首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Concentrations of sulfur gases H2S and SO2 have been measured in the marine atmosphere over the Atlantic Ocean at various sites. Mean values of 40 ng H2S m-3 STP and 209 ng SO2 m-3 STP are the results of the measurements. A diurnal variation of H2S concentration was detected on the west coast of Ireland with nighttime concentrations of up to 200 ng H2S m-3 STP and values below detection limit (15 ng H2S m-3 STP) during daytime.  相似文献   

2.
Investigations about VOSCs (volatile organic sulfur compounds) have been received increasing attention for their significant contribution to the nonvolcanic background sulfate layer in the stratosphere and the earth’s radiation balance and as a potential tool to understand the carbon budget. In this study, COS and CS2 were always recorded throughout the entire rice cultivation season of 2014. COS fluxes appeared as emission in non-planted soil and as uptake in planted soil, the corresponding results were obtained as 2.66 and ?2.35 pmol·m?2·s?1, respectively. For CS2, both planted and non-planted paddy fields acted as sources with an emission rate of 1.02 pmol·m?2·s?1 and 2.40 pmol·m?2·s?1, respectively. COS emission or uptake rates showed a distinct seasonal variation, with the highest fluxes at the jointing-booting stage. COS and CS2 fluxes increased with increasing N fertilizer use because of improved plant and microbial growth and activity. Plots treated with both N and S reduced COS and CS2 fluxes slightly compared with plots with only-N treatment. Light, soil moisture or temperature showed no significant correlation with COS and CS2 fluxes, but revealed the important impacts on the magnitude and direction of gases fluxes. The results also showed that the (available) sulfur contents in soil and roots had a certain effect on VOSCs emission or uptake. Our results highlight the significance of biotic and abiotic production and consumption processes existing in the soil.  相似文献   

3.
Several trace sulfur gases that can have a significant influence on atmospheric chemistry are emitted from biological systems. In order to begin to address biological questions on the mechnisms of production of such gases, laboratory-scale experiments have been developed that reproduce such emissions under controlled conditions. Using a flux chamber technique, flats containing soil, or soil plus plants were sampled for the net fluxes of sulfur gases. The major sulfur gas emitted from all the plants tested (corn, alfalfa, and wheat) was dimethyl sulfide (DMS). Alfalfa and wheat also emitted lesser amounts of methanethiol, variable amounls of hydrogen sulfide, and in some experiments wheat emitted carbon disulfide. The use of a plant incubator allowed a systematic study of the effects of variables such as temperature, photon flux, and carbon dioxide levels, on these emissions. Fluxes of all the emitted sulfur gases increased exponentially with increasing air temperature, and increased with increasing photon flux up to a saturation level of \~300 E/m–2 sec-1. Three to four-fold changes in DMS flux were observed during light to dark or dark to light transitions. By varying the CO2 content of the chamber flush gas, it was shown that the observed sulfur fluxes from corn and alfalfa were not related to the CO2 concentration. Growing these crop plants through holes in a Teflon soil-covering film allowed a separate determination of soil and foliage emissions and substantiation of the light dependent uptake of COS by growing vegetation observed in previous field studies.  相似文献   

4.
Application of nitrate fertilizers on two types of forest soils led to a marked increase in the NO emission rate indicating a large potential for NO production in these soils. The largest fluxes on the fertilized plots were up to 60 ng NO–N m–2 s–1. About 0.35% of the applied nitrogen was lost as NO within about 14 days after fertilization. The fluxes from the unfertilized forest soils were in the range 0.1 to 0.8 ng NO–N m–2 s–1 with a median value of 0.3 ng NO–N m–2 s–1. If this value, obtained during June and August to September, is representative for the growing season (150 days), it corresponds to an annual emission of 0.04 kg NO–N ha–1. This is about 30% of the value obtained for an unfertilized agricultural soil. Because of the large areas occupied by forests in Sweden the flux of NO from forest soils represents a significant contribution to the total flux of NO from soils in Sweden.Earlier observations of equilibrium concentrations for NO have been verified. These were found to range from 0.2 to 2 ppbv for an unfertilized forest soil and up to 170 ppbv for a fertilized soil. At the rural site in Sweden where these measurements were performed the ambient concentrations where found to be less than this equilibrium concentration, and consequently there was generally a net emission of NO.There are still large uncertainties about the global flux of NO from soils. Using direct measurements on three different types of ecosystems and estimates based on a qualitative discussion for the remaining land areas, a global natural source for NO of the order of 1 Tg N a–1 was obtained. If 0.35% of the total annual production of fertilizer nitrogen is lost as NO, fertilization of soils may contribute with 20% to the natural flux from soils.  相似文献   

5.
Nitric oxide fluxes from soils in the Trachypogon savanna of the Orinoco basin were determined during the dry season using the static chamber method. The emission from dry soils fluctuated from 0.4 to 3 ng N m–2 s–1 and increased up to 25 ng N m–2 s–1 after moderate watering or light rain-falls (1 to 5 mm). The mean emission values are up to 6 times lower than one observed earlier at the Chaguaramas site, but up to 10 times higher than one recorded at the Guri site, indicating an important spatial variability in NO fluxes of the Venezuelan savanna region. The changes observed after the addition of nitrogen to the soil, in the form of ammonium and/or nitrate, indicate a high denitrification potential in this acidic soil. Burning of the surface vegetation produced an increase by a factor of 10 in the emission rate of NO, but the effect was relatively short in time, about 5 days. It was estimated for the savanna region that burning increases the total NO soil emission during the dry season by 15% compared to the unburnt case. Soils with termite nests emit 10 times more NO than soil without nests, but the contribution from this source is less than 2% of the total savanna soil flux.  相似文献   

6.
Release and uptake of carbonyl sulfide (OCS) were measured at 25°C in samples of three forest soils (BL, BW, PBE) and one soil from a rape field (RA). The soil samples were flushed with a constant flow of either air (oxic conditions) or nitrogen (anoxic conditions) containing defined concentrations of OCS. A cryogenic trapping technique with liquid argon (-186 °C) was used to collect gas samples for analysis in a gas chromatograph equipped with a flame-photometric detector. The dependence of net OCS fluxes between soil and atmosphere could be described by a simple model of simultaneous OCS production and OCS uptake. By using this model, production rates (P), uptake rate constants (k) and compensation concentrations (m c ) of OCS could be determined as function of the soil type and the incubation conditions. Under oxic conditions, OCS production (P) and uptake were observed in all soils tested. However, the compensation concentrations (<166 ng l-1; 1 ng OCS l-1=0.41 ppbv) that were calculated from the model were high relative to the ambient OCS concentration (ca. 0.5 ppbv). The production rates (0.16–1.9 ng h-1 g-1 dw) that were actually measured when flushing the soil samples with air containing zero OCS were smaller than those (17–114 ng h-1 g-1 dw) calculated from the model. This observation was explained by two different concepts: one assuming the existence of a threshold concentration (m t ) below which OCS was no longer consumed in the soil; the other assuming the existence of two different OCS consumption processes, of which only the process active at elevated OCS concentrations was covered by the experiments. The latter concept allowed the estimation of OCS compensation concentrations that were partially low enough to allow the uptake of atmospheric OCS by soil. Both OCS production and uptake in PBE soil were dependent on soil temperature (optimum 20 °C) indicating a microbial process. However, both production and consumption of OCS were not consistently inhibited by sterilization of the soil, suggesting that they were not exclusively due to microbiological processes. Under anoxic conditions, OCS was also produced, but was not consumed except in one soil (RA). Production of OCS in the soils was stimulated after addition of thiocyanate, but not thiourea, thiosulfate, thioglycolate, tetrathionate, sulfate, elemental sulfur, cysteine and methionine.  相似文献   

7.
Emissions of marine biogenic sulfur to the atmosphere of northern Europe   总被引:1,自引:0,他引:1  
Measurements of DMS and other reduced sulfur compounds in surface waters have been carried out from a helicopter in the seas surrounding Scandinavia. Average summer time concentrations of DMS ranged from 70 to 150 ngS L-1. Simultaneous measurements of biological and physical parameters revealed no correlation between DMS and phytoplankton species, species assemblages, total phytoplankton biomass, chlorophyll a, temperature, and salinity. The only exception was a correlation between DMS concentration, Chrysochromulina spp. belonging to the Prymnesiophyceae, and salinity over a narrow range of salinity in the Baltic Sea.The flux of reduced sulfur to the atmosphere in July in this region is estimated to be 120–170 gS m-2 d-1 from the Baltic, 240–810 in the Kattegat/Skagerrak, and 120–690 in the North Sea. Annual fluxes are roughly 100 times higher than these daily fluxes. On an annual basis, biogenic sulfur emissions from the coastal seas are negligible (<1%) compared to the anthropogenic emissions in northern Europe. However, during the summer months, the biogenic sulfur emissions from the seas surrounding the Scandinavian peninsula are estimated to be as high as 20–70% of the anthropogenic emissions in Scandinavia. This makes it of interest to incorporate the biogenic emissions in calculations of long-range transport and deposition of sulfur within the region.Other volatile sulfur species, mainly methyl mercaptan, contribute about 10% of the total flux of reduced sulfur. Estimated fluxes of CS2 to the atmosphere ranged from 1 gS m-2 d-1 in the Baltic Sea to 6 gS m-2 d-1 in the North Sea. No emissions for H2S or COS were detected.  相似文献   

8.
Sulfur fluxes from bare soils, naturally vegetated surfaces and from several agricultural crops were measured at two mid-continent sites (Ames, Iowa and Celeryville, Ohio) and from one salt water marsh site (Cedar Island, North Carolina) during a field program conducted jointly by the NOAA Aeronomy Laboratory, Washington State University Laboratory for Atmospheric Research and University of Idaho Department of Chemistry during July and August 1985. The sites were chosen specifically because they had been characterized by previous studies (Anejaet al., 1979; Adamset al., 1980, 1981). The NOAA gas chromatographic/dynamic-enclosure measurements yielded bare soil surfaces fluxes from the mid-continent sites composed predominantly of COS, H2S, CH3–S–CH3 (DMS) and CS2, all of which were strongly correlated with air temperature. Net fluxes of approximately 5 and 15 ng S/m2 min were observed in Iowa and Ohio, respectively, at appropriate weighted mean July temperatures. These fluxes are roughly a factor of 10 smaller than the earlier measurements, the greatest difference being in the measurement of the H2S flux. The presence of growing vegetation was observed to measurably increase the flux of H2S, significantly increase that of DMS and to decrease that of COS. Sulfur fluxes in the Cedar Island environs were observed to be both spatially and temporally much more variable and to include CH3SH as a measurable contributor. Net fluxes, composed predominantly of DMS and H2S, were estimated to be about 300 ngS/m2min during August; again about a factor of 10 lower than previous estimates. All measurements were corroborated to within about a factor of 2 by those of the other participating laboratories.  相似文献   

9.
Extensive ambient concentration and flux measurements have been performed in the heavily polluted region of Cubatão/Brazil. Substantial contribution of anthropogenic sources to the local reduced sulfur burden has been observed. As a result of this atmospheric sulfur burden average gas exchange between vegetated soils and the atmosphere shows net deposition. Based mainly on own field measurements a local budget for H2S, COS, and CS2 has been made up in order to calculate anthropogenic emissions. All major sources and sinks in the chosen atmospheric reservoir (24×20×1 km) have been taken into account. Due to the small reservoir size fluxes across its boundaries are dominant sources and sinks. The differences between outflux and influx therefore account for the unknown anthropogenic emissions which have been determined to be 80±10 (H2S), 66±15 (COS), and 29±6 Mmol year-1 (CS2). Other sources and sinks like natural emissions, chemical conversion, and dry deposition turned out to be of minor importance on a local scale. In fact, inside the investigated reservoir natural emissions were below 0.5% of anthropogenic emissions. Anthropogenic emissions of H2S, COS, and CS2 quantified in this work have been compared with global emission estimates for these compounds made by other authors. We conclude that global anthropogenic emissions of reduced sulfur compounds especially of COS and CS2 are currently under-estimated.  相似文献   

10.
The net fluxes of carbonyl sulfide (COS) and carbon disulfide (CS2) to the atmosphere from nitrogen amended and unamended deciduous and coniferous forest soils were measured during the spring of 1986. We found that emissions of these gases from acidic forest soils were substantially increased after nitrogen fertilization. The total (COS+CS2) emissions were increased by nearly a factor of three in the hardwood stand and were more than doubled in the pine stand. Furthermore, vegetation type appeared to have an influence on which was the dominant sulfur gas released from the forest soils. The added nitrogen caused a dramatic increase in COS emissions from the hardwood stand (a factor of three increase), while CS2 emissions from this site were not affected. We observed the opposite response in the pine stand; that is, the nitrogen fertilization had no affect on COS emissions, but did stimulate CS2 emissions (a factor of more than nine increase).  相似文献   

11.
We measured the methane flux of a forest canopy throughout a year using a relaxed eddy accumulation (REA) method. This sampling system was carefully validated against heat and CO2 fluxes measured by the eddy covariance method. Although the sampling system was robust, there were large uncertainties in the measured methane fluxes because of the limited precision of the methane gas analyzer. Based on the spectral characteristics of signals from the methane analyzer and the diurnal variations in the standard deviation of the vertical wind velocity, we found the daytime and nighttime precision of half-hourly methane flux measurements to be approximately 1.2 and 0.7?μg?CH4?m?2?s?1, respectively. Additional uncertainties caused by the dilution effect were estimated to affect the accuracy by as much as 0.21?μg?CH4?m?2?s?1 on a half-hourly basis. Diurnal and seasonal variations were observed in the measured fluxes. The biological emission from plant leaves was not observed in our studies, and thus could be negligible at the canopy-scale exchange. The annual methane sink was 835?±?175?mg?CH4?m?2?year?1 (8.35?kg?CH4?ha?1?year?1), which was comparable to the flux range of 379–2,478?mg?CH4?m?2?year?1 previously measured in other Japanese forest soils. This study indicated that the REA method could be a promising technique to measure canopy scale methane fluxes over forests, but further improvement of precision of the analyzer will be required.  相似文献   

12.
Field measurements of NO and NO2 emissions from soils have been performed in Finthen near Mainz (F.R.G.) and in Utrera near Seville (Spain). The applied method employed a flow box coupled with a chemiluminescent NO x detector allowing the determination of minimum flux rates of 2 g N m-2 h-1 for NO and 3 g m-2 h-1 for NO2.The NO and NO2 flux rates were found to be strongly dependent on soil surface temperatures and showed strong daily variations with maximum values during the early afternoon and minimum values during the early morning. Between the daily variation patterns of NO and NO2, there was a time lag of about 2 h which seem to be due to the different physico-chemical properties of NO and NO2. The apparent activation energy of NO emission calculated from the Arrhenius equation ranged between 44 and 103 kJ per mole. The NO and NO2 emission rates were positively correlated with soil moisture in the upper soil layer.The measurements carried out in August in Finthen clearly indicate the establishment of NO and NO2 equilibrium mixing ratios which appeared to be on the order of 20 ppbv for NO and 10 ppbv for NO2. The soil acted as a net sink for ambient air NO and NO2 mixing ratios higher than the equilibrium values and a net source for NO and NO2 mixing ratios lower than the equilibrium values. This behaviour as well as the observation of equilibrium mixing ratios clearly indicate that NO and NO2 are formed and destroyed concurrently in the soil.Average flux rates measured on bare unfertilized soils were about 10 g N m-2 h-1 for NO2 and 8 g N m-2 h-1 for NO. The NO and NO2 flux rates were significantly reduced on plant covered soil plots. In some cases, the flux rates of both gases became negative indicating that the vegetation may act as a sink for atmospheric NO and NO2.Application of mineral fertilizers increased the NO and NO2 emission rates. Highest emission rates were observed for urea followed by NH4Cl, NH4NO3 and NaNO3. The fertilizer loss rates ranged from 0.1% for NaNO3 to 5.4% for urea. Vegetation cover substantially reduced the fertilizer loss rate.The total NO x emission from soil is estimated to be 11 Tg N yr-1. This figure is an upper limit and includes the emission of 7 Tg N yr-1 from natural unfertilized soils, 2 Tg N yr-1 from fertilized soils as well as 2 Tg N yr-1 from animal excreta. Despite its speculative character, this estimation indicates that NO x emission by soil is important for tropospheric chemistry especially in remote areas where the NO x production by other sources is comparatively small.  相似文献   

13.
Simultaneous shipboard measurements of atmospheric dimethylsulfide and hydrogen sulfide were made on three cruises in the Gulf of Mexico and the Caribbean. The cruise tracks include both oligotrophic and coastal waters and the air masses sampled include both remote marine air and air masses heavily influenced by terrestrial or coastal inputs. Using samples from two north-south Caribbean transects which are thought to represent remote subtropical Atlantic air, mean concentrations of DMS and H2S were found to be 57 pptv (74 ng S m-3, =29 pptv, n=48) and 8.5 pptv (11 ng S m-3, =5.3 pptv, n=36), respectively. The ranges of measured concentrations for all samples were 0–800 pptv DMS and 0–260 pptv H2S. Elevated concentrations were found in coastal regions and over some shallow waters. Statistical analysis reveals slight nighttime maxima in the concentrations of both DMS and H2S in the remote marine atmosphere. The diurnal nature of the H2S data is only apparent after correcting the measurements for interference due to carbonyl sulfide. Calculations using the measured ratio of H2S to DMS in remote marine air suggest that the oxidation of H2S contributes only about 11% to the excess (non-seasalt) sulfate in the marine boundary layer.  相似文献   

14.
Eddy correlation measurements of NO vertical flux were made periodically from October 1983 through June 1984 at a height of eight meters above grass in northeastern Illinois, U.S.A. From 207 data points, each representing a 25 min average, 19 daytime cases and 8 nighttime cases were selected on the basis of steady, nonadvective atmospheric conditions. Each case was represented by a set of data constituting a 3 to 5 hr average. Concentrations of O3, NO, and NO y (from which NO2 was inferred) and local atmospheric and surface conditions also were measured, to provide the information necessary to assess the relative importance of surface deposition, surface emission, and air chemistry on the observed NO flux. On the basis of a linear regression analysis applied with independent variables representing physical, chemical, and biological processes, surface uptake of NO was very small for data primarily collected in the daytime during spring, and measured deposition velocities at a height of 8 m were very small, much smaller than expected for NO2. For the same time period, the surface emission rates of elemental nitrogen in NO were in the range of 1.4 to 4.2 ng m-2 s-1 for moist, unsaturated soils at temperatures near 15° C. These emissions were partially masked in the measured fluxes by rapid in-air chemical reactions involving O3 and NO2. The effects of rapid in-air chemical reactions involving O3 were to decrease the (upward) flux of NO with height. While the information collected at night was too limited to strongly support hypotheses concerning emissions and deposition, a pathway for NO production by reactions involving NO3 and related compounds was indicated. For daytime conditions, this production pathway is not evident, probably because of the relatively strong effects of photochemical reactions involving NO, NO2, and O3.Formerly with the Chemical Technology Division of Argonne National Laboratory and currently affiliated with Bio-Rad Laboratories, Digilab Division, Minneapolis, MN, U.S.A.  相似文献   

15.
Direct measurements of nitrogen oxides and ozone fluxes over grassland   总被引:1,自引:0,他引:1  
Using the eddy correlation method, fluxes of nitric oxide, nitrogen dioxide, ozone, water, and sensible heat were measured at a site 20 km north of Denver, Colorado over mature crested wheat grass, 0.75 m high in late June and early July. During this period the weather was fair with no synoptic disturbances. In the early morning a well-mixed diluted urban pollution plume traversed the site, by late morning aged pollution had mixed downward into the local boundary layer, and by afternoon the air came from a relatively unpolluted area of the high plains. The mean trace gas concentrations reflect this repeated pattern of local air flow. The fluxes of the trace gases were influenced both by the variation of the means and by other factors including temperature and biological activity. Ozone fluxes were found to be always negative and proportional to the mean, with an average deposition velocity for this case of about 0.006 m s-1. For the oxides of nitrogen this simple treatment was not appropriate. Both deposition and emission were observed, generally deposition predominated in the morning and emission in the afternoon with observed variations in the fluxes of NOx=NO+NO2 from –0.3 to +0.2 ppbv m s-1.The National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

16.
The deposition fluxes of inorganic compounds dissolved in fog and rain were quantified for two different ecosystems in Europe. The fogwater deposition fluxes were measured by employing the eddy covariance method. The site in Switzerland that lies within an agricultural area surrounded by the Jura mountains and the Alps is often exposed to radiation fog. At the German mountain forest ecosystem, on the other hand, advection fog occurs most frequently. At the Swiss site, fogwater deposition fluxes of the dominant components SO42− (0.027 mg S m−2 day−1), NO3 (0.030 mg N m−2 day−1) and NH4+ (0.060 mg N m−2 day−1) were estimated to be <5% of the measured wet deposition (0.85, 0.70 and 1.34 mg m−2 day−1, respectively). The corresponding fluxes at the forest site (0.62, 0.82 and 1.16 mg m−2 day−1, respectively) were of the same order of magnitude as wet deposition (1.04, 1.01 and 1.36 mg m−2 day−1), illustrating the importance of fog (or occult) deposition. Trajectory analyses at the forest site indicate significantly higher fogwater concentrations of all major ions if air originated from the east (i.e. the Czech Republic), which is in close agreement with earlier studies.  相似文献   

17.
The energy balance of an upland heath dominated by heather (Calluna vulgaris) was measured in dry and wet weather. Median values of both transpiration and evaporation rates were ca. 2 mm hr-1. The median Bowen ratio for the dry canopy was 2.0 and for the wet canopy 0.6. On dry days the median value of the saturation deficit was only 3.8 mb and that of the climatological resistance was 30 s m-1. The bulk stomatal resistance increased from ca. 50 s m -2 in the morning to over 290 s m-1 in the afternoon with an overall median value of 110 s m-1. Transpiration from the dry canopy was controlled by a combination of small saturation deficits and large stomatal resistances. The median value of the boundary-layer resistance of the canopy was 22 s m-1 and was low partly because of a large low-level drag coefficient. Saturation deficits on wet days were close to zero and evaporation of intercepted water proceeded at close to the equilibrium rate, being largely limited by the low fluxes of available energy. The water loss from heather was compared with simulated losses from coniferous forest, herbaceous crops and grassland in the same conditions to evaluate the effects of vegetation on water loss from catchments.Laboratorio de Ecologia, Dept. de Biologia Vegetal, Universidade de Brasilia, 70 910 — Brasila — DF, Brazil.  相似文献   

18.
Carbon dioxide exchange in a temperate grassland ecosystem   总被引:18,自引:0,他引:18  
Carbon dioxide exchange was measured, using the eddy correlation technique, over a tallgrass prairie in northeastern Kansas, U.S.A., during a six-month period in 1987. The diurnal patterns of daytime and nocturnal CO2 fluxes are presented on eight selected days. These days were distributed throughout most of the growing season and covered a wide range of meteorological and soil water conditions. The midday CO2 flux reached a maximum of 1.3 mg m-2 (ground area) s-1 during early July and was near zero during the dry period in late July. The dependence of the daytime carbon dioxide exchange on pertinent controlling variables, particularly photosynthetically active radiation, vapor pressure deficit and soil water content is discussed. The nocturnal CO2 flux (soil plus plant respiration) averaged -0.4 mg m-2 (ground area) s-1 during early July and was about -0.2 mg m-2 s-1 during the dry period.Published as Paper No. 9061, Journal Series, Agricultural Research Division, University of Nebraska-Lincoln, U.S.A.Research Associate and Professor, respectively.  相似文献   

19.
Emissions of N2O, CH4, and CO2 from soils at two sites in the tropical savanna of central Venezuela were determined during the dry season in February 1987. Measured arithmetic mean fluxes of N2O, CH4, and CO2 from undisturbed soil plots to the atmosphere were 2.5×109, 4.3×1010, and 3.0×1013 molecules cm-2 s-1, respectively. These fluxes were not significantly affected by burning the grass layer. Emissions of N2O increased fourfold after simulated rainfall, suggesting that production of N2O in savanna soils during the rainy season may be an important source for atmospheric N2O. The CH4 flux measurements indicate that these savanna soils were not a sink, but a small source, for atmospheric methane. Fluxes of CO2 from savanna soils increased ninefold two hours after simulated rainfall, and remained three times higher than normal after 16 hours. More research is needed to clarify the significance of savannas in the global cycles of N2O, CH4, CO2, and other trace gases, especially during the rainy season.  相似文献   

20.
A new sensitive method for measuring atmospheric concentrations of sulfur dioxide is presented. Samples are obtained using the mist chamber, which collects highly water-soluble gases with high efficiency, and concentrates them in a small volume of water. Particles are removed from the sampled air stream with a teflon filter, before it enters the mist chamber. After collection, the pH of the water is raised above pH 10 using sodium carbonate, then hydrogen peroxide (H2O2) is added to oxidize sulfur that may be present in the sulfur (IV) oxidation state, to sulfate. After a reaction time of at least 16 hours, the sulfate concentration is measured by ion chromatography. From the sulfate concentration, the water volume used in the mist chamber, and the volume of air sampled, the atmospheric concentration of SO2 is computed. The method is not sensitive to other atmospheric sulfur gases such as DMS, SC2, H2S, COS, or MSH. The estimated overall precision of the method is 10%. The detection limit at the present stage of technique development is approximately 20 ppt (parts per trillion, or 10-12 mol · mol-1) for a 45 minute sampling time, with lower concentrations being detectable with lower precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号