首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We report the discovery of H2 line emission associated with 6.67-GHz methanol maser emission in massive star-forming regions. In our UNSWIRF/AAT observations, H2 1–0 S(1) line emission was found associated with an ultracompact H  ii region IRAS 14567–5846 and isolated methanol maser sites in G318.95–0.20 , IRAS 15278–5620 and IRAS 16076–5134 . Owing to the lack of radio continuum in the latter three sources, we argue that their H2 emission is shock excited, while it is UV-fluorescently excited in IRAS 14567–5846 . Within the positional uncertainties of 3 arcsec, the maser sites correspond to the location of infrared sources. We suggest that 6.67-GHz methanol maser emission is associated with hot molecular cores, and propose an evolutionary sequence of events for the process of massive star formation.  相似文献   

2.
We have imaged the emission from the near-infrared   v =1–0  S(1), 1–0 S(7), 2–1 S(1) and 6–4 O(3) lines of molecular hydrogen in the Northern and South Western Bars of M17, together with the hydrogen Br γ and Br10 lines. This includes the first emission-line image ever to be obtained of a line from the highly excited   v =6  level of molecular hydrogen. In both Bars, the H2 emission is generally distributed in clumps along filamentary features. The 1–0 S(1) and 2–1 S(1) images have similar morphologies. Together with their relative line ratios, this supports a fluorescent origin for their emission, within a photodissociation region. The SW-Bar contains a clumpy medium, but in the N-Bar the density is roughly constant. The 1–0 S(7) line image is also similar to the 1–0 S(1) image, but the 6–4 O(3) image is significantly different from it. Since the emission wavelengths of these two lines are similar (1.748 to 1.733 μm), this cannot be due to differential extinction between the   v =6  and the   v =1  lines. We attribute the difference to the pumping of newly formed H2 into the   v =6  , or to a nearby, level. However, this also requires a time-dependent photodissociation region (where molecule formation does not balance dissociation), rather than it to be in steady state, and/or for the formation spectrum to vary with position in the source. If this interpretation of formation pumping of molecular hydrogen is correct, it is the first clear signature from this process to be seen.  相似文献   

3.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

4.
Long-slit spectra of the molecular outflow Herbig–Haro (HH) 46/47 have been taken in the J and K near-infrared bands. The observed H2 line emission confirms the existence of a bright and extended redshifted counter-jet outflow south-west of HH 46. In contrast with the optical appearance of this object, we show that this outflow seems to be composed of two different emission regions characterized by distinct heliocentric velocities. This implies an acceleration of the counter-jet.
The observed [Fe  ii ] emission suggests an average extinction of 7–9 visual magnitudes for the region associated with the counter-jet.
Through position–velocity diagrams, we show the existence of different morphologies for the H2 and [Fe  ii ] emission regions in the northern part of the HH 46/47 outflow. We have detected for the first time high-velocity (−250 km s−1) [Fe  ii ] emission in the region bridging HH 46 to HH 47A. The two strong peaks detected can be identified with the optical positions B8 and HH 47B.
The H2 excitation diagrams for the counter-jet shock suggest an excitation temperature for the gas of T ex≈2600 K . The lack of emission from the higher energy H2 lines, such as the 4–3 S(3) transition, suggests a thermal excitation scenario for the origin of the observed emission. Comparison of the H2 line ratios with various shock models yielded useful constraints about the geometry and type of these shocks. Planar shocks can be ruled out whereas curved or bow shocks (both J- and C-type) can be parametrized to fit our data.  相似文献   

5.
We present measurements of several near-infrared emission lines from the nearby galaxy NGC 253. We have been able to measure four H2 lines across the circumnuclear starburst, from which we estimate the ortho- to para- ratio of excited H2 to be ∼2. This indicates that the bulk of the H2 emission arises from photodissociation regions (PDRs), rather than from shocks. This is the case across the entire region of active star formation.
As the H2 emission arises from PDRs, it is likely that the ratio of H2 to Brγ (the bright hydrogen recombination line) is a measure of the relative geometry of O and B stars and PDRs. Towards the nucleus of NGC 253 the geometry is deduced to be tightly clustered O and B stars in a few giant H  II regions that are encompassed by PDRs. Away from the nuclear region, the geometry becomes that of PDRs bathed in a relatively diffuse ultraviolet radiation field.
The rotation curves of 1–0 S(1) and Brγ suggest that the ionized gas is tracing a kinetic system different from that of the molecular gas in NGC 253, particularly away from the nucleus.  相似文献   

6.
HCO+ has been detected for the first time towards the star Cygnus OB2 No. 12 through emission of the 1–0 rotational transition at 89 GHz. The CO( J =2−1) transition has also been observed. The observations are consistent with a model of dense regions embedded in a low-density clump gas. If actually present, the dense component would have an aggregate size L 1300 au, in agreement with estimates of small-scale density fluctuations observed along diffuse lines of sight.  相似文献   

7.
To better understand the environment surrounding CO emission clumps in the Keyhole Nebula, we have made images of the region in H2 1–0 S(1) (2.122-μm) emission and polycyclic aromatic hydrocarbon (PAH) emission at 3.29 μm. Our results show that the H2 and PAH emission regions are morphologically similar, existing as several clumps, all of which correspond to CO emission clumps and dark optical features. The emission confirms the existence of photodissociation regions (PDRs) on the surface of the clumps. By comparing the velocity range of the CO emission with the optical appearance of the H2 and PAH emission, we present a model of the Keyhole Nebula whereby the most negative velocity clumps are in front of the ionization region, the clumps at intermediate velocities are in it and those which have the least negative velocities are at the far side. It may be that these clumps, which appear to have been swept up from molecular gas by the stellar winds from η  Car, are now being overrun by the ionization region and forming PDRs on their surfaces. These clumps comprise the last remnants of the ambient molecular cloud around η Car.  相似文献   

8.
We demonstrate that a wide range of molecular hydrogen excitation can be observed in protostellar outflows at wavelengths in excess of 5 μm. Cold H2 in DR 21 is detected through the pure rotational transitions in the ground vibrational level (0–0). Hot H2 is detected in pure rotational transitions within higher vibrational levels (1–1, 1–2, etc.). Although this emission is relatively weak, we have detected two 1–1 lines in the DR 21 outflow with the ISO SWS instrument. We thus investigate molecular excitation over energy levels corresponding to the temperature range 1015–15 722 K, without the uncertainty introduced by differential extinction when employing near-infrared data.
This gas is thermally excited. We uncover a rather low H2 excitation in the DR 21 West Peak. The line emission cannot be produced from single C-shocks or J-shocks; a range of shock strengths is required. This suggests that bow shocks and/or bow-generated supersonic turbulence is responsible. We are able to distinguish this shock-excited gas from the fluoresced gas detected in the K band, providing support for the dual-excitation model of Fernandes, Brand & Burton.  相似文献   

9.
Determining temperatures in molecular clouds from ratios of CO rotational lines or from ratios of continuum emission in different wavelength bands suffers from reduced temperature sensitivity in the high-temperature limit. In theory, the ratio of far-infrared (FIR), submillimetre or millimetre continuum to that of a 13CO (or C18O) rotational line can place reliable upper limits on the temperature of the dust and molecular gas. Consequently, FIR continuum data from the COBE /Diffuse Infrared Background Experiment (DIRBE) instrument and Nagoya 4-m  13CO  J = 1 → 0  spectral line data were used to plot  240 μm/13CO  J = 1 → 0  intensity ratios against 140/240 μm dust colour temperatures, allowing us to constrain the multiparsec-scale physical conditions in the Orion A and B molecular clouds.
The best-fitting models to the Orion clouds consist of two components: a component near the surface of the clouds that is heated primarily by a very large scale (i.e. ∼1 kpc) interstellar radiation field and a component deeper within the clouds. The former has a fixed temperature and the latter has a range of temperatures that vary from one sightline to another. The models require a dust–gas temperature difference of 0 ± 2 K and suggest that 40–50 per cent of the Orion clouds are in the form of dust and gas with temperatures between 3 and 10 K. The implications are discussed in detail in later papers and include stronger dust–gas thermal coupling and higher Galactic-scale molecular gas temperatures than are usually accepted, and an improved explanation for the N (H2)/ I (CO) conversion factor. It is emphasized that these results are preliminary and require confirmation by independent observations and methods.  相似文献   

10.
The excitation of H2O masers usually needs very high density gas, hence it can serve as a marker of dense gas in HII region. We selected a sample of H2O maser sources from Plume et al. (four with, and four without detected CS(J = 7-6) emission), and observed them in 13CO(J=1-0) and C18O (J=1-0). C18O (J=1-0) emission was detected only in three of the sources with detected CS(J=7-6) emission. An analysis combined with some data in the literature suggests that these dense cores may be located at different evolutionary stages. Multi-line observation study may provide us clues on the evolution of massive star forming regions and the massive stars themselves.  相似文献   

11.
We report the first detection of CO in the bulge of M31. The 12CO (1–0) and (2–1) lines are both detected in the dust complex D395A/393/384, at 1.3 arcmin (∼0.35 kpc) from the centre. From these data and from visual extinction data, we derive a CO luminosity to reddening ratio (and a CO luminosity to H2 column density ratio) quite similar to that observed in the local Galactic clouds. The (2–1) to (1–0) line intensity ratio points to a CO rotational temperature and a gas kinetic temperature of >10 K. The molecular mass of the complex, inside a 25-arcsec (100 pc) region, is 1.5×104 M.  相似文献   

12.
We have obtained wide-field thermal infrared (IR) images of the Carina nebula, using the SPIREX/Abu telescope at the South Pole. Emission from polycyclic aromatic hydrocarbons (PAHs) at 3.29 μm, a tracer of photodissociation regions (PDRs), reveals many interesting well-defined clumps and diffuse regions throughout the complex. Near-IR images  (1–2 μm)  , along with images from the Midcourse Space Experiment ( MSX ) satellite  (8–21 μm)  have been incorporated to study the interactions between the young stars and the surrounding molecular cloud in more detail. Two new PAH emission clumps have been identified in the Keyhole nebula, and have been mapped in  12CO(2–1)  and  (1–0)  using the Swedish–ESO Submillimetre Telescope (SEST). Analysis of their physical properties reveals that they are dense molecular clumps, externally heated with PDRs on their surfaces and supported by external pressure in a similar manner to the other clumps in the region. A previously identified externally heated globule containing IRAS 10430−5931 in the southern molecular cloud shows strong 3.29-, 8- and 21-μm emission, the spectral energy distribution (SED) revealing the location of an ultracompact (UC) H  ii region. The northern part of the nebula is complicated, with PAH emission intermixed with mid-IR dust continuum emission. Several point sources are located here, and through a two-component blackbody fit to their SEDs we have identified three possible UC H  ii regions as well as a young star surrounded by a circumstellar disc. This implies that star formation in this region is ongoing and not halted by the intense radiation from the surrounding young massive stars.  相似文献   

13.
We present submillimetre observations of the   J = 3 → 2  rotational transition of 12CO, 13CO and C18O across over 600 arcmin2 of the Perseus molecular cloud, undertaken with the Heterodyne Array Receiver Programme (HARP), a new array spectrograph on the James Clerk Maxwell Telescope. The data encompass four regions of the cloud, containing the largest clusters of dust continuum condensations: NGC 1333, IC348, L1448 and L1455. A new procedure to remove striping artefacts from the raw HARP data is introduced. We compare the maps to those of the dust continuum emission mapped with the Submillimetre Common-User Bolometer Array (SCUBA; Hatchell et al.) and the positions of starless and protostellar cores (Hatchell et al.). No straightforward correlation is found between the masses of each region derived from the HARP CO and SCUBA data, underlining the care that must be exercised when comparing masses of the same object derived from different tracers. From the 13CO/C18O line ratio the relative abundance of the two species  ([13CO]/[C18O]∼ 7)  and their opacities (typically τ is 0.02–0.22 and 0.15–1.52 for the C18O and 13CO gas, respectively) are calculated. C18O is optically thin nearly everywhere, increasing in opacity towards star-forming cores but not beyond  τ18∼ 0.9  . Assuming the 12CO gas is optically thick, we compute its excitation temperature, T ex (around 8–30 K), which has little correlation with estimates of the dust temperature.  相似文献   

14.
Maps are presented of 3 P 13 P 0[C  i ] and J =2→1 C18O line emission from the interstellar molecular cloud G35.2−0.74N. The maps are interpreted with reference to a previous model for the structure of the cloud in which opposing jets from a central object, embedded in a rotating interstellar disc, precess and drive a bipolar molecular outflow. The C18O emission traces the rotating interstellar disc, but the [C  i ] emission shows several features. An unresolved component is observed which probably results from dissociation of CO in the centre of the disc by UV radiation from the central source. Background [C  i ] emission is also observed which shares the rotation of the disc on larger scales. The C  i /CO ratio in these components is typically a few per cent. High-velocity [C  i ] emission, where C  i /CO is high (>0.1–0.4), is observed between the CO molecular outflow and the cavity exacavated by the jet. This material has probably been accelerated by the jet but dissociated by far-UV radiation propagating through the cavity. The C  i /CO ratio falls as the shocked outflow later sweeps up CO.  相似文献   

15.
Whether or not supernovae contribute significantly to the overall dust budget is a controversial subject. Submillimetre (sub-mm) observations, sensitive to cold dust, have shown an excess at 450 and 850 μm in young remnants Cassiopeia A (Cas A) and Kepler. Some of the sub-mm emission from Cas A has been shown to be contaminated by unrelated material along the line of sight. In this paper, we explore the emission from material towards Kepler using sub-mm continuum imaging and spectroscopic observations of atomic and molecular gas, via H  i , 12CO( J = 2–1) and 13CO( J = 2–1). We detect weak CO emission (peak   T *A  = 0.2–1 K, 1–2 km s−1 full width at half-maximum) from diffuse, optically thin gas at the locations of some of the sub-mm clumps. The contribution to the sub-mm emission from foreground molecular and atomic clouds is negligible. The revised dust mass for Kepler's remnant is  0.1–1.2 M  , about half of the quoted values in the original study by Morgan et al., but still sufficient to explain the origin of dust at high redshifts.  相似文献   

16.
We present a fully sampled C18O (1–0) map towards the southern giant molecular cloud (GMC) associated with the H  ii region RCW 106, and use it in combination with previous 13CO (1–0) mapping to estimate the gas column density as a function of position and velocity. We find localized regions of significant 13CO optical depth in the northern part of the cloud, with several of the high-opacity clouds in this region likely associated with a limb-brightened shell around the H  ii region G333.6−0.2. Optical depth corrections broaden the distribution of column densities in the cloud, yielding a lognormal distribution as predicted by simulations of turbulence. Decomposing the 13CO and C18O data cubes into clumps, we find relatively weak correlations between size and linewidth, and a more sensitive dependence of luminosity on size than would be predicted by a constant average column density. The clump mass spectrum has a slope near −1.7, consistent with previous studies. The most massive clumps appear to have gravitational binding energies well in excess of virial equilibrium; we discuss possible explanations, which include magnetic support and neglect of time-varying surface terms in the virial theorem. Unlike molecular clouds as a whole, the clumps within the RCW 106 GMC, while elongated, appear to show random orientations with respect to the Galactic plane.  相似文献   

17.
We use long-slit spectroscopic optical data to derive the properties of the extended emitting gas and the nuclear luminosity of a sample of 18 Seyfert 2 galaxies. From the emission-line luminosities and ratios we derive the density, reddening and mass of the ionized gas as a function of distance up to 2–4 kpc from the nucleus. Taking into account the geometric dilution of the nuclear radiation, we derive the radial distribution of covering factors and the minimum rate of ionizing photons emitted by the nuclear source. This number is an order of magnitude larger than that obtained from the rate of ionizing photons 'intercepted' by the gas and measured from the Hα luminosity. A calibration is proposed to recover this number from the observed luminosity. The He  ii λ4686/Hβ line ratio was used to calculate the slope of the ionizing spectral energy distribution (SED), which in combination with the number of ionizing photons allows the calculation of the hard X-ray luminosities. These luminosities are consistent with those derived from X-ray spectra in the eight cases for which such data are available and recover the intrinsic X-ray emission in Compton-thick cases. Our method can thus provide reliable estimates of the X-ray fluxes in Seyfert 2 galaxies for the cases where it is not readily available. We also use the ionizing SED and luminosity to predict the infrared luminosity under the assumption that it is dominated by reprocessed radiation from a dusty torus, and find a good agreement with the observed IRAS luminosities.  相似文献   

18.
C18O J  = 2–1, C17O J  = 2–1 and [C  I ] 3P13P0 emission from the dense cold cloud B335 has been observed and modelled in order to determine the C/CO ratio. The observed ratio is compared with a prediction by Tarafdar who assumes a mechanism in which the CO dissociation is caused by photons of energy ∼ 13.8 eV. These were postulated by Sciama to result from the decay of dark matter neutrinos. Our value for the C/CO ratio sets an upper limit to the strength of the neutrino decay dissociation process, thus providing a significant datum for interstellar chemistry theory.  相似文献   

19.
The MSX infrared dark cloud G79.2+0.38 has been observed over a 11′×′ region simultaneously in the J=1-0 rotational transition lines of the 12CO and its isotopic molecules 13CO and 18CO. The dense molecular cores defined by the C18O line are found to be associated with the two high-extinction patches shown in the MSX A-band image. The two dense cores have the column density N (H2) (5 – 12) × 1022 cm−2 and the mean number density n (3 ± 1) × 104 cm−3. Their sizes are 1.7 and 1.2 pc in 13CO(1-0) line, 1.2 and 0.6 pc in C18O(1-0) line, respectively. The masses of these cloud cores are estimated to be in the range from 2 × 102 to 2 × 103 M. The profile of radial mean density of the cloud core can be described by the exponential function ¯n(p) p−0.34±0.02. Compared with the cases of typical optical dark clouds, the abundances of the CO isotopic molecules 13CO and C18O in this MSX infrared dark cloud appear to be depleted by a factor of 4–11, but at present there is no evidence for any obvious variation of the relative abundance ratio X13/18 between 13CO and C18O with the column density.  相似文献   

20.
We present a study of active star-forming regions in the environs of the H  ii region Sh2-205. The analysis is based on data obtained from point source catalogues and images extracted from the Two-Micron All-Sky Survey (2MASS), Midcourse Space Experiment ( MSX ) and IRAS surveys. Complementary data are taken from a CO survey. The identification of primary candidates for star-formation activity is made following colour criteria and a correlation with molecular gas emission.
A number of star-formation tracer candidates are projected on to two substructures of the H  ii region: SH 148.83–0.67 and SH 149.25–0.00. However, the lack of molecular gas related to these structures casts doubt on the nature of the sources. Additional infrared sources may be associated with the H  i shell centred at  ( l , b ) = (149°0', −1°30')  .
The most striking active area was found in connection with the H  ii region LBN 148.11–0.45, where star-formation candidates are projected on to molecular gas. The analytical model of the 'collect and collapse' process shows that star-formation activity could have been triggered by the expansion of this H  ii region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号