首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Origin of the jet-like feature in the inner Crab Nebula is discussed. Because self-collimation processes in ultrarelativistic pulsar winds are extremely ineffective, it is suggested that the collimation occurs beyond the termination shock where the flow is already mildly (or non-) relativistic. It is argued that the shock shape is highly non-spherical because the energy flux in the pulsar wind decreases towards the axis. The shock near the axis should be much closer to the pulsar than at the equator and therefore the jet looks as if it originates directly from the pulsar.  相似文献   

2.
We show that the relativistic wind of the Crab pulsar, which is commonly thought to be invisible in the region upstream of the termination shock at r r S∼0.1 pc, in fact could be directly observed through its inverse Compton (IC) γ -ray emission. This radiation is caused by illumination of the wind by low-frequency photons emitted by the pulsar, and consists of two, pulsed and unpulsed , components associated with the non-thermal (pulsed) and thermal (unpulsed) low-energy radiation of the pulsar, respectively. These two components of γ -radiation have distinct spectral characteristics, which depend essentially on the site of formation of the kinetic-energy-dominated wind, as well as on the Lorentz factor and the geometry of propagation of the wind. Thus, the search for such specific radiation components in the spectrum of the Crab Nebula can provide unique information about the unshocked pulsar wind that is not accessible at other wavelengths. In particular, we show that the comparison of the calculated flux of the unpulsed IC emission with the measured γ -ray flux of the Crab Nebula excludes the possibility of formation of a kinetic-energy-dominated wind within 5 light-cylinder radii of the pulsar, R w5 R L. The analysis of the pulsed IC emission, calculated under reasonable assumptions concerning the production site and angular distribution of the optical pulsed radiation, yields even tighter restrictions, namely R w30 R L.  相似文献   

3.
The spatial distribution of the youngest pulsars, with a characteristic age of less than 12,000 years, is considered. All the pulsars except for the pulsar in the Crab Nebula lie in groups of young OB stars. It is suggested that the precursor of the Crab pulsar was a rapidly rotating, massive OB star. The group of young massive stars from which the fast-moving star was ejected is indicated. Estimates of the age of the precursor of the Crab pulsar and of the age of the group of young stars from which it was ejected favor this hypothesis. It is concluded that the fast-moving star must have acquired a high velocity due to the dynamical evolution of the young stellar group.  相似文献   

4.
The evolution of pulsar driven supernova remnants is briefly reviewed with special reference to the Crab Nebula. Simple models account for the integral properties of the Nebula. New data on the optical synchrotron continuum show strong spectral variations over the Nebula which will require more complex models of the particle diffusion.  相似文献   

5.
We have investigated a simple model for the effects of a central pulsar on the expansion of supernova shells. Some numerical results relevant to the Crab Nebula are also reported.  相似文献   

6.
Interplanetary scintillation observations of eleven supernova remnants and the pulsar J1939+2134, around which the existence of a supernova remnant remains obscure, were carried out with the largest in the world decameter radio telescope UTR-2 at 20, 25 and 30 MHz to determine if any of them contain compact radio sources with the angular size θ<5″. The sample included the young Galactic remnants and the other powerful SNRs. The interplanetary scintillations of the compact radio source in the Crab Nebula associated with the well-known pulsar J0534+2200 and the pulsar J1939+2134 were observed. Apart from the Crab Nebula, we have not detected a compact radio source in supernova remnants with the angular size θ<5″ and the flux density more than 10 Jy. The observations do not confirm the existence of the low frequency compact source in Cassiopeia A that has remained controversial.  相似文献   

7.
The mechanism of the large-scale magnetic field generation in the Crab Nebula is proposed. The basis for the considered fast mechanism is the model of the central region of Crab Nebula amorphous part having the form of slightly divergent double-layer disk consisting of the relativistic electron-positron plasma.The nebula toroidal magnetic field generation occurs in the double-layer disk in the immediate neighbourhood of the light cylinder of pulsar PSR 0531+21 due to the differential rotation by means of dynamo-mechanism. The generated field is transferred into the nebula by the pulsar wind which forms the double-layer disk.By use of the known parameters of pulsar PSR 0531+21, the considered mechanism yields the strength of magnetic fieldB=10–3 G observed in the nebula. The disk structure must be destroyed toward the edges of the nebula.  相似文献   

8.
Based on the half-century-long history of radio observations of the Crab Nebula, we investigate the evolution of its radio luminosity. We found a secular decrease in the radio luminosity; it has decreased by 9% since the discovery of the radio source in 1948. Apart from the secular decrease in the luminosity of the Crab Nebula, we identified two time intervals, 1981–1987 and 1992–1998, when radio bursts with energy release ~1041 erg took place. In these years, the spectral indices of the instantaneous spectra decreased significantly due to the increase in the flux densities at short (centimeter and millimeter) wavelengths. These events were preceded by sudden increases in the pulsar’s rotation rates, the largest of which, with an amplitude of ΔΩ/Ω = 3 × 10?8, occurred in 1975 and 1989. We show that the magnetospheric instability mechanism that accompanies strong glitches can provide the energetics of the excess luminosity of the Nebula through the ejection of relativistic electrons with a total energy higher than 6 × 1042 erg from the pulsar’s magnetosphere.  相似文献   

9.
The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.  相似文献   

10.
The X-ray timing data for the Crab pulsar obtained by the Chinese X-ray pulsar navigation test satellite are processed and analyzed. The method to build the integrated and standard X-ray pulse profiles of the Crab pulsar by using the X-ray pulsar observation data and the satellite orbit data is described. The principle and algorithm for determining the pulsar's pulse time of arrival (toa) in the frequency domain are briefly introduced. The pulsar's pulse time of arrival is calculated by using the timing data of 50 min integration for each set of observational data. By the comparison between the observed Crab pulsar's pulse time of arrival at the solar system barycenter and that predicted with the Crab pulsar ephemeris, it is found that the timing accuracy is about 14 μs after the systematic error is removed by a quadratic polynomial fitting.  相似文献   

11.
The loss of angular momentum through gravitational radiation, driven by the excitation of r-modes, is considered for neutron stars that have rotation frequencies lower than the associated critical frequency. We find that for reasonable values of the initial amplitudes of such pulsation modes of the star, being excited at the event of a glitch in a pulsar, the total post-glitch losses correspond to a negligible fraction of the initial rise of the spin frequency in the case of Vela and older pulsars. However, for the Crab pulsar the same effect would result, within a few months, in a decrease in its spin frequency by an amount larger than its glitch-induced frequency increase. This could provide an explanation for the peculiar behaviour observed in the post-glitch relaxations of the Crab pulsar.  相似文献   

12.
It has been argued by Jacobson, Liberati and Mattingly that synchrotron radiation from the Crab Nebula imposes a stringent constraint on any modification of the dispersion relations of the electron that might be induced by quantum gravity. We supplement their analysis by deriving the spectrum of synchrotron radiation from the coupling of an electrically charged particle to an external magnetic fields in the presence of quantum-gravity effects of the general form (E/MQG). We find that the synchrotron constraint from the Crab Nebula practically excludes 1.74 for MQGmP=1.2×1019 GeV. On the other hand, this analysis does not constrain any modification of the dispersion relation of the photon that might be induced by quantum gravity. We point out that such quantum-gravity effects need not obey the equivalence principle, a point exemplified by the Liouville-string D-particle model of space–time foam. This model suggests a linear modification of the dispersion relation for the photon, but not for the electron, and hence is compatible with known constraints from the Crab Nebula and elsewhere.  相似文献   

13.
We show that the proportionately spaced emission bands in the dynamic spectrum of the Crab pulsar fit the oscillations of the square of a Bessel function whose argument exceeds its order. This function has already been encountered in the analysis of the emission from a polarization current with a superluminal distribution pattern: a current whose distribution pattern rotates (with an angular frequency ω) and oscillates (with a frequency  Ω > ω  differing from an integral multiple of ω) at the same time. Using the results of our earlier analysis, we find that the dependence on frequency of the spacing and width of the observed emission bands can be quantitatively accounted for by an appropriate choice of the value of the single free parameter  Ω/ω  . In addition, the value of this parameter, thus implied by Hankins & Eilek's data, places the last peak in the amplitude of the oscillating Bessel function in question at a frequency  (∼Ω32)  that agrees with the position of the observed ultraviolet peak in the spectrum of the Crab pulsar. We also show how the suppression of the emission bands by the interference of the contributions from differing polarizations can account for the differences in the time and frequency signatures of the interpulse and the main pulse in the Crab pulsar. Finally, we put the emission bands in the context of the observed continuum spectrum of the Crab pulsar by fitting this broad-band spectrum (over 16 orders of magnitude of frequency) with that generated by an electric current with a superluminally rotating distribution pattern.  相似文献   

14.
In this paper, we present an expanding disc model to derive the polarization properties of the Crab nebula. The distribution function of the plasma and the energy density of the magnetic field are prescribed as functions of the distance from the pulsar using the model derived by Kennel and Coroniti with  σ= 0.003  , where σ is the ratio of the Poynting flux to the kinetic energy flux in the bulk motion just before the termination shock. Unlike the case for previous models, we introduce a disordered magnetic field, which is parametrized by the fractional energy density of the disordered component. The flow dynamics are not solved, and the mean field is toroidal.
The averaged degree of polarization over the disc is obtained as a function of the inclination angle and fractional energy density of the disordered magnetic field. It is found for the Crab Nebula that the disordered component contains about 60 per cent of the magnetic field energy. This value is supported by the facts that the disc appears not as 'lip-shaped' but as 'rings' in the observed intensity map, and that the highest degree of polarization of ∼40 per cent is reproduced for rings, which is consistent with the observations.
We suggest that, because the disordered field contributes to the pressure rather than to the tension, the pinch force may have been overestimated in previous relativistic magnetohydrodynamic simulations. The disruption of the oppositely directed magnetic fields, which is proposed by Lyuvarsky, may actually take place. The relativistic flow speed, which is indicated by the front–back contrast, can be detected in the asymmetry of distributions of the position angle and depolarization.  相似文献   

15.
The fast-spinning Crab pulsar (∼30 turn s−1), which powers the massive expansion and synchrotron emission of the entire Crab nebula, is surrounded by quasi-stationary features such as fibrous arc-like wisps and bright polar knots in the radial range of 2×1016≲ r ≲2×1017 cm, as revealed by high-resolution (∼0.1 arcsec) images from the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope ( HST ). The spin-down energy flux (∼5×1038 erg s−1) from the pulsar to the luminous outer nebula, which occupies the radial range 0.1≲ r ≲2 pc, is generally believed to be transported by a magnetized relativistic outflow of an electron–positron e± pair plasma. It is then puzzling that mysterious structures like wisps and knots, although intrinsically dynamic in synchrotron emission, remain quasi-stationary on time-scales of a few days to a week in the relativistic pulsar wind. Here we demonstrate that, as a result of slightly inhomogeneous wind streams emanating from the rotating pulsar, fast magnetohydrodynamic (MHD) shock waves are expected to appear in the pulsar wind at relevant radial distances in the forms of wisps and knots. While forward fast MHD shocks move outward with a speed close to the speed of light c , reverse fast MHD shocks may appear quasi-stationary in space under appropriate conditions. In addition, Alfvénic fluctuations in the shocked magnetized pulsar wind can effectively scatter synchrotron beams from gyrating relativistic electrons and positrons.  相似文献   

16.
The micro‐channel plate intensified CCD photon counting detector developed at University College London has been upgraded to allow time-resolved spectroscopic optical data to be acquired on periodical sources such as pulsars. First observing trials have been carried out, acquiring spectroscopic data on the Crab pulsar. The detector was phase locked to the pulsar period and a temporal resolution of 41.4 μs employed. The phase locking allowed the coaddition of time slices over a large number of pulsar periods to build up quantifiable spectroscopic data when observing in a flux-limited regime.  相似文献   

17.
The linear polarization of the Crab pulsar and its close environment was derived from observations with the high-speed photopolarimeter Optical Pulsar TIMing Analyser at the 2.56-m Nordic Optical Telescope in the optical spectral range (400–750 nm). Time resolution as short as 11 μs, which corresponds to a phase interval of 1/3000 of the pulsar rotation, and high statistics allow the derivation of polarization details never achieved before. The degree of optical polarization and the position angle correlate in surprising details with the light curves at optical wavelengths and at radio frequencies of 610 and 1400 MHz. Our observations show that there exists a subtle connection between presumed non-coherent (optical) and coherent (radio) emissions. This finding supports previously detected correlations between the optical intensity of the Crab and the occurrence of giant radio pulses. Interpretation of our observations requires more elaborate theoretical models than those currently available in the literature.  相似文献   

18.
脉冲星周期跃变是一种罕见的现象,是研究其内部结构的探针。针对2019年2月~12月国家授时中心昊平观测站40 m射电望远镜在脉冲星计时观测中监测Crab脉冲星的数据,采用脉冲星计时方法,用TEMPO2拟合程序进行分析。结果表明,Crab脉冲星在2019年7月23日(MJD 58687)附近发生了一次周期跃变现象,该跃变自转增量为Δvg=5.33(4)×10-7Hz,自转变化量为Δvg/v=17.9(1)×10-9,并伴随着恢复系数Q~0.88的指数恢复过程。此次Crab脉冲星周期跃变的监测及处理,证实了40 m射电望远镜对脉冲星的监测性能,同时为研究周期跃变的产生机理积累了样本。  相似文献   

19.
为了解释间歇脉冲星PSR B1931+24在射电噪比射电宁静状态下更大的自转减慢率和模拟蟹状星云脉冲星的自转演化,建立同时考虑了具有不同加速电势的核区和环区的环加速间隙下的星风制动模型.其中对于PSR B1931+24通过计算得到它的磁场强度和磁倾角,并且预言了其理论制动指数.对于蟹状星云脉冲星,通过计算得到它的磁场强度和磁倾角,还计算得到其制动指数随周期的演化和它在周期-周期导数图上的自转演化.相比于真空加速间隙、外加速间隙等,环加速间隙也同样能够适用于星风制动模型.  相似文献   

20.
The induced Compton scattering of radio emission off the particles of the ultrarelativistic electron–positron plasma in the open field line tube of a pulsar is considered. We examine the scattering of a bright narrow radio beam into the background over a wide solid angle and specifically study the scattering in the transverse regime, which holds in a moderately strong magnetic field and gives rise to the scattered component nearly antiparallel to the streaming velocity of the scattering particles. Making use of the angular distribution of the scattered intensity and taking into account the effect of rotational aberration in the scattering region, we simulate the profiles of the backscattered components as applied to the Crab pulsar. It is suggested that the interpulse (IP), the high-frequency interpulse (IP') and the pair of so-called high-frequency components (HFC1 and HFC2) result from the backward scattering of the main pulse (MP), precursor (PR) and low-frequency component (LFC), respectively. The components of the high-frequency profiles, the IP' and HFCs, are interpreted for the first time. The HFC1 and HFC2 are argued to be a single component split by the rotational aberration close to the light cylinder. It is demonstrated that the observed spectral and polarization properties of the profile components of the Crab pulsar as well as the giant pulse phenomenon outside the MP can be explained in terms of our model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号