首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨晓平  江斌  杨雅军 《地球科学》2019,44(10):3237-3251
为进一步了解大兴安岭早白垩世火山岩与古太平洋构造关系,通过大兴安岭地区1:100万地质编图工作,对大兴安岭中生代火山地层进行了重新厘定.依据岩石组合、古生物、接触关系及区域对比,结合年代学(锆石U-Pb、40Ar/39Ar测年数据、古生物)资料在原晚侏罗世火山岩中解体出大量的早白垩世早期火山岩(145~130 Ma).通过岩石组合、时空展布分析,探讨了大兴安岭地区145~100 Ma形成的早白垩世火山岩与古太平洋构造的成因关系.研究表明,早白垩世早期火山岩(145~130Ma)和早白垩世晚期火山岩(130~100 Ma)均呈NNE向展布,空间上具有密切的共生关系.火山岩时代总体具有由北西向南东变新趋势,与古太平洋板块早白垩世向东亚大陆下的后退式俯冲作用吻合,记录了早白垩世伊泽奈岐板块向东亚大陆俯冲事件,表明大兴安岭早白垩世火山岩(145~100 Ma)主要形成于伊泽奈岐板块向东亚大陆俯冲背景下.   相似文献   

2.
华南中生代大地构造研究新进展   总被引:33,自引:0,他引:33  
华南地区中生代构造动力体制经历了从特提斯构造域向滨太平洋构造域的转换,由此产生了强烈的陆内造山作用和岩浆活动,形成了复杂构造组合的晚中生代陆内造山带和火成岩省。本项研究在下列几个方面取得了新的进展:(1)通过对雪峰山地区沅麻盆地的野外调查和构造测量,确定了该盆地晚中生代-早新生代5期构造应力场及其演替序列:中晚侏罗世近W—E向挤压、早白垩世NW—SE向伸展、早白垩世中晚期NW—SE向挤压、晚白垩世近N—S向伸展、古近纪晚期NE—SW向挤压。构造应力场方向的变化记录了不同板缘的动力作用对该区的影响。(2)识别了湖南地区晚古生代-早中生代海相地层中发育的横跨叠加褶皱构造,并基于地层接触关系和已有火成岩同位素年代学数据分析,认为该地区横跨叠加褶皱构造记录了中生代两期构造挤压和地壳增厚事件:早期近东西向褶皱构造是对三叠纪华南地块南北边缘大陆碰撞和增生作用的远程响应,晚期NE—NNE向褶皱构造则是对中晚侏罗世古太平洋板块向华南大陆之下低角度俯冲作用的变形响应。(3)对湖南衡山西缘拆离断裂带的变形结构和运动学特征进行了详细的调查和构造测量,确定了衡山变质核杂岩构造,并对拆离带中韧性剪切变形的钠长岩脉的锆石进行了SHRIMP U-Pb测年,从而确定了华南地区伸展构造的起始时代约137 Ma,即早白垩世早中期。(4)通过锆石U-Pb年代学测试分析,揭示了东南沿海长乐—南澳构造带早白垩世2期构造-岩浆事件:早期(147~135 Ma)表现为强烈的混合岩化作用和深熔作用形成的片麻状花岗岩、花岗片麻岩等;晚期(135~117 Ma)岩浆岩以含石榴子石花岗岩为主。这个结果表明东南沿海构造带是晚中生代陆缘造山带,造山作用可能起始于晚侏罗世,于早白垩世早中期(135 Ma)以来发生伸展垮塌。在上述研究结果的基础上,探讨了华南地区三叠纪"印支运动"和中、晚侏罗世"燕山运动"的表现及其产生的板块构造动力体制及其转换时代、早白垩世从挤压构造应力体制向伸展构造应力体制转变的时间节点。  相似文献   

3.
华北东部地区中生代盆地格局及演化过程探讨   总被引:29,自引:11,他引:18  
华北东部中生代盆地演化受控于欧亚构造域的板块挤压拼接和滨太平洋构造域"洋-陆"俯冲碰撞两大动力学背景,与兴蒙造山带、秦岭-大别造山带、太行山隆起及郯庐断裂带等陆内及周边造山带的形成、深大断裂发育演化以及深部动力等因素有着密切的联系。早-中三叠世华北地区基本继承了晚海西期以来的构造格局和沉积特点,地势北西高、东南低,为一南陡北缓、呈NWW向展布的大型内陆沉积盆地;晚三叠世扬子板块与华北板块剪刀式碰撞拼接,华北地区全面抬升,且西部抬升小,东部抬升幅度大,盆地范围向西部退缩,沉积范围缩小,东部地区地势较高,地貌复杂,以隆升剥蚀为主;早-中侏罗世华北东部处于由古亚洲构造域向滨太平洋构造域演化的过渡阶段,该时期太行山的形成将华北地区分割成东、西两个大盆,西部鄂尔多斯盆地依然为一个大型沉积盆地,东部渤海湾盆地区在早-中侏罗世的早期为一些小的山间沉积盆地群,主要表现为对印支期造成的大量NWW或近EW向逆冲断层及阔缓褶皱所产生的低洼地区的充填,晚期则表现为披覆式沉积;晚侏罗世-早白垩世太平洋板块活动取代了扬子板块、西伯利亚板块活动对华北地区构造演化的控制地位,中国东部进入大规模的裂陷或断陷盆地发育阶段,且出现了明显的分区性:在盐山-歧口-新港-兰考-聊城断裂系以东,由于受郯庐断裂带左旋走滑构造应力场的控制,主要发育NW或NWW向断陷盆地,而在该断裂系以西至太行山以东的地区,受左旋走滑影响较弱,主要发育NE和NNE向断陷盆地,在张家口-蓬莱走滑断裂带以北的下辽河坳陷区,盆地的长轴方向为NNE,属郯庐断裂带内部的走滑拉张盆地;晚白垩世郯庐断裂带以西的华北广大地区整体处于隆升剥蚀状态,仅在河南信阳盆地及冀中、临清、黄骅坳陷的少数低洼地区接受沉积,多以红色河湖相粗碎屑为主。研究华北东部中生代盆地演化对于该地区前第三系油气勘探具有指导意义。  相似文献   

4.
浙东南地区(江绍断裂带东南)是位于华南东北部濒太平洋的沿海地区,是理解古太平洋板块俯冲作用的重要地区。本次研究选取岩坦、梁弄、新铺3个典型的岩体进行岩相学、锆石年代学和地球化学研究,并结合前人对该地区花岗岩体的研究结果,探讨古太平洋板块俯冲与岩浆活动之间的关系。LA-ICP-MS锆石U-Pb定年结果显示:新铺花岗岩的年龄为(145.8±1.4) Ma,表明浙东南地区晚侏罗世仍存在岩浆活动的记录;梁弄花岗岩和岩坦花岗岩的形成时代分别为(106.2±1.4)和(94.7±1.4) Ma,代表早白垩世晚期典型的岩浆活动。地球化学特征上,3个岩体均富SiO2、Al2O3,具有高的A/CNK,属高钾钙碱性花岗岩;稀土元素球粒陨石标准化分布型式图中具显著的负Eu异常,稀土元素总量偏低;微量元素原始地幔标准化分布型式图中富集Rb、Cs、U、Th、Pb,亏损Ba、Sr、Nb、Ti,为典型的壳源型花岗岩。结合已有的资料,本次研究表明,新铺花岗岩形成在由侏罗纪挤压向白垩纪伸展转变的构造背景下,梁弄花岗岩和岩坦花岗岩形成在岩石圈减薄的伸展构造背景下,它们形成均受到了古太平洋板块俯冲作用的影响。  相似文献   

5.
《International Geology Review》2012,54(15):1842-1863
ABSTRACT

The late Mesozoic magmatic record within the Erguna Block is critical to evaluate the tectonic history and geodynamic evolution of the Great Xing’an Range, NE China. Here, we provide geochronological and geochemical data on Late Jurassic–Early Cretaceous plutonic-volcanic rocks in the northern Erguna Block and discuss their origin within a regional tectonic framework. Late Mesozoic magmatism in the Erguna Block can be divided into two major periods: Late Jurassic (162–150 Ma) and Early Cretaceous (140–125 Ma). Late Jurassic quartz monzonite and dacite show adakite characteristics such as high Al2O3, high Sr, and steeply fractionated REE patterns. Contemporary granitoids and rhyolites are also characterized by strong enrichment of light rare earth elements (LREE) and significant depletion in heavy rare earth elements (HREE), but with more pronounced negative Eu anomalies. Early Cretaceous trachytes and monzoporphyries exhibit moderate LREE enrichment and relatively flat HREE distributions. Coeval granites and rhyolites have transitional signatures between A-type and fractionated I-type felsic rocks. Both Late Jurassic and Early Cretaceous rocks have distinctive negative Nb, Ta, and Ti anomalies, and positive zircon εHf(t) values, suggesting that these magmas were derived from partial melting of Meso-Neoproterozoic accreted lower crust, although melting occurred at a variety of crustal levels. The transition from adakite to non-adakite magmatism reflects continued crustal thinning from Late Jurassic to Early Cretaceous. Our data, together with recently reported isotopic data for plutonic and volcanic rocks, as well as geochemical data, in NE China, suggest that Late Jurassic–Early Cretaceous magmatism in the Erguna Block was possibly induced by post-collisional extension after closure of the Mongol-Okhotsk Ocean.  相似文献   

6.
报导了黑龙江省东北部街津口-抚远地区花岗闪长斑岩中的锆石LA-ICP-MS U-Pb定年结果,以限定该区花岗闪长斑岩的形成时代及其构造属性。花岗闪长斑岩中的锆石多呈自形-半自形晶,振荡环带发育,Th/U值主要为0.31~1.23,指示其岩浆成因。对岩浆锆石的定年结果表明,这些花岗闪长斑岩均形成于晚白垩世(90.2~94.8 Ma),而非前人认为的晚印支期。结合研究区及其邻区同时代火成岩的组合特征和古太平洋板块的构造演化历史,认为黑龙江省东北部街津口-抚远地区晚白垩世花岗闪长斑岩形成于古太平洋板块向东亚大陆俯冲的构造背景,该期岩浆事件标志着古太平洋板块正向俯冲作用的开始。  相似文献   

7.
云岗盆地晚中生代沉积-火山充填序列及其构造意义   总被引:1,自引:0,他引:1       下载免费PDF全文
利用凝灰岩夹层及安山岩的锆石U-Pb同位素测年,对云岗盆地晚中生代地层充填序列的关键时限进行了限定。结合地层接触关系、安山岩的地球化学特征,分析了重点地质界面的构造意义。取得了以下主要认识:(1)早中侏罗世,盆地为一套湖进序列的连续沉积,以大同组含煤地层为代表,暗示着区域拉张的构造背景;(2)盆地整体缺失了晚侏罗世(160.4±1.1)Ma至早白垩世(130.1±0.7)Ma的沉积地层,其发生的动力学背景可能与古太平洋、西伯利亚、特提斯同时向东亚大陆汇聚产生的远程效应有关;(3)旧高山安山岩形成于早白垩世(130.1±0.7)Ma大陆板内裂谷的构造背景,与华北克拉通破坏的动力学背景紧密相关。研究成果对旧高山安山岩时代归属提出了新的认识,并不归属于上侏罗统髫髻山组,而相当于下白垩统张家口组。  相似文献   

8.
The eastern pari of the Xing-Meng Orogenic Belt( XMOB )consists of the Lesser Xing'an-Zhangguangcai Range Orogenic belt, the Bureya-Jiamusi-khanka Block and the Sikhote-Alin accretionary belt. This area is located between the Paleo-Asian oceanic and Paleo-Pacific tectonic regimes. Recent researches imply that the Paleo-Pacific subduction might have begun since early Permian and influenced the both sides of the Mudanjiang Fault during Triassic, which generated a N-S trending magmatic belt and accretionary complexes, such as the Heilongjiang Complex. In Late Jurassic to Early Cretaceous, some tectono st rati graph ic terranes were produced in Sikhote-Alin, which were then dismembered and migrated northwards in late Early Cretaceous by sinistral strike-slip faults. The continental margin parallel transportion weakened subduction-related magmatism in NE China which was under an extensional setting. However, in Lite Cretaceous, the Paleo-Pacific subduction was re-Activated in the eastern XMOB, which contributed to the magmatism in Sikhote-Alin.  相似文献   

9.
Southeastern Eurasia is a global window to the Cretaceous paleoclimate and lithosphere coupling. China contains one of the most complete and complex sedimentary records of Mesozoic desert basins on planet Earth. In this study, we perform the spatio-temporal tracking of 96 Cretaceous palaeoclimate indicators during 79 Myr which reveal that the plateau paleoclimate archives from East Asia resulted from an Early to Mid-Cretaceous ocean–atmosphere coupling and a shift to a preponderant role of Late Cretaceous lithosphere dynamics and tectonic forcing on high-altitude depositional systems linked to the subduction margins of the Tethys and Paleo-Pacific realms beneath the Eurasian plate. The crustal response to tectonic processes linked with the spatio-temporal evolution of the Tethyan and Paleo-Pacific margins defined the configuration of major sedimentary basins on this region. The significant increase and decrease in the number of active sedimentary basins that occur during the Cretaceous, from 16 in the Early Cretaceous, to 28 in the Mid-Cretaceous, and a decreasing to 20 sedimentary basins in the Late Cretaceous, is a direct response of lithospheric dynamics associated with the two main subduction zones (Tethys and Pacific domains). A shift in subduction style from an Early Cretaceous Paleo-Pacific Plate slab roll back to a Late Cretaceous flat-slab mode might have triggered regional plateau uplift, blocked intraplate volcanism, thus enhancing the denudation and sediment availability, and created wind corridors that led to the construction and accumulation of extensive Late Cretaceous aeolian sandy deserts (ergs) that covered Mid-Cretaceous plateau salars. At the same time, plateau uplift associated with crustal thickening following terrane assembly in the Tethyan margin triggered altitudinal cryospheric processes in sandy desert systems. Evidence of an active Cretaceous cryosphere in China include Valanginian-Hauterivian glacial debris flows, Early Aptian geochemical signature of melt waters from extensive ice sheets, and Cenomanian–Turonian ice-rafted debris (IRD). These cryospheric indicators suggest an already uplifted plateau in southeastern Eurasia during the Cretaceous, and the marked correlation between cold plateau paleoclimate archives and marine records suggests a strong ocean-atmosphere coupling during Early and Mid-Cretaceous cold snaps. We thus conclude that lithospheric tectonics during Cretaceous played a fundamental role in triggering high-altitude basin desertification and spatio-temporal plateau paleohydrology variability in the Cretaceous of south-eastern Eurasia.  相似文献   

10.
Several major volcanic zones are distributed across the eastern North China Craton, from northwest to southeast: the Greater Xing’an Range, Jibei-Liaoxi, Xishan, and Songliao Basins, and the Yanji, Huanghua, and Ludong volcanic zones. The Huanghua depression within the Bohai Bay Basin was filled by middle Late Mesozoic volcanic rocks and abundant Cenozoic alkaline basalts. Zircon LA-ICP-MS and SHRIMP U–Pb dating show that basicintermediate volcanic rocks were extruded in the Early Cretaceous of 118.8 ± 1.0 Ma (weighted mean 206Pb/238U age), before Late Cretaceous acid lavas at 71.5 ± 2.6 Ma. An inherited zircon from andesite has a Paleoprotoerozoic core crystallization age of 2,424 ± 22 Ma (206Pb/207Pb age) indicating that the basement of the Bohai Bay Basin is part of the North China Craton. Early Cretaceous basic and intermediate lavas are characterized by strong enrichments in LREE and LILE and depletions in HREE and HFSE, indicating a volcanic arc origin related to oceanic subduction. Depletion in Zr only occurs in basic and intermediate volcanic rocks, while depletions in Sr and Ti exist only in acid samples, indicating that the acid series is not genetically related to the basic–intermediate series. Formation ages and geochemical features indicate that the Late Cretaceous acid lavas are products of crustal remelting in an extensional regime. Combined information from all these volcanic zones shows that subduction-related volcanic rocks were generated in the Jibei-Liaoxi and Xishan volcanic zones during the Early Jurassic, about 60 Ma earlier than their analogues extruded in the Huanghua and Ludong volcanic zones during the Early Cretaceous. This younging trend also exists in the youngest extension-related volcanism in each of these zones: Early Cretaceous asthenosphere-derived alkaline basalts in the northwest and Late Cretaceous in the southeast. A tectonic model of northwestward subduction and continuous oceanward retreat of the Paleo-Pacific Plate is proposed to explain the migration pattern of both arc-related and post-subduction extension-related volcanic rocks. As the subduction zone continuously migrated, active continental margin and backarc regimes successively played their roles in different parts of North China during the Late Mesozoic (J1–K2).  相似文献   

11.
为了提高大兴安岭中生代火山岩地层的区域可对比性、深入研究大兴安岭中生代火山岩与古太平洋和蒙古—鄂霍茨克洋的构造关系,本文在大兴安岭地区1: 1 000 000地质图编图的基础上,依据岩石组合、古生物、接触关系、区域对比以及最新的年代学(锆石U-Pb、40Ar/39Ar测年)资料,对大兴安岭中生代火山岩地层重新进行了厘定。进一步界定了塔木兰沟组(172~161 Ma)、满克头鄂博组(162~148 Ma)、玛尼吐组(158~145 Ma)、白音高老组(145~129 Ma)、梅勒图组(143~128 Ma)、龙江组(128~120 Ma)、光华组(128~118 Ma)、甘河组(120~113 Ma)和孤山镇组(118~110 Ma)的形成时代。结合古太平洋、蒙古—鄂霍茨克洋板块对东亚大陆边缘的俯冲作用,解析了中生代火山岩形成的构造背景,认为中—晚侏罗世NE向展布的火山岩主要形成于蒙古—鄂霍茨克洋板块向南东俯冲的伸展背景,早白垩世NNE向展布的火山岩主要形成于伊泽奈岐板块向东亚大陆俯冲的伸展背景。晚侏罗世与早白垩世火山岩地层之间发育的开库康组、木瑞组等类磨拉石建造,是两个构造体系转换阶段的主要沉积记录。  相似文献   

12.
The Qinling Orogen in Central China records the history of a complex geological evolution and tectonic transition from compression to extension during the Late Mesozoic,with concomitant voluminous granitoids formation.In this study,we present results from petrological,geochemical,zircon U-Pb-Lu-Hf isotopic studies on the Lengshui felsic dykes from Luanchuan region in the East Qinling Orogen.We also compile published geochronological,geochemical,and Hf isotopic data from Luanchuan region and present zircon Hf isotopic contour maps.The newly obtained age data yield two group of ages at~145 Ma and 140 Ma for two granite porphyries from the Lengshui felsic dykes,with the ~145 Ma interpreted as response to the peak of magmatism in the region,and the ~140 Ma as the timing of formation of the felsic dykes.The corresponding Hf isotopic data of the granite porphyries display negativeeHit)values of-16.67 to-4.61,and Hf crustal model ages(T_(DM~C_)of 2255-1490 Ma,indicating magma sourced from the melting of Paleo-to Mesoproterozoic crustal materials.The compiled age data display two major magmatic pulses at 160-130 Ma and 111-108 Ma with magmatic quiescence in between,and the zircon Hf isotopic data display/ε_(Hf)(t)values ranging from-41.9 to 2.1 and T_(DM)~c values of3387-1033 Ma,suggesting mixed crustal and mantle-derived components in the magma source,and correspond to multiple tectonic events during the Late Mesozoic.The Luanchuan granitoids are identified as 1-type granites and most of these are highly fractionated granites,involving magma mixing and mingling and crystal fractionation.The tectonic setting in the region transformed from the Late Jurassic syn-collision setting to Early Cretaceous within-plate setting,with E-W extension in the Early Cretaceous.This extension is correlated with the N-S trending post-collisional extension between the North China Craton and Yangtze Craton as well as the E-W trending back-arc extension triggered by the westward Paleo-Pacific Plate subduction,eventually leading to lithospheric thinning,asthenospheric upwelling,mafic magma underplating,and crustal melting in the East Qinling Orogen.  相似文献   

13.
Detrital zircon U–Pb data from sedimentary rocks in the Hengyang and Mayang basins, SE China reveal a change in basin provenance during or after Early Cretaceous. The results imply a provenance of the sediment from the North China Craton and Dabie Orogen for the Upper Triassic to Middle Jurassic sandstones and from the Indosinian granitic plutons in the South China Craton for the Lower Cretaceous sandstones. The 90–120 Ma age group in the Upper Cretaceous sandstones in the Hengyang Basin is correlated with Cretaceous volcanism along the southeastern margin of South China, suggesting a coastal mountain belt have existed during the Late Cretaceous. The sediment provenance of the basins and topographic evolution revealed by the geochronological data in this study are consistent with a Mesozoic tectonic setting from Early Mesozoic intra-continental compression through late Mesozoic Pacific Plate subduction in SE China.  相似文献   

14.
The Qinling Orogenic belt has been well documented that it was formed by multiple steps of convergence and subsequent collision between the North China and South China Blocks during Paleozoic and Late Triassic times. Following the collision in Late Triassic times, the whole range evolved into an intracontinental tectonic process. The geological, geophysical and geochronological data suggest that the intracontinental tectonic evolutionary history of the Qinling Orogenic Belt allow deduce three stages including strike-slip faulting during Early Jurrassic, N-S compressional deformation during Late Jurassic to Early Cretaceous and orogenic collapse during Late Cretaceous to Paleogene. The strike-slip faulting and the infills in Early Jurassic along some major boundary faults show flower structures and pull-apart basins, related to the continued compression after Late Triassic collision between the South Qinling Belt and the South China Block along the Mianlue suture. Late Jurassic to Early Cretaceous large scale of N-S compression and overthrusting progressed outwards from inner of Qinling Orogen to the North China Block and South China Block, due to the renewed southward intracontinental subduction of the North China Block beneath the Qinling Orogenic Belt and continuously northward subduction of the South China Block, respectively. After the Late Jurassic-Early Cretaceous compression and denudation, the Qinling Orogenic Belt evolved into Late Cretaceous to Paleogene orogen collapse and depression, and formed many large fault basins along the major faults.  相似文献   

15.
LA-ICP-MS zircon U–Pb ages and geochemical data are presented for the Mesozoic volcanic rocks in northeast China, with the aim of determining the tectonic settings of the volcanism and constraining the timing of the overprinting and transformations between the Paleo-Asian Ocean, Mongol–Okhotsk, and circum-Pacific tectonic regimes. The new ages, together with other available age data from the literature, indicate that Mesozoic volcanism in NE China can be subdivided into six episodes: Late Triassic (228–201 Ma), Early–Middle Jurassic (190–173 Ma), Middle–Late Jurassic (166–155 Ma), early Early Cretaceous (145–138 Ma), late Early Cretaceous (133–106 Ma), and Late Cretaceous (97–88 Ma). The Late Triassic volcanic rocks occur in the Lesser Xing’an–Zhangguangcai Ranges, where the volcanic rocks are bimodal, and in the eastern Heilongjiang–Jilin provinces where the volcanics are A-type rhyolites, implying that they formed in an extensional environment after the final closure of the Paleo-Asian Ocean. The Early–Middle Jurassic (190–173 Ma) volcanic rocks, both in the Erguna Massif and the eastern Heilongjiang–Jilin provinces, belong chemically to the calc-alkaline series, implying an active continental margin setting. The volcanics in the Erguna Massif are related to the subduction of the Mongol–Okhotsk oceanic plate beneath the Massif, and those in the eastern Jilin–Heilongjiang provinces are related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent. The coeval bimodal volcanic rocks in the Lesser Xing’an–Zhangguangcai Ranges were probably formed under an extensional environment similar to a backarc setting of double-direction subduction. Volcanic rocks of Middle–Late Jurassic (155–166 Ma) and early Early Cretaceous (145–138 Ma) age only occur in the Great Xing’an Range and the northern Hebei and western Liaoning provinces (limited to the west of the Songliao Basin), and they belong chemically to high-K calc-alkaline series and A-type rhyolites, respectively. Combined with the regional unconformity and thrust structures in the northern Hebei and western Liaoning provinces, we conclude that these volcanics formed during a collapse or delamination of a thickened continental crust related to the evolution of the Mongol–Okhotsk suture belt. The late Early Cretaceous volcanic rocks, widely distributed in NE China, belong chemically to a low- to medium-K calc-alkaline series in the eastern Heilongjiang–Jilin provinces (i.e., the Eurasian continental margin), and to a bimodal volcanic rock association within both the Songliao Basin and the Great Xing’an Range. The volcanics in the eastern Heilongjiang–Jilin provinces formed in an active continental margin setting related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent, and the bimodal volcanics formed under an extensional environment related either to a backarc setting or to delamination of a thickened crust, or both. Late Cretaceous volcanics, limited to the eastern Heilongjiang–Jilin provinces and the eastern North China Craton (NCC), consist of calc-alkaline rocks in the eastern Heilongjiang–Jilin provinces and alkaline basalts in the eastern NCC, suggesting that the former originated during subduction of the Paleo-Pacific Plate beneath the Eurasian continent, whereas the latter formed in an extensional environment similar to a backarc setting. Taking all this into account, we conclude that (1) the transformation from the Paleo-Asian Ocean regime to the circum-Pacific tectonic regime happened during the Late Triassic to Early Jurassic; (2) the effect of the Mongol–Okhotsk suture belt on NE China was mainly in the Early Jurassic, Middle–Late Jurassic, and early Early Cretaceous; and (3) the late Early Cretaceous and Late Cretaceous volcanics can be attributed to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent.  相似文献   

16.
The eastern segment of Central Asian Orogenic Belt underwent not only a long evolution history related to the Paleo-Asian Ocean during Paleozoic but also the tectonic overprinting by the westward subduction of Paleo-Pacific Ocean crust during Mesozoic. When the subduction of Paleo-Pacific Ocean crust started has been long debated issue for understanding the tectonic evolution of the eastern Asian continental margin. The eastern margin of the Jimusi Block (Wandashan Terrane) preserved complete records for the accretionary process of the westward subduction of Paleo-Pacific Ocean crust. Comprising the Yuejinshan Complex and Raohe Accretionary Complex (RAC), the Wandashan Terrane is located in the eastern margin of Jiamusi Block, NE China, and is considered to be an accretionary wedge of the westward subducting oceanic crust. To reconstruct the marginal accretion processes of the Jiamusi Block, the structural deformation of the Wandashan Terrane was investigated in the field and the geochronology of the Dalingqiao and Yongfuqiao formations were studied, which were formed syn-and-post RAC accretion respectively. The Yuejinshan and Raohe complexes were discontinuously accreted to the eastern margin of the Jiamusi Block. Contrary to the previous consideration of the Late Triassic to Early Jurassic, this study suggests that the Yuejianshan Complex in southwest Wandashan Terrane probably accreted from Late Carboniferous to Middle Permian, which was driven by unknown oceanic crust subduction existing to the east (present position) of the Jiamusi Block at that time. The siltstones of the Dalingqiao Fm. yield the youngest zircon U-Pb age of 142 ± 2 Ma, indicating the emplacement of the RAC not earlier than the Late Jurassic. Thus, the RAC might start to accrete from the Jurassic and emplace during 142–131 Ma, resulted from the Paleo-Pacific subduction which started from the Late Triassic to Early Jurassic.  相似文献   

17.
佳木斯地块及邻区早古生代——晚中生代构造演化   总被引:1,自引:0,他引:1  
为厘清嘉荫—牡丹江缝合带的形成时代,确定佳木斯地块早古生代—晚中生代构造演化过程,笔者对佳木斯地块及邻区出露的一些特征岩石的相关资料进行了收集与系统分析。分析结果显示,黑龙江杂岩外来岩块原岩具有类似蛇绿岩的特征,锆石U--Pb年龄结果显示其形成时代为257~210 Ma,云母及蓝闪石Ar--Ar年龄显示基质与外来岩块共同发生高压变质与退变质事件的时间为193~145 Ma,结合出露于佳木斯地块与松嫩地块的早古生代-早侏罗世火成岩地球化学特征及锆石U-Pb年龄,提出佳木斯地块与松嫩地块间经历了早古生代拼合—二叠纪末期三叠纪裂解—侏罗纪-白垩纪初期再次拼合的构造演化过程。古太平洋板块向西的俯冲作用,驱动了其最终的拼合,形成了以黑龙江杂岩为标志的嘉荫—牡丹江缝合带。  相似文献   

18.
在内蒙古林西县西拉木伦断裂带内发育岩株状产出并具有不同程度变形特征的闪长岩体, 岩体侵入到双井片岩中.对该闪长岩进行了岩石学、地球化学、锆石LA-ICPMS U-Pb年龄和角闪石40Ar-39Ar年龄的研究.结果表明内蒙古林西县西拉木伦断裂带内的变形闪长岩侵位于早二叠世, 其锆石LA-ICPMS U-Pb年龄为286±1 Ma.岩浆来源于俯冲带流体/熔体交代作用而形成的富集地幔.岩石遭受了早侏罗世绿帘角闪岩相变质作用, 角闪石40Ar-39Ar年龄为188.7±1.4 Ma.结合研究区及邻区近年来的新成果认为索伦缝合带早古生代以来的镁铁质岩石均显示来源于相对富集LILE、LREE的地幔, 与俯冲流体或熔体的改造作用相关, 并且随着时代的更新改造程度显示增强的趋势.索伦缝合带在晚石炭世(~310 Ma)之前发生过闭合碰撞, 晚石炭世-早二叠世(~310~276 Ma)处于后造山伸展的背景, 在伸展环境下形成了华北北缘该时期广泛分布的闪长岩-花岗闪长岩带, 报道的闪长岩即为该时期的产物.晚二叠世缝合带局部区域存在洋盆, 洋盆的闭合导致了晚二叠世-中三叠世(~272~230 Ma)索伦缝合带的最终碰撞缝合, 最终碰撞缝合在空间上的不均一性形成了缝合带内该时期大量并存的同碰撞花岗岩和后碰撞花岗岩.索伦缝合带的缝合导致华北板块与其北部各微陆块的拼合, 此时蒙古-鄂霍次克海作为古太平洋的一个分支北东向展布于西伯利亚板块和拼合后的华北板块之间.早侏罗世蒙古-鄂霍次克海在蒙古东北部发生闭合, 本文报道的角闪石40Ar-39Ar年龄记录了洋壳闭合后陆-陆碰撞的变质时间, 之后研究区进入后造山伸展的环境.此时在古太平洋板块向华北板块俯冲应力的共同作用下, 华北东部在侏罗纪出现挤压机制与拉张机制的多次转换.晚侏罗世古太平洋板块俯冲方向转变后, 中国东部进入持续的拉张背景, 并转入西太平洋构造域的范畴.   相似文献   

19.
吉林-黑龙江东部地区的中生代增生杂岩,主要由吉林-黑龙江高压变质带和那丹哈达增生杂岩(或那丹哈达地体)组成。它们将为古亚洲洋与环太平洋构造域的转换作用,大洋板块地层(OPS)层序重建,特别是古太平洋板块向欧亚大陆的俯冲历史提供重要的科学依据。吉林-黑龙江高压带分布在佳木斯-兴凯与松辽地块之间的具有高压变质带性质的缝合带,新的地质年代学研究表明其形成时代为210~180Ma,表明晚三叠-早侏罗世为南北向古亚洲洋关闭和西向俯冲增生开始的关键时期。那丹哈达增生杂岩则发育在佳木斯-兴凯地块东侧,并具体分为西部的跃进山杂岩和东部的饶河杂岩。新近发表的数据显示,跃进山杂岩就位时代为210~180Ma,这与佳木斯-兴凯地块西缘的吉黑高压带形成时代相似。而饶河杂岩就位时代为晚侏罗-早白垩世,最晚期就位的时代为早白垩世(137~130Ma)。因此,吉黑东部地区的中生代增生杂岩为古太平洋向欧亚大陆中生代的俯冲过程提供了关键的信息。  相似文献   

20.
锆石U?Pb定年结果表明,内蒙古西部苦楚乌拉—英巴地区花岗岩包括晚泥盆世二长花岗岩((371±2)Ma)、中二叠世钾长花岗岩((271±1)~(270±1)Ma)和早白垩世二长花岗岩((133±1)Ma).结合前人资料,将研究区晚古生代以来的酸性岩浆活动分为4期:晚泥盆世(~371 Ma)、晚石炭世(313~311 M...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号