首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
We analytically determine the structure of highly magnetized astrophysical jets at the origin in a region where the flow has been already collimated by an external medium, in both relativistic and non-relativistic regimes. We show that this can be achieved by solving a system of first-order ordinary differential equations that describe the transversal jet structure for a variety of external confining pressure profiles that collimate the jet to a near-cylindrical configuration. We obtain solutions for a central jet surrounded either by a self-similar wind or by an external pressure profile and derive the dependence of the velocity and the magnetic field strength along and across our jets. In particular, we find that the central core in a jet – the part of a flow with a nearly homogeneous magnetic field – must contain a poloidal field which is not much smaller than the critical value B min. This allows us to determine the magnetic flux in a core which is much smaller than the total magnetic flux. We show that for such a small core flux the solutions with a magnetic field in a core much smaller than B min are non-physical. For astrophysical objects the value of the critical magnetic field is quite large: 1 G for active galactic nuclei, 1010 G for gamma-ray bursts and 10−1 G for young stellar objects. In a relativistic case for the core field greater than or of the order of B min we show analytically that the plasma Lorentz factor must grow linearly with the cylindrical radius. For non-relativistic highly magnetized jets we propose that an oblique shock exists near the base of the jet so that the finite gas pressure plays an important role in force balance.  相似文献   

2.
We perform a numerical simulation of magnetohydrodynamics (MHD) radially self-similar jets, whose prototype is the Blandford & Payne analytical example. The final steady state that is reached is valid close to the rotation axis and also at large distances above the disc where the classical analytical model fails to provide physically acceptable solutions. The outflow starts with a subslow magnetosonic speed, which subsequently crosses all relevant MHD critical points and corresponding magnetosonic separatrix surfaces. The characteristics are plotted together with the Mach cones and the superfast magnetosonic outflow satisfies MHD causality. The final solution remains close enough to the analytical one, which is thus shown to be topologically stable and robust for various boundary conditions.  相似文献   

3.
A number of strong infrared forbidden lines have been observed in several evolved Wolf–Rayet (WR) star winds, and these are important for deriving metal abundances and testing stellar evolution models. In addition, because these optically thin lines form at large radius in the wind, their resolved profiles carry an imprint of the asymptotic structure of the wind flow. This work presents model forbidden line profile shapes formed in axisymmetric winds. It is well known that an optically thin emission line formed in a spherical wind expanding at constant velocity yields a flat-topped emission profile shape. Simulated forbidden lines are produced for a model stellar wind with an axisymmetric density distribution that treats the latitudinal ionization self-consistently and examines the influence of the ion stage on the profile shape. The resulting line profiles are symmetric about line centre. Within a given atomic species, profile shapes can vary between centrally peaked, doubly peaked, and approximately flat-topped in appearance depending on the ion stage (relative to the dominant ion) and viewing inclination. Although application to WR star winds is emphasized, the concepts are also relevant to other classes of hot stars such as luminous blue variables and Be/B[e] stars.  相似文献   

4.
In broad astrophysical contexts of large-scale gravitational collapses and outflows and as a basis for various further astrophysical applications, we formulate and investigate a theoretical problem of self-similar magnetohydrodynamics (MHD) for a non-rotating polytropic gas of quasi-spherical symmetry permeated by a completely random magnetic field. Within this framework, we derive two coupled nonlinear MHD ordinary differential equations (ODEs), examine properties of the magnetosonic critical curve, obtain various asymptotic and global semi-complete similarity MHD solutions, and qualify the applicability of our results. Unique to a magnetized gas cloud, a novel asymptotic MHD solution for a collapsing core is established. Physically, the similarity MHD inflow towards the central dense core proceeds in characteristic manners before the gas material eventually encounters a strong radiating MHD shock upon impact onto the central compact object. Sufficiently far away from the central core region enshrouded by such an MHD shock, we derive regular asymptotic behaviours. We study asymptotic solution behaviours in the vicinity of the magnetosonic critical curve and determine smooth MHD eigensolutions across this curve. Numerically, we construct global semi-complete similarity MHD solutions that cross the magnetosonic critical curve zero, one, and two times. For comparison, counterpart solutions in the case of an isothermal unmagnetized and magnetized gas flows are demonstrated in the present MHD framework at nearly isothermal and weakly magnetized conditions. For a polytropic index γ=1.25 or a strong magnetic field, different solution behaviours emerge. With a strong magnetic field, there exist semi-complete similarity solutions crossing the magnetosonic critical curve only once, and the MHD counterpart of expansion-wave collapse solution disappears. Also in the polytropic case of γ=1.25, we no longer observe the trend in the speed-density phase diagram of finding infinitely many matches to establish global MHD solutions that cross the magnetosonic critical curve twice.   相似文献   

5.
Star‐disc coupling is considered in numerical models where the stellar field is not an imposed perfect dipole, but instead a more irregular self‐adjusting dynamo‐generated field. Using axisymmetric simulations of the hydromagnetic mean‐field equations, it is shown that the resulting stellar field configuration is more complex, but significantly better suited for driving a stellar wind. In agreement with recent findings by a number of people, star‐disc coupling is less efficient in braking the star than previously thought. Moreover, stellar wind braking becomes equally important. In contrast to a perfect stellar dipole field, dynamo‐generated stellar fields favor field‐aligned accretion with considerably higher velocity at low latitudes, where the field is weaker and originating in the disc. Accretion is no longer nearly periodic (as it is in the case of a stellar dipole), but it is more irregular and episodic. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Active galactic nuclei can produce extremely powerful jets. While tightly collimated, the scale of these jets and the stellar density at galactic centres implies that there will be many jet/star interactions, which can mass load the jet through stellar winds. Previous work employed modest wind mass outflow rates, but this does not apply when mass loading is provided by a small number of high mass-loss stars. We construct a framework for jet mass loading by stellar winds for a broader spectrum of wind mass-loss rates than has previously been considered. Given the observed stellar mass distributions in galactic centres, we find that even highly efficient (0.1 Eddington luminosity) jets from supermassive black holes of masses M BH≲ 104 M are rapidly mass loaded and quenched by stellar winds. For  104 M < M BH < 108 M  , the quenching length of highly efficient jets is independent of the jet's mechanical luminosity. Stellar wind mass loading is unable to quench efficient jets from more massive engines, but can account for the observed truncation of the inefficient M87 jet, and implies a baryon-dominated composition on scales ≳2 kpc therein even if the jet is initially pair plasma dominated.  相似文献   

7.
In various astrophysical contexts, we analyze self-similar behaviours of magnetohydrodynamic (MHD) evolution of a quasi-spherical polytropic magnetized gas under self-gravity with the specific entropy conserved along streamlines. In particular, this MHD model analysis frees the scaling parameter n in the conventional polytropic self-similar transformation from the constraint of n+γ=2 with γ being the polytropic index and therefore substantially generalizes earlier analysis results on polytropic gas dynamics that has a constant specific entropy everywhere in space at all time. On the basis of the self-similar nonlinear MHD ordinary differential equations, we examine behaviours of the magnetosonic critical curves, the MHD shock conditions, and various asymptotic solutions. We then construct global semi-complete self-similar MHD solutions using a combination of analytical and numerical means and indicate plausible astrophysical applications of these magnetized flow solutions with or without MHD shocks.  相似文献   

8.
We explore semicomplete self-similar solutions for the polytropic gas dynamics involving self-gravity under spherical symmetry, examine behaviours of the sonic critical curve and present new asymptotic collapse solutions that describe 'quasi-static' asymptotic behaviours at small radii and large times. These new 'quasi-static' solutions with divergent mass density approaching the core can have self-similar oscillations. Earlier known solutions are summarized. Various semicomplete self-similar solutions involving such novel asymptotic solutions are constructed, either with or without a shock. In contexts of stellar core collapse and supernova explosion, a hydrodynamic model of a rebound shock initiated around the stellar degenerate core of a massive progenitor star is presented. With this dynamic model framework, we attempt to relate progenitor stars and the corresponding remnant compact stars: neutron stars, black holes and white dwarfs.  相似文献   

9.
New high-quality high spectral resolution observations of the HI line emission from massive young stellar objects are described and discussed. It is proposed that two distinct physical components contribute to the observed emission. One of these is an optically-thick high-velocity stellar wind, the other a more slowly moving optically-thin volume of gas that may, in the case of S106IR at least, be caused by mass loading of the stellar wind. This decomposition is shown to resolve a long-standing problem regarding the relative widths of high and low opacity lines.  相似文献   

10.
Mass pickup from clumps resulting from previous mass loss phases by a fast stellar wind can substantially modify its behaviour, even leading to a highly supersonic wind becoming transonic before leaving the mass-loading region. The observational consequences of mass-loading on these astrophysical flows is discussed.  相似文献   

11.
We study the evolution of the circumstellar medium of massive stars. We pay particular attention to Wolf-Rayet stars that are thought to be the progenitors of some long gamma-ray bursts (GRBs). We detail the mass-loss rates we use in our stellar evolution models and how we estimate the stellar wind speeds during different phases. With these details we simulate the interactions between the wind and the interstellar medium to predict the circumstellar environment around the stars at the time of core-collapse. We then investigate how the structure of the environment might affect the GRB afterglow. We find that when the afterglow jet encounters the free-wind/stalled-wind interface, rebrightening occurs and a bump is seen in the afterglow light curve. However, our predicted positions of this interface are too distant from the site of the GRB to reach while the afterglow remains observable. The values of the final wind density,   A *  , from our stellar models are of the same order (≲1) as some of the values inferred from observed afterglow light curves. We do not reproduce the lowest   A *  values below 0.5 inferred from afterglow observations. For these cases, we suggest that the progenitors could have been a WO-type Wolf–Rayet (WR) star or a very low-metallicity star. Finally, we turn our attention to the matter of stellar wind material producing absorption lines in the afterglow spectra. We discuss the observational signatures of two WR stellar types, WC and WO, in the afterglow light curve and spectra. We also indicate how it may be possible to constrain the initial mass and metallicity of a GRB progenitor by using the inferred wind density and wind velocity.  相似文献   

12.
We have carried out global three‐dimensional magnetohydrodynamic simulations of the star‐disc interaction region around a young solar‐type star. The magnetic field is generated and maintained by dynamos in the star as well as in the disc. The developing mass flows possess non‐periodic time‐variable azimuthal structure and are controlled by the nonaxisymmetric magnetic fields. Since the stellar field drives a strong stellar wind, accretion is anti‐correlated with the stellar field strength and disc matter is spiraling onto the star at low latitudes, both contrary to the generally assumed accretion picture. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
It is well known that magnetic activity in late‐type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct ‘Doppler images’ of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late‐type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The effects of non-equilibrium ionization are explicitly taken into account in a numerical model which describes colliding stellar winds (CSW) in massive binary systems. This new model is used to analyse the most recent X-ray spectra of the WR+OB binary system WR 147. The basic result is that it can adequately reproduce the observed X-ray emission (spectral shape, observed flux) but some adjustment in the stellar wind parameters is required. Namely (i) the stellar wind velocities must be higher by a factor of 1.4–1.6 and (ii) the mass loss must be reduced by a factor of ∼2. The reduction factor for the mass loss is well within the uncertainties for this parameter in massive stars, but given the fact that the orbital parameters (e.g. inclination angle and eccentricity) are not well constrained for WR 147, even smaller corrections to the mass loss might be sufficient. Only CSW models with non-equilibrium ionization and equal (or nearly equal) electron and ion post-shock temperature are successful. Therefore, the analysis of the X-ray spectra of WR 147 provides evidence that the CSW shocks in this object must be collisionless .  相似文献   

15.
Wind flows and collimated jets are believed to be a feature of a range of disc accreting systems. These include active galactic nuclei, T Tauri stars, X-ray binaries and cataclysmic variables. The observed collimation implies large-scale magnetic fields and it is known that dipole-symmetry fields of sufficient strength can channel wind flows emanating from the surfaces of a disc. The disc inflow leads to the bending of the poloidal magnetic field lines, and centrifugally driven magnetic winds can be launched when the bending exceeds a critical value. Such winds can result in angular momentum transport at least as effective as turbulent viscosity, and hence they can play a major part in driving the disc inflow.
It is shown here that if the standard boundary condition of vanishing viscous stress close to the stellar surface is applied, together with the standard connection between viscosity and magnetic diffusivity, then poloidal magnetic field bending increases as the star is approached with a corresponding increase in the wind mass loss rate. A significant amount of material can be lost from the system via the enhanced wind from a narrow region close to the stellar surface. This occurs for a Keplerian angular velocity distribution and for a modified form of angular velocity, which allows for matching of the disc and stellar rotation rates through a boundary layer above the stellar surface. The enhanced mass loss is significantly affected by the behaviour of the disc angular velocity as the stellar surface is approached, and hence by the stellar rotation rate. Such a mechanism may be related to the production of jets from the inner regions of disc accreting systems.  相似文献   

16.
We present the results from a 28-day IUE time-series campaign monitoring the stellar wind of the O5-type giant HD 93843. The principal aim was to study variability in the wind of a star with a normal projected rotation velocity. Systematic changes are identified, amidst continuous line-profile variability, in the absorption troughs of the Si  iv and N  v resonance lines. The patterns observed have characteristic time-scales of several days and are mimicked by fluctuations (of several 100 km s−1) in the blue wings of the saturated C  iv P Cygni profile.   Fourier analysis provides support for the repeatability of wind structures in HD 93843 on a 7.1-d 'period'. Power at this frequency is evident only at intermediate and high velocities (i.e., above ∼0.3 of the terminal velocity). The long modulation time-scale suggests that changes in the star itself probably provide the physical source for triggering the onset of wind structure. Unfortunately the rotational, photometric, pulsational and magnetic properties of HD 93843 are too poorly constrained or known to permit a more detailed interpretation of the 7.1-d wind modulation in terms of potential inhomogeneities at the stellar surface. Nevertheless, our study demonstrates that the incidence of cyclic, possibly regular, stellar-wind variability is not restricted to rapid rotators. Comparisons with other OB stars which have exhibited repetitive wind changes on 'periods' of several days suggest that the time-dependent UV properties of HD 93843 are more akin to those of the O4-type supergiant ζ Puppis.  相似文献   

17.
We have determined the spectral energy distribution at wavelengths between 6 cm and 850 μm for the prototypical S(stellar)-type symbiotic star, CI Cygni, during quiescence. Data were obtained simultaneously with the Very Large Array and the SCUBA submillimetre (sub-mm) camera on the James Clerk Maxwell Telescope. The data have allowed us to determine the free–free turnover frequency of the ionized component, facilitating a model-dependent estimate of the binary separation to compare with the known orbital parameters of CI Cyg and to critically test the known models for radio emission from symbiotic stars. In particular, our data rule out the two most popular models: ionization of the giant wind by Lyman continuum photons from its hot companion, and emission resulting from the interaction of winds from the two binary components.  相似文献   

18.
The formation and collapse of a protostar involves the simultaneous infall and outflow of material in the presence of magnetic fields, self-gravity and rotation. We use self-similar techniques to self-consistently model the anisotropic collapse and outflow by using a set of angle-separated self-similar equations. The outflow is quite strong in our model, with the velocity increasing in proportion to radius, and material formally escaping to infinity in the finite time is required for the central singularity to develop.
Analytically tractable collapse models have been limited mainly to spherically symmetric collapse, with neither magnetic field nor rotation. Other analyses usually employ extensive numerical simulations, or either perturbative or quasistatic techniques. Our model is unique as an exact solution to the non-stationary equations of self-gravitating magnetohydrodynamics (MHD), which features co-existing regions of infall and outflow.
The velocity and magnetic topology of our model is quadrupolar, although dipolar solutions may also exist. We provide a qualitative model for the origin and subsequent evolution of such a state. However, a central singularity forms at late times, and we expect the late-time behaviour to be dominated by the singularity, rather than depend on the details of its initial state. Our solution may, therefore, have the character of an attractor among a much more general class of self-similarity.  相似文献   

19.
We present a detailed determination of the astrophysical parameters of the chromospherically active binary star EI Eridani. Our new radial velocities allow to improve the set of orbital elements and reveal long‐term variations of the barycentric velocity. A possible third‐body orbit with a period of ≈19 years is presented. Absolute parameters are determined in combination with the Hipparcos parallax. EI Eri's inclination angle of the rotational axis is confined to 56°.0 ± 4°.5, ist luminosity class IV is confirmed by its radius of 2.37 ± 0.12 R. A comparison to theoretical stellar evolutionary tracks suggests a mass of 1.09 ± 0.05 M and an age of ≈ 6.15 Gyr. The present investigation is the basis of our long‐term Doppler imaging study of its stellar surface (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A convenient approach to model MHD steady axisymmetric outflows is the so-called self-similar technique wherein the physical variables are factorized and a scaling law is assumed along one of the coordinates. This scaling depends on the astrophysical process under investigation. In this note we summarize all possible self-similar MHD outflow solutions; furthermore, we briefly discuss the main properties of a class of solutions which are self-similar in the meridional direction and allow to analyse in simple terms the dynamical properties of an outflow close to its rotational axis. Special attention is focused on the asymptotic structure of collimated winds. It will be shown that different regimes are possible for jets, in particular they can be either thermally or magnetically confined, depending on the physical conditions of the flow. This analysis is complementary with the well known radial self-similar models which are invoked to study winds from accretion disks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号