首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We study the size and shape of low-density regions in the local Universe, which we identify in the smoothed density field of the PSCz flux-limited IRAS galaxy catalogue. After quantifying the systematic biases that enter the detection of voids using our data set and method, we identify, using a smoothing length of 5  h −1 Mpc, 14 voids within 80  h −1 Mpc (having volumes 103  h −3 Mpc3) and, using a smoothing length of 10  h −1 Mpc, eight voids within 130  h −1 Mpc (having volumes  8×103 h−3 Mpc3)  . We study the void size distribution and morphologies and find that there is roughly an equal number of prolate and oblate-like spheroidal voids. We compare the measured PSCz void shape and size distributions with those expected in six different cold dark matter (CDM) models and find that only the size distribution can discriminate between models. The models preferred by the PSCz data are those with intermediate values of   σ 8(≃0.83)  , independent of cosmology.  相似文献   

2.
We have detected the Sunyaev–Zel'dovich (SZ) increment at 850 μm in two galaxy clusters (Cl 0016+16 and MS 1054.4−0321) using the Submillimetre Common User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. Fits to the isothermal β model yield a central Compton y parameter of  (2.2 ± 0.7) × 10−4  and a central 850-μm flux of  Δ I 0= 2.2 ± 0.7 mJy beam−1  in Cl 0016. This can be combined with decrement measurements to infer   y = (2.38 ±0.360.34) × 10−4  and   v pec= 400±19001400 km s−1  . In MS 1054 we find a peak 850-μm flux of  Δ I 0= 2.0 ± 1.0 mJy beam−1  and   y = (2.0 ± 1.0) × 10−4  . To be successful such measurements require large chop throws and non-standard data analysis techniques. In particular, the 450-μm data are used to remove atmospheric variations in the 850-μm data. An explicit annular model is fit to the SCUBA difference data in order to extract the radial profile, and separately fit to the model differences to minimize the effect of correlations induced by our scanning strategy. We have demonstrated that with sufficient care, SCUBA can be used to measure the SZ increment in massive, compact galaxy clusters.  相似文献   

3.
Gravitational lensing magnifies the observed flux of galaxies behind the lens. We use this effect to constrain the total mass in the cluster Abell 1689 by comparing the lensed luminosities of background galaxies with the luminosity function of an undistorted field. Under the assumption that these galaxies are a random sample of luminosity space, this method is not limited by clustering noise. We use photometric redshift information to estimate galaxy distance and intrinsic luminosity. Knowing the redshift distribution of the background population allows us to lift the mass/background degeneracy common to lensing analysis. In this paper we use nine filters observed over 12 h with the Calar Alto 3.5-m telescope to determine the redshifts of 1000 galaxies in the field of Abell 1689. Using a complete sample of 146 background galaxies we measure the cluster mass profile. We find that the total projected mass interior to 0.25  h −1 Mpc is M 2D(<0.25  h −1 Mpc)=(0.48±0.16)×1015  h −1 M, where our error budget includes uncertainties from the photometric redshift determination, the uncertainty in the offset calibration and finite sampling. This result is in good agreement with that found by number-count and shear-based methods and provides a new and independent method to determine cluster masses.  相似文献   

4.
We present and discuss optical, near-infrared and H  i measurements of the galaxy Markarian 1460 at a distance of 19 Mpc in the Ursa Major Cluster. This low-luminosity ( M B =−14) galaxy is unusual because (i) it is blue ( B − R =0.8) and has the spectrum of an H  ii galaxy, (ii) it has a light profile that is smooth and well fitted by an r 1/4 and not an exponential function at all radii larger than the seeing, and (iii) it has an observed central brightness of about μ B =20 mag arcsec−2 , intermediate between those of elliptical galaxies (on the bright μ B side) and normal low-luminosity dwarf irregular (on the low μ B side) galaxies. No other known galaxy exhibits all these properties in conjunction. On morphological grounds this galaxy looks like a normal distant luminous elliptical galaxy, since the Fundamental Plane tells us that higher luminosity normal elliptical galaxies tend to have lower surface-brightnesses. Markarian 1460 has 2×107 M of H  i and a ratio M (H  i )/ L B of 0.2, which is low compared to the typical values for star-forming dwarf galaxies. From the high surface-brightness and r 1/4 profile, we infer that the baryonic component of Markarian 1460 has become self-gravitating through dissipative processes. From the colours, radio continuum, H  i and optical emission line properties, and yet smooth texture, we infer that Markarian 1460 has had significant star formation as recently as ∼1 Gyr ago but not today.  相似文献   

5.
We present a study of the X-ray emission from the nuclei of galaxies observed in the core of the Perseus cluster in a deep exposure with Chandra . Point sources are found coincident with the nuclei of 13 early-type galaxies, as well as the central galaxy NGC 1275. This corresponds to all galaxies brighter than M B > −18 in the Chandra field. All of these sources have a steep power-law spectral component and four have an additional thermal component. The unabsorbed power-law luminosities in the 0.5–7.0 keV band range from 8 × 1038 to 5 × 1040 erg s−1. We find no simple correlations between the K -band luminosity, or the FUV and NUV AB magnitudes of these galaxies and their X-ray properties. We have estimated the black hole masses of the nuclei using the K -band   M BH– L K bol  relation and again find no correlation between black hole mass and the X-ray luminosity. Bondi accretion on to the black holes in the galaxies with minihaloes should make them much more luminous than observed.  相似文献   

6.
A deep   K s   -band photometric catalogue of galaxies at the core of the rich, nearby Norma cluster (ACO3627) is presented. The survey covers about  45 × 45 arcmin2  (slightly less than 1/3 Abell radius), which corresponds to  ∼0.8  h −270 Mpc2  at the adopted distance  ( v CMB/ H 0)  of  70  h −170 Mpc  of this cluster. The survey is estimated to be complete to a magnitude of     . This extends into the dwarf regime, 6 mag below     . The catalogue contains 390 objects, 235 of which are classified as likely or definite galaxies and 155 as candidate galaxies. The   K s   -band luminosity function (LF) is constructed from the photometric sample, using a spectroscopic subsample to correct for fore and background contamination. We fit a Schechter function with a characteristic magnitude of     and faint-end slope of  α=−1.26 ± 0.10  to the data. The shape of the LF is similar to those found in previous determinations of the cluster LF, in both optical and near-infrared. The Schechter parameters agree well with those of recent field LFs, suggesting that the shape of both the bright-end and the faint-end slopes are relatively insensitive to environment.  相似文献   

7.
We have observed the   z =0.78  cluster MS 1137.5+6625 with the Ryle Telescope (RT) at 15 GHz. After subtraction of contaminating radio sources in the field, we find a Sunyaev–Zel'dovich flux decrement of  -421±60 μJy  on the ≈0.65 k λ baseline of the RT, spatially coincident with the optical and X-ray positions for the cluster core.
For a spherical King-profile cluster model, the best fit to our flux measurement has a core radius   θ C=20 arcsec  , consistent with previous X-ray observations, and a central temperature decrement  Δ T =650±92 μK  .
Using this model, we calculate that the cluster has a gas mass inside a     radius of  2.9×1013 M  for an  Ω M =1  universe and  1.6×1013 M  for  Ω M =0.3  ,  ΩΛ=0.7  . We compare this model with existing measurements of the total mass of the cluster, based on gravitational lensing, and estimate a gas fraction for MS 1137.5+6625 of ≈8 per cent.  相似文献   

8.
Theoretical electron density sensitive line ratios   R 1– R 6  of Si  x soft X-ray emission lines are presented. We found that these line ratios are sensitive to electron density n e, and the ratio R 1 is insensitive to electron temperature T e. For reliable determination of the electron density of laboratory and astrophysical plasmas, atomic data, such as electron impact excitation rates, are very important. Our results reveal that the discrepancy of the line ratios from different atomic data calculated with the distorted wave (DW) approximation and the R-matrix method is up to 19 per cent at   n e= 2 × 108 cm−3  . We applied the theoretical intensity ratio R 1 to the Low Energy Transmission Grating Spectrometer (LETGS) spectrum of the solar-like star Procyon. By comparing the observed value (1.29) with the theoretical calculation, the derived electron density n e is  2.6 × 108 cm−3  , which is consistent with that derived from  (C  v < 8.3 × 108 cm−3)  . When the temperature structure of the Procyon corona is taken into account, the derived electron density increases from   n e= 2.6 × 108  to  2.8 × 108 cm−3  .  相似文献   

9.
We have observed the Sunyaev–Zel'dovich (SZ) effect in a sample of five moderate-redshift clusters with the Ryle Telescope, and used them in conjunction with X-ray imaging and spectral data from ROSAT and ASCA to measure the Hubble constant. This sample was chosen with a strict X-ray flux limit using both the Bright Cluster Sample and the Northern ROSAT All-Sky Survey (RASS) cluster catalogues to be well above the surface brightness limit of the RASS, and hence to be unbiased with respect to the orientation of the cluster. This controls a major potential systematic effect in the SZ/X-ray method of measuring H 0. Taking the weighted geometric mean of the results and including the main sources of error, namely the noise in the SZ measurement, the uncertainty in the X-ray temperatures and the unknown ellipticity and substructure of the clusters, we find   H 0= 59+10−9 (random)+8−7(systematic) km s−1 Mpc−1  assuming a standard cold dark matter model with  ΩM= 1.0, ΩΛ= 0.0  or   H 0= 66+11−10 +9−8 km  s−1 Mpc−1  if  ΩM= 0.3, ΩΛ= 0.7  .  相似文献   

10.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

11.
We use the present observed number density of large X-ray clusters to constrain the amplitude of matter density perturbations induced by cosmic strings on the scale of 8  h −1 Mpc ( σ 8), in both open cosmologies and flat models with a non-zero cosmological constant. We find a slightly lower value of σ 8 than that obtained in the context of primordial Gaussian fluctuations generated during inflation. This lower normalization of σ 8 results from the mild non-Gaussianity on cluster scales, where the one-point probability distribution function is well approximated by a χ 2 distribution and thus has a longer tail than a Gaussian distribution. We also show that σ 8 normalized using cluster abundance is consistent with the COBE normalization.  相似文献   

12.
We present indications of rotation in the galaxy cluster A2107 by a method that searches for the maximum gradient in the velocity field in a flat disc-like model of a cluster. Galaxies from cumulative subsamples containing more and more distant members from the cluster centre are projected on to an axis passing through the centre and we apply a linear regression model on the projected distances x and the line-of-sight velocities V . The axis with the maximum linear correlation coefficient   r max= max[ r ( V , x )]  defines the direction of the maximum velocity gradient, and consequently it presents the major axis of the apparently elliptical cluster. Because the effects of rotation are subtle, we put strong emphasis on the estimation of the uncertainties of the results by implementing different bootstrap techniques. We have found that rotational effects are more strongly expressed at distances of 0.26–0.54 Mpc from the cluster centre. The total virial mass of the cluster is  (3.2 ± 0.6) × 1014 M  , while the virial mass, corrected for rotation, is  (2.8 ± 0.5) × 1014 M  .  相似文献   

13.
Cold collapse of a cluster composed of small identical clumps, each of which is in virial equilibrium, is considered. Since the clumps have no relative motion with respect to each other initially, the cluster collapses under its own gravity. At the first collapse of the cluster, most of the clumps are destroyed, but some survive. In order to find the condition for the clumps to survive, we made a systematic study in two-parameter space: the number of the clumps N c and the size of the clump r v . We obtained the condition N c ≫ 1 and n k  ≥ 1, where n k is related to r v and the initial radius of the cluster R ini through the relation R ini/ r v  = 2 N ( n k +5)/6c. A simple analytical argument supports the numerical result. This n k corresponds to the index of the power spectrum of the density fluctuation in the cosmological hierarchical clustering, and thus our result may suggest that in the systems smaller than 2/Ω h 2)Mpc, the first violent collapse is strong enough to sweep away all the substructures that exist before the collapse.  相似文献   

14.
15.
We present spatially resolved X-ray spectroscopy of the luminous lensing cluster Abell 2390, using observations made with the Chandra observatory. The temperature of the X-ray gas rises with increasing radius within the central ∼ 200 kpc of the cluster, and then remains approximately isothermal, with kT =11.5−1.6+1.5 keV , out to the limits of the observations at r ∼1.0 Mpc . The total mass profile determined from the Chandra data has a form in good agreement with the predictions from numerical simulations. Using the parametrization of Navarro, Frenk and White, we measure a scale radius r s∼0.8 Mpc and a concentration parameter c ∼3 . The best-fitting X-ray mass model is in good agreement with independent gravitational lensing results and optical measurements of the galaxy velocity dispersion in the cluster. The X-ray gas to total mass ratio rises with increasing radius with f gas∼21 per cent at r =0.9 Mpc . The azimuthally averaged 0.3–7.0 keV surface brightness profile exhibits a small core radius and a clear 'break' at r ∼500 kpc , where the slope changes from S X   r −1.5 to S X   r −3.6 . The data for the central region of the cluster indicate the presence of a cooling flow with a mass deposition rate of 200–300 M yr−1 and an effective age of 2–3 Gyr .  相似文献   

16.
We present HST /WFPC2 observations of UGC 4483, an irregular galaxy in the M81/NGC 2403 complex. Stellar photometry was carried out with HSTphot, and is complete to V ≃26.0 and I ≃24.7. We measure the red giant branch tip at I =23.56±0.10, and calculate a distance modulus of μ 0=27.53±0.12 (corresponding to a distance of 3.2±0.2 Mpc), placing UGC 4483 within the NGC 2403 subgroup. We were able to measure properties of a previously known young star cluster in UGC 4483, finding integrated magnitudes of V =18.66±0.21 and I =18.54±0.10 for the stellar contribution (integrated light minus H α and [O  iii ] contribution), corresponding to an age of ∼10–15 Myr and an initial mass of ∼104 M. This is consistent with the properties of the cluster's brightest stars, which were resolved in the data for the first time. Finally, a numerical analysis of the galaxy's stellar content yields a roughly constant star formation rate of 1.3×10−3 M yr−1 and mean metallicity of [Fe/H]=−1.3 dex from 15 Gyr ago to the present.  相似文献   

17.
We apply the stochastic model of iron transport developed by Rebusco et al. to the Centaurus cluster. Using this model, we find that an effective diffusion coefficient D in the range  2 × 1028–4 × 1028 cm2 s−1  can approximately reproduce the observed abundance distribution. Reproducing the flat central profile and sharp drop around  30–70 kpc  , however, requires a diffusion coefficient that drops rapidly with radius so that   D > 4 × 1028 cm2 s−1  only inside about  25 kpc  . Assuming that all transport is due to fully developed turbulence, which is also responsible for offsetting cooling in the cluster core, we calculate the length- and velocity-scales of energy injection. These length-scales are found to be up to a factor of ∼10 larger than expected if the turbulence is due to the inflation and rising of a bubble. We also calculate the turbulent thermal conductivity and find it is unlikely to be significant in preventing cooling.  相似文献   

18.
We measure X-ray emission from the outskirts of the cluster of galaxies PKS 0745−191 with Suzaku , determining radial profiles of density, temperature, entropy, gas fraction and mass. These measurements extend beyond the virial radius for the first time, providing new information about cluster assembly and the diffuse intracluster medium out to  ∼1.5  r 200( r 200≃ 1.7 Mpc ≃ 15 arcmin  ). The temperature is found to decrease by roughly 70 per cent from 0.3 to  1 r 200  . We also see a flattening of the entropy profile near the virial radius and consider the implications this has for the assumption of hydrostatic equilibrium when deriving mass estimates. We place these observations in the context of simulations and analytical models to develop a better understanding of non-gravitational physics in the outskirts of the cluster.  相似文献   

19.
We report the results of a study of X-ray point sources coincident with the high-velocity system (HVS) projected in front of NGC 1275. A very deep X-ray image of the core of the Perseus cluster, made with the Chandra X-ray Observatory , has been used. We find a population of ultraluminous X-ray sources [ULXs; seven sources with   L X(0.5 − 7.0  keV) > 7 × 1039 erg s-1  ]. As with the ULX populations in the Antennae and Cartwheel galaxies, those in the HVS are associated with a region of very active star formation. Several sources have possible optical counterparts found on the Hubble Space Telescope ( HST ) images, although the X-ray brightest one does not. Absorbed power-law models fit the X-ray spectra, with most having a photon index between 2 and 3.  相似文献   

20.
We present measurements of the angular correlation function of galaxies selected from a B J ∼23.5 multicolour survey of two 5°×5° fields located at high galactic latitudes. The galaxy catalogue of ∼4×105 galaxies is comparable in size to catalogues used to determine the galaxy correlation function at low redshift. Measurements of the z ∼0.4 correlation function at large angular scales show no evidence for a break from a power law, although our results are not inconsistent with a break at ≳15 h−1 Mpc. Despite the large fields-of-view, there are large discrepancies between the measurements of the correlation function in each field, possibly caused by dwarf galaxies within z ∼0.11 clusters near the South Galactic Pole.
Colour selection is used to study the clustering of galaxies from z ∼0 to z ∼0.4. The galaxy correlation function is found to depend strongly on colour, with red galaxies more strongly clustered than blue galaxies by a factor of ≳5 at small scales. The slope of the correlation function is also found to vary with colour, with γ∼1.8 for red galaxies and γ∼1.5 for blue galaxies. The clustering of red galaxies is consistently strong over the entire magnitude range studied, although there are large variations between the two fields. The clustering of blue galaxies is extremely weak over the observed magnitude range, with clustering consistent with r 0∼2 h−1 Mpc. This is weaker than the clustering of late-type galaxies in the local Universe, and suggests that galaxy clustering is more strongly correlated with colour than morphology. This may also be the first detection of a substantial low-redshift galaxy population with clustering properties similar to faint blue galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号