthquake by field survey and remote sensing interpretation. It is found that the clustering events occurred nearly at the same time with the local peak rainstorms, and the rainfall intensity-duration bottom limit line for clustering debris flows is higher than the worldwide line. It means that more rainfall is needed for the occurrence of the clustering debris flows. Four kinds of major formation processes for these debris flows are summarized: tributary-dominated, mainstream- dominated, transformation from slope failures, and mobilization or liquefaction of landslide. The four regions has a spatial correlation with the strong- quake-influenced zone with the peak ground acceleration = 0.2 g and the seismic intensity 〉 X.  相似文献   

16.
The characteristics of a new type of drainage channel with staggered indented sills for controlling debris flows were studied. The intermediate fluid in the non-viscous debris flow exhibited a helical movement, whereas the fluid near the sidewall had a stop-start movement pattern; the viscous debris flow exhibited a stable structure between the indented sills. The experimental results indicate that the mean velocity of the debris flow increased with increasing channel gradients, and the debris flow velocity was slightly affected by the angle of the sills. The average velocity of the non-viscous debris flow increased in the range of(0.5–1.5) interval between the indented sills, whereas the average velocity of the viscous debris flow increased initially and then decreased in the range of(0.75–1.25) interval between the indented sills. The depth of the non-viscous debris flow tended to gradually increase as the channel gradients increased, whereas the depth of the viscous debris flow gradually decreased as the channel gradients increased. When the discharge of the debris flow was constant, the angle and the interval between the indented sills had a slight effect on the depth of the viscous debris flow, whereas the depth of the non-viscous debris flow exhibited a different trend, as the sill angles and intervals were varied.  相似文献   

17.
The spectacular scenery of Glacier National Park is the result of glacial erosion as well as post-glacial mass wasting processes. Debris flow magnitude and frequency have been established through extensive fieldwork across seven separate drainage basins in the eastern portion of the park. This paper summarizes the investigation of the hypotheses that debris flow distribution in the Glacier National Park, east of the Continental Divide is (a) not random; and Co) concentrated adjacent to the Continental Divide. The location of 2317 debris flows were identified and mapped from sixty-three 1-m resolution Digital Orthophoto Quarter Quadrangles and their spatial distribution was then analyzed using ArcView Spatial Analyst GIS software. The GIS analysis showed that the debris flows are not randomly distributed nor are they concentrated directly adjacent to the Divide. While the Continental Divide provides orographic enhancement of precipitation directly adjacent to the Divide, the debris flows are not concentrated there due to a lack of available weathered regolith. The most recent Little Ice Age glaciation removed the debris directly adjacent to the Divide, and without an adequate debris supply, these steep slopes experience few debris flows. Both abundant water and an adequate debris supply are necessary to initiate slope failure, resulting in a clustering of debris flows at the break in slope where valley walls contact talus slopes. A variety of summer storm and antecedent moisture conditions initiate slope failures in the Glacier National Park, with no distinct meteorological threshold. With over two million visitorsevery year, and millions of dollars of park infrastructure at risk, identifying the hazard of debris flows is essential to future park management plans.  相似文献   

18.
Field investigations and aerial photography after the earthquake of May 12,2008 show a large number of geo-hazards in the zone of extreme earthquake effects.In particular,landslides and debris flows,the geo-hazards that most threaten post-disaster reconstruction,are widely distributed.We describe the characteristics of these geo-hazards in Beichuan County using high-resolution remote sensing of landslide distribution,and the relationships between the area and volume of landslides and the peak-discharges of debris flows both pre-and post-earthquake.The results show:1) The concentration(defined as the number of landslide sources per unit area:Lc) of earthquaketriggered landslides is inversely correlated with distance from the earthquake(DF) fault.The relationship is described by the following equation:Lc = 3.2264exp(-0.0831DF)(R2 = 0.9246);2) 87 % of the earthquake-triggered landslides were less than 15×104 m2 in area,and these accounted only for 50% of the total area;84% of the landslide volumes were less than 60×104 m3,and these accounted only for 50% of the total volume.The probability densities of the area and volume distributions are correlated:landslide abundance increases with landslide area and volume up to maximum values of 5 × 104 m2 and 30 × 104 m3,respectively,and then decreases exponentially.3) The area(AL) and volume(VL) of earthquake-triggered landslides are correlated as described with the following equation:VL=6.5138AL1.0227(R2 = 0.9131);4) Characteristics of the debris flows changed after the earthquake because of the large amount of landslide material deposited in the gullies.Consequently,debris flow peak-discharge increased following the earthquake as described with the following equation:Vpost = 0.8421Vpre1.0972(R2 = 0.9821)(Vpre is the peak discharge of pre-earthquake flows and the Vpost is the peak discharge of post-earthquake flows).We obtained the distribution of the landslides based on the above analyses,as well as the magnitude of both the landslides and the post-earthquake debris flows.The results can be useful for guiding post-disaster reconstruction and recovery efforts,and for the future mitigation of these geo-hazards.However,the equations presented are not recommended for use in site-specific designs.Rather,we recommend their use for mapping regional seismic landslide hazards or for the preliminary,rapid screening of sites.  相似文献   

19.
Taking TM images, ETM images, SPOT images, aerial photos and other remote sensing data as fundamental sources, this research makes a thorough investigation on landslides and debris flows in Sichuan Province, China, using the method of manual interpretation and taking topography maps as references after the processes of terrain correction, spectral matching, and image mosaic. And then, the spatial characteristics of landslides and debris flows in the year of 2005 are assessed and made into figures. The environmental factors which induce landslides and debris flows such as slope, vegetation coverage, lithology, rainfall and so on are obtained by GIS spatial analysis method. Finally, the relationships of landslides or debris flows with some environmental factors are analyzed based on the grade of each environmental factor. The results indicate: 1) The landslides and debris flows are mainly in the eastern and southern area of Sichuan Province, however, there are few landslides and debris flows in the western particularly the northwestern Sichuan. 2) The landslides and debris flows of Sichuan Province are mostly located in the regions with small slope degree. The occurring rate of debris flow reduces with the increase of the vegetation coverage degree, but the vegetation coverage degree has little to do with the occurrence of landslide. The more rainfall a place has, the easier the landslides and debris flows take place.  相似文献   

20.
Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号