首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Comptes Rendus Geoscience》2019,351(2-3):260-268
Nano-polycrystalline diamond cubes with an edge length of 6 mm have been used as anvils for Kawai-type multianvil apparatus. The maximum pressure of ∼88 GPa was confirmed based on in situ X-ray diffraction measurements using nano-polycrystalline diamond anvils with a truncation of 1.0 mm, which is more than 50% higher than the pressure (∼56 GPa) achieved at the same press load using sintered-diamond anvils. The X-ray transparency of the nano-polycrystalline diamond anvil was found to be about 10–100 times as high as that of sintered-diamond anvils for a wide range of photon energies (∼30–130 keV), leading to high-quality X-ray imaging and diffraction profiles of the sample under pressure, even through the anvils. It is expected that further optimization of the pressure medium and gasket would lead to pressures far higher than 100 GPa without sacrificing the advantages of the multianvil apparatus over diamond anvil cells.  相似文献   

2.
《Comptes Rendus Geoscience》2019,351(2-3):236-242
Phonon velocities and densities for Pt were measured based on inelastic X-ray scattering from ambient pressure to 20 GPa in order to independently determine its equation of state (EOS). Phonon velocities were determined with sine dispersion relations. Cij values were obtained by fitting phonon velocities and densities to the Christoffel equation. We found that the obtained Cijs were in good agreement with previously reported Cijs at ambient condition. Based on the Cij values in various conditions, experimental pressures were calculated. The EOS of Pt as a primary pressure scale was determined based on the experimental pressures. We report K’ = 5.17 with fixed KT = 274.1 GPa and V0 = 60.360 Å3 for Vinet EOS. Our scale is in good agreement with several previously published scales based on shock experiments and XRD.  相似文献   

3.
《Comptes Rendus Geoscience》2019,351(2-3):113-120
A polycrystalline specimen of liebermannite [KAlSi3O8 hollandite] was synthesized at 14.5 GPa and 1473 K using glass starting material in a uniaxial split-sphere apparatus. The recovered specimen is pure tetragonal hollandite [SG: I4/m] with bulk density of within 98% of the measured X-ray value. The specimen was also characterized by Raman spectroscopy and nuclear magnetic resonance spectroscopy. Sound velocities in this specimen were measured by ultrasonic interferometry to 13 GPa at room T in a uniaxial split-cylinder apparatus using Al2O3 as a pressure marker. Finite strain analysis of the ultrasonic data yielded KS0 = 145(1) GPa, K0 = 4.9(2), G0 = 92.3(3) GPa, G0 = 1.6(1) for the bulk and shear moduli and their pressure derivatives, corresponding to VP0 = 8.4(1) km/s, VS0 = 4.9(1) km/s for the sound wave velocities at room temperature. These elasticity data are compared to literature values obtained from static compression experiments and theoretical density functional calculations.  相似文献   

4.
《Gondwana Research》2016,29(4):1391-1414
Experiments on the origin of the Udachnaya-East kimberlite (UEK) have been performed using a Kawai-type multianvil apparatus at 3–6.5 GPa and 900–1500 °C. The studied composition represents exceptionally fresh Group-I kimberlite containing (wt.%): SiO2 = 25.9, TiO2 = 1.8, Al2O3 = 2.8, FeO = 9.0, MgO = 30.1, CaO = 12.7, Na2O = 3.4, K2O = 1.3, P2O5 = 1.0, Cl = 0.9, CO2 = 9.9, and H2O = 0.5. The super-solidus assemblage consists of melt, olivine (Ol), Ca-rich (26.0–30.2 wt.% CaO) garnet (Gt), Al-spinel (Sp), perovskite (Pv), a CaCO3 phase (calcite or aragonite), and apatite. The low pressure assemblage (3–4 GPa) also includes clinopyroxene. The apparent solidus was established between 900 and 1000 °C at 6.5 GPa. At 6.5 GPa and 900 °C Na–Ca carbonate with molar ratio of (Na + K)/Ca  0.44 was observed. The UEK did not achieve complete melting even at 1500 °C and 6.5 GPa, due to excess xenogenic Ol in the starting material. In the studied PT range, the melt has a Ca-carbonatite composition (Ca# = molar Ca/(Ca + Mg) ratio = 0.62–0.84) with high alkali and Cl contents (7.3–11.4 wt.% Na2O, 2.8–6.7 wt.% K2O, 1.6–3.4 wt.% Cl). The K, Na and Cl contents and Ca# decrease with temperature. It is argued that the primary kimberlite melt at depths > 200 km was an essentially carbonatitic (< 5 wt.% SiO2), but evolved toward a carbonate–silicate composition (up to 15–20 wt.% SiO2) during ascent. The absence of orthopyroxene among the run products indicates that xenogenic orthopyroxene was preferentially dissolved into the kimberlite melt. The obtained subliquidus phase assemblage (Ol + Sp + Pv + Ca-rich Gt) at PT conditions of the UEK source region, i.e. where melt was in the last equilibrium with source rock before magma ascent, differs from the Opx-bearing peridotitic mineral assemblage of the UEK source region. This difference can be ascribed to the loss of substantial amounts of CO2 from the kimberlite magma at shallow depths, as indicated by both petrological and experimental data. Our study implies that alkali-carbonatite melt would be a liquid phase within mantle plumes generated at the core–mantle boundary or shallower levels of the mantle, enhancing the ascent velocity of the plumes. We conclude that the long-term activity of a rising hot mantle plume and associated carbonatite melt (i.e. kimberlite melt) causes thermo-mechanical erosion of the subcontinental lithosphere mantle (SCLM) roots and creates hot and deformed metasomatic regions in the lower parts of the SCLM, which corresponds to depths constrained by PT estimates of sheared Gt-peridotite xenoliths. The sheared Gt-peridotites undoubtedly represent samples of these regions.  相似文献   

5.
Raman spectroscopy and heat capacity measurements have been used to study the post-perovskite phase of CaIr0.5Pt0.5O3, recovered from synthesis at a pressure of 15 GPa. Laser heating CaIr0.5Pt0.5O3 to 1,900 K at 60 GPa produces a new perovskite phase which is not recoverable and reverts to the post-perovskite polymorph between 20 and 9 GPa on decompression. This implies that Pt-rich CaIr1−xPtxO3 perovskites including the end member CaPtO3 cannot easily be recovered to ambient pressure from high P–T synthesis. We estimate an increase in the thermodynamic Grüneisen parameter across the post-perovskite to perovskite transition of 34%, of similar magnitude to those for (Mg,Fe)SiO3 and MgGeO3, suggesting that CaIr0.5Pt0.5O3 is a promising analogue for experimental studies of the competition in energetics between perovskite and post-perovskite phases of magnesium silicates in Earth’s lowermost mantle. Low-temperature heat capacity measurements show that CaIrO3 has a significant Sommerfeld coefficient of 11.7 mJ/mol K2 and an entropy change of only 1.1% of Rln2 at the 108 K Curie transition, consistent with the near-itinerant electron magnetism. Heat capacity results for post-perovskite CaIr0.5Rh0.5O3 are also reported.  相似文献   

6.
The critical issue in the study of kimberlites, known as principal host rocks of diamonds, is the reconstruction of their primary melt composition, which is poorly constrained due to contamination by xenogenic materials, significant loss of volatiles during eruption, and post-magmatic alteration. It is generally accepted that the last equilibration of primary kimberlite melt with surrounding mantle (garnet lherzolite) occurred beneath cratons at 5–7 GPa (150–230 km depths). However, the subliquidus mineral assemblages obtained in kimberlite melting experiments at mantle pressures differ from lherzolite, probably owing to unaccounted loss of CO2. Here we present experiments at 6.5 GPa and 1200–1600 °C on unaltered kimberlite with an addition of 2–22 mol% CO2 over its natural abundance in the rock (13 mol%), but keeping proportions of other components identical to those in an exceptionally fresh anhydrous kimberlite from Udachnaya-East pipe in Siberia. We found that the partial melt achieves equilibrium with garnet lherzolite at 1500 °C and 19–23 mol% CO2 in the system. Under these conditions this melt contains (mol%): SiO2 = 9, FeO = 6–7, MgO = 23–26, CaO = 16, Na2O = 4, K2O = 1, and CO2 = 30–35. We propose, therefore, the alkali-rich carbonatitic composition of primary kimberlite melt and loss of 34–45 mol% (34–46 wt%) CO2 during ascent of the kimberlite magma to the surface.  相似文献   

7.
Comparing the early Earth to the present day, geological–geochemical evidence points towards higher mantle potential temperature and a different type of tectonics. In order to investigate possible changes in Precambrian tectonic styles, we conduct 3D high-resolution petrological–thermomechanical numerical modelling experiments for oceanic plate subduction under an active continental margin at a wide range of mantle potential temperature TP (∆ TP = 0  250 K, compared to present day conditions). At present day mantle temperatures (∆ TP = 0 K), results of numerical experiments correspond to modern-style subduction, whereas at higher temperature conditions important systematic changes in the styles of both lithospheric deformation and mantle convection occur. For ∆ TP = 50  100 K a regime of dripping subduction emerges which is still very similar to present day subduction but is characterised by frequent dripping from the slab tip and a loss of coherence of the slab, which suggests a close relationship between dripping subduction and episodic subduction. At further increasing ∆ TP = 150  200 K dripping subduction is observed together with unstable dripping lithosphere, which corresponds to a transitional regime. For ∆ TP = 250 K, presumably equivalent to early Archean, the dominating tectonic style is characterised by small-scale mantle convection, unstable dripping lithosphere, thick basaltic crust and small plates. Even though the initial setup is still defined by present day subduction, this final regime shows many characteristics of plume-lid tectonics. Transition between the two end-members, plume-lid tectonics and plate tectonics, happens gradually and at intermediate temperatures elements of both tectonic regimes are present. We conclude, therefore, that most likely no abrupt geodynamic regime transition point can be specified in the Earth's history and its global geodynamic regime gradually evolved over time from plume-lid tectonics into modern style plate tectonics.  相似文献   

8.
Compositions of picroilmenite and pyrope concentrates from Carboniferous sandstones in the Arkhangelsk kimberlite province were analyzed by EPMA and LAM ICP MS in Analytic Center of V.S. Sobolev’s Institute of Geology and Mineralogy, SD RAS, Novosibirsk. The results from single grain thermobarometry (Ashchepkov et al., 2010, Ashchepkov et al., 2011, Ashchepkov et al., 2012) for garnet, spinel, ilmenite and clinopyroxene suggest heating of the base of the lithospheric mantle to 1400 °C (45 mw/m2) at 7.0–7.5 GPa and to 900 °C (35 mw/m2) at 3.5–5.5 GPa in an interval corresponding to a lens enriched in chromite and clinopyroxene. The pipes from the eastern fields reveal smoother mantle geotherms and lower temperature PT paths. Mantle columns beneath the kimberlites from northern (Verkhotinskoe field) and western pipes (Kepinskoe field) show heating from the lithosphere base to 5.0 GPa and stepped PT paths shown by chromites probably due to interaction with magmas which caused local Ti-enrichment near 3.0 and 5.5 GPa. The PT paths in the mantle columns beneath the alnöite pipes reveal higher temperature and relatively shallow PT conditions with two major clusters around 3.0 and 5.0 GPa. Trace element patterns for garnets vary from S-type typical of harzburgites to those with a hump in MREE (middle REE) typical for pyroxenites. Lherzolitic garnets with sinusoidal decrease of LREE show distinctive HFSE enrichment. Trace element ratios (Sm/Er)n and (La/Yb)n of garnets correlate positively with pressures estimates by single grain thermobarometry (Ashchepkov et al., 2010, Ashchepkov et al., 2011, Ashchepkov et al., 2012) but only poorly with Cr2O3 content. Enrichment in HFSE of all garnets is related to metasomatism that accompanied the picroilmenite-forming event.Ilmenites reveal two compositional trends. One corresponds to fractionation within conduits at the lower mantle (6.0–7.0 GPa) without contamination. A second trend at <6.0 GPa, formed due to assimilation fractional crystallization (AFC), is characterized by Fe and Cr increase with decreasing pressure. Similar trace element patterns of the various in HREE in ilmenites, possibly partly due to garnet assimilation from wall rock peridotites. The PT conditions and geochemistry for the minerals from the Carboniferous sediments are similar to those from the Lomonosovskoe deposit and Arkhangelskaya pipe (Lehtonen et al., 2009).  相似文献   

9.
《Comptes Rendus Geoscience》2019,351(2-3):121-128
We present a synchrotron-based, single-crystal X-ray diffraction and Raman spectroscopy study of natural green dioptase (Cu6Si6O18·6H2O) up to ∼30 GPa at room temperature. The lattice parameters of dioptase exhibit continuous compression behavior up to ∼14.5 GPa, whereupon a structural transition is observed. Pressure–volume data below 14.5 GPa were fitted to a second-order Birch–Murnaghan equation of state with V0 = 1440(2) Å3 and K0 = 107(2) GPa, with K0 = 4(fixed). The low-pressure form of dioptase exhibits anisotropic compression with axial compressibility βa > βc in a ratio of 1.14:1.00. Based on the diffraction data and Raman spectroscopy, the new high-pressure phase could be regarded as a dehydrated form of dioptase in the same symmetry group. Pressure-induced dehydration of dioptase contributes broadly to our understanding of the high-pressure crystal chemistry of hydrous silicates containing molecular water groups.  相似文献   

10.
We report for the first time the evidence for prograde high-pressure (HP) metamorphism preceding a peak ultrahigh-temperature (UHT) event in the northernmost part of the Madurai Block in southern India. Mg–Al-rich Grt–Ged rocks from Komateri in Karur district contain poikiloblastic garnet with numerous multi-phase inclusions. Although most of the inclusion assemblages are composed of gedrite, quartz, and secondary biotite, rare staurolite + sapphirine and spinel + quartz are also present. The XMg (=Mg/[Fe+Mg]) of staurolite (0.45–0.49) is almost consistent with that reported previously from Namakkal district in the Palghat–Cauvery Shear Zone system (XMg = 0.51–0.52), north of the Madurai Block. The HP event was followed by peak UHT metamorphism at T = 880–1040 °C and P = 9.8–12.5 kbar as indicated by thermobarometric computations in the Grt–Ged rock and associated mafic granulite. Symplectic intergrowth of spinel (XMg = 0.50–0.59, ZnO < 1.7 wt.%) and quartz, a diagnostic indicator of UHT metamorphism, probably formed by decompression at UHT conditions. The rocks subsequently underwent retrograde metamorphism at T = 720–760 °C and P = 4.2–5.1 kbar. The PT conditions and clockwise exhumation trajectory of the Komateri rocks, comparable to similar features recorded from the Palghat–Cauvery Shear Zone system, suggest that the Madurai Block and the Palghat–Cauvery Shear Zone system underwent similar HP and UHT metamorphic history probably related to the continent–continent collision during the final stage of amalgamation of Gondwana supercontinent.  相似文献   

11.
A prograde pressure–temperature (P–T) path is estimated for pelitic schists from the latest Precambrian Kokchetav ultrahigh-pressure massif, Kazakhstan, using compositional zoning and mineral inclusions in coarse-grained and inclusion-rich garnets. Ti-bearing inclusions are abundant in garnet and display a zonal distribution. Ilmenite occurs in the inner-core, where most of it makes a composite inclusion with rutile, whereas monomineralic rutile occurs in the outer-core to mantle domains. In the rim region both ilmenite and rutile are present, although in small amounts. Application of the ilmenite-garnet thermometer yields a systematic temperature increase towards rim from 500 to 750 °C. The pressure-sensitive reaction: 3 Fe-Ilm (in Ilm) + Ky + 2 Qtz = 3 Rt + Alm (in Grt) yielded pressures of 1.2–1.3 GPa for the outer-core inclusions.A petrogenetic grid in the K2O–CaO–FeO–MgO–Al2O3–SiO2–H2O model system was used to estimate the equilibrium compositions of the garnet. The change of the grossular component along the model P–T path expected from the forward modelling is close to the observed compositional profile of the outer-core to rim domains. No constraint is available from thermobarometry in the inner-core; however, the forward modelling of garnet zoning provides information on the early stage of the P–T path during the garnet growth.The estimated P–T path is counter-clockwise in the prograde stage with a steep bend at around 700 °C and 1.2–1.5 GPa. This is similar to the metamorphic P–T gradient of the Kokchetav massif. This result contrasts markedly with the traditional clockwise P–T path in many collisional metamorphic terranes, and is regarded to represent a subduction geotherm at the Precambrian–Cambrian boundary. The P–T path proposed in this study also supports the models for the recovery of the “snowball Earth” from late-Proterozoic glaciation through effect of water in the solid Earth mantle.  相似文献   

12.
Dense hydrous magnesium silicates (DHMS) are supposed to be key phases in planetary water cycles because of their ability to carry water to deep mantle regions in subduction slab environments. In order to understand water cycles in iron-enriched planetary systems such as Mars knowledge of the water content and stability of iron-bearing DHMS is required. Iron-bearing DHMS were synthesized based on two starting compositions, MgFeSiO4 + 9.5 wt% H2O system and a simple hydrous Martian mantle composition containing Fe, Mg, Al and Si + 12.35 wt% H2O (hydrous FMAS system). Compared to literature data on phase D, iron-bearing phase D shows analogous variations in water contents as Mg-phase D but appears to be stable at higher temperatures than Mg-phase D for both starting compositions used in this study. Iron-bearing superhydrous phase B contains up to 7 wt% H2O and shows an extended thermal stability in the hydrous FMAS system. The high-temperature stability of iron-bearing DHMS with a Mars-like bulk composition indicates that these hydrous phases could host significant amounts of water at core-mantle boundary conditions (1500 °C and 23 GPa) in a hydrous Martian mantle.  相似文献   

13.
With the aim of constraining the Early Mesozoic tectonic evolution of the eastern section of the Central Asian Orogenic Belt (CAOB), we undertook zircon U–Pb dating and geochemical analyses (major and trace elements, Sr–Nd isotopes) of volcanic rocks of the Luoquanzhan Formation and Daxinggou Group in eastern Heilongjiang and Jilin provinces, China. The analyzed rocks consist mainly of dacite and rhyolite, with SiO2 contents of 68.52–76.65 wt%. Three samples from the Luoquanzhan Formation and one from the Daxinggou Group were analyzed using laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U–Pb zircon techniques. Three zircons with well-defined oscillatory zoning yielded weighted mean 206Pb/238U ages of 217 ± 1, 214 ± 2, and 208 ± 1 Ma, and one zircon with oscillatory zoning yielded a weighted mean 206Pb/238U age of 201 ± 1 Ma. These ages are interpreted to represent the timing of eruption of the volcanic rocks. The Triassic volcanic rocks are characterized by high SiO2 and low MgO concentrations, enrichment in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), depletion in high field strength elements (HFSEs) and heavy rare earth elements (HREEs), (87Sr/86Sr)i = 0.7040–0.7050 (Luoquanzhan Formation) and 0.7163–0.7381 (Daxinggou Group), and εNd (t) = 1.89–3.94 (Luoquanzhan Formation) and 3.42–3.68 (Daxinggou Group). These geochemical features indicate an origin involving the partial melting of juvenile lower crust (Nd model ages (TDM2) of 651–821 Ma) and that compositional variation among the volcanic rocks arose from mineral fractionation and minor assimilation. These volcanic rocks formed within an extensional environment following collision of the NCC and Jiamusi-Khanka Massif during the Late Paleozoic–Early Triassic.  相似文献   

14.
We conducted a geochronological and geochemical study on the Paleoproterozoic potassic granites in the Lushan area, southern margin of the North China Craton (NCC) to understand the tectonic regime of the NCC at 2.2–2.1 Ga. This rock suite formed at 2194 ± 29 Ma. The rocks are rich in SiO2 (76.10–77.73 wt.%), and K2O (5.94–6.90 wt.%) with high K2O + Na2O contents from 7.56 wt.% to 8.48 wt.%, but poor in CaO (0.10–0.28 wt.%), P2O5 (0.02–0.05 wt.%) and MgO (0.01–0.30 wt.%, Mg# = 1.08–27.3), indicating they experienced fractional crystallization. Major element compositions suggest the potassic granites share an affinity with high K calc-alkaline granite. Even though the Lushan potassic granitic rocks have high A/CNK ratios (1.11–1.25), which can reach peraluminous feature, the very low P2O5 contents and negative correlation of P2O5 and SiO2 ruling out they are S-type granites. Different from peralkaline A-type granites, the Lushan potassic granites have variable Zr concentrations (160–344 ppm, 226 ppm on average) and 10,000 Ga/Al ratios (1.76–3.00), together with high zircon saturation temperatures (TZr = 826–885 °C), indicating they are fractionated aluminous A-type granites. Enriched LREE ((La/Yb)N = 9.72–81.8), negative Eu anomalies, and low Sr/Y with no correlations in Sr/Y and Sr/Zr versus CaO suggest the possible presence of Ca-rich plagioclase and absence of garnet in the residual. Magmatic zircon grains have variable εHf(t) values (−2.4 to +7.3) with zircon two-stage Hf model ages (TDMC) varying from 2848 Ma to 2306 Ma (mostly around ca. 2.5 Ga), and are plotted in the evolution line of crustal felsic rock. We propose that the rocks mainly formed by partial melting of ca. 2.50 Ga tonalitic–granodioritic crust as a result of upwelling mantle-derived magmas which provided thermal flux and source materials in an intra-continent rifting. The ca. 2.2 Ga magmatism suggests that intra-continental rifting occurred at 2.35–1.97 Ga at least in the southern margin of the NCC after its final cratonization in the late Neoarchean.  相似文献   

15.
An experimental study on the origin of ferric and ferrous carbonate-silicate melts, which can be considered as the potential metasomatic oxidizing agents and diamond forming media, was performed in the (Ca,Mg)CO3-SiO2-Al2O3-(Mg,Fe)(Cr,Fe,Ti)O3 system, at 6.3 GPa and 1350–1650 °C. At 1350–1450 °C and ?O2 of FMQ + 2 log units, carbonate–silicate melt, coexisting with Fe3 +-bearing ilmenite, pyrope-almandine and rutile, contained up to 13 wt.% of Fe2O3. An increase in the degree of partial melting was accompanied by decarbonation and melt enrichment with CO2, up to 21 wt.%. At 1550–1650 °C excess CO2 segregated as a separate fluid phase. The restricted solubility of CO2 in the melt indicated that investigated system did not achieve the second critical point at 6.3 GPa. At 1350–1450 °C and ?O2 close to CCO buffer, Fe2 +-bearing carbonate–silicate melt was formed in association with pyrope-almandine and Fe3 +-bearing rutile. It was experimentally shown that CO2-rich ferrous carbonate-silicate melt can be an effective waterless medium for the diamond crystallization. It provides relatively high diamond growth rates (3–5 μm/h) at P,T-conditions, corresponding to the formation of most natural diamonds.  相似文献   

16.
A series of methane (CH4) adsorption experiments on bulk organic rich shales and their isolated kerogens were conducted at 35 °C, 50 °C and 65 °C and CH4 pressure of up to 15 MPa under dry conditions. Samples from the Eocene Green River Formation, Devonian–Mississippian Woodford Shale and Upper Cretaceous Cameo coal were studied to examine how differences in organic matter type affect natural gas adsorption. Vitrinite reflectance values of these samples ranged from 0.56–0.58 %Ro. In addition, thermal maturity effects were determined on three Mississippian Barnett Shale samples with measured vitrinite reflectance values of 0.58, 0.81 and 2.01 %Ro.For all bulk and isolated kerogen samples, the total amount of methane adsorbed was directly proportional to the total organic carbon (TOC) content of the sample and the average maximum amount of gas sorption was 1.36 mmol of methane per gram of TOC. These results indicate that sorption on organic matter plays a critical role in shale-gas storage. Under the experimental conditions, differences in thermal maturity showed no significant effect on the total amount of gas sorbed. Experimental sorption isotherms could be fitted with good accuracy by the Langmuir function by adjusting the Langmuir pressure (PL) and maximum sorption capacity (Γmax). The lowest maturity sample (%Ro = 0.56) displayed a Langmuir pressure (PL) of 5.15 MPa, significantly larger than the 2.33 MPa observed for the highest maturity (%Ro > 2.01) sample at 50 °C.The value of the Langmuir pressure (PL) changes with kerogen type in the following sequence: type I > type II > type III. The thermodynamic parameters of CH4 adsorption on organic rich shales were determined based on the experimental CH4 isotherms. For the adsorption of CH4 on organic rich shales and their isolated kerogen, the heat of adsorption (q) and the standard entropy (Δs0) range from 7.3–28.0 kJ/mol and from −36.2 to −92.2 J/mol/K, respectively.  相似文献   

17.
Charles Maurice  Don Francis 《Lithos》2010,114(1-2):95-108
Paleoproterozoic mafic dyke swarms (2.5–2.0 Ga) of the Ungava Peninsula can be divided in three chemical groups. The main group has a wide range of Fe (10–18 wt.% Fe2O3) and Ti (0.8–2.0 wt.% TiO2) contents, and the most magnesian samples have compositions consistent with melting of a fertile lherzolitic mantle at ~ 1.5 GPa. Dykes of a low-LREE (light rare earth element) subgroup (La/Yb ≤ 4) display decreasing Zr/Nb with increasing La/Yb ratios and positive εNd2.0 Ga values (+ 3.9 to + 0.2) that trend from primitive mantle towards the composition of Paleoproterozoic alkaline rocks. In contrast, dykes of a high-LREE subgroup (La/Yb ≥4) display increasing Zr/Nb ratios and negative εNd2.0 Ga values (? 2.3 to ? 6.4) that trend towards the composition of Archean crust. A low Fe–Ti group has low Fe (< 11 wt.% Fe2O3), Ti (< 0.8 wt.% TiO2), high field strength elements (HFSE; < 6 ppm Nb) and heavy rare earth elements (HREE; < 2 ppm Yb) contents, but are enriched in large ion lithophile elements (LILE; K/Ti = 0.7–3) and LREE (La/Yb > 4). These dykes are interpreted as melts of a depleted harzburgitic mantle that has experienced metasomatic enrichment. A positive correlation of Zr/Nb ratio and La/Yb ratio, negative εNd2.0 Ga values (? 14 to ? 6), and the presence of inherited Archean zircons further suggest the incorporation of a crustal component. A high Fe–Ti group has high Fe (> 14 wt.% Fe2O3) and Ti (> 1.4 wt.% TiO2) contents, along with higher Na contents relative to the main group dykes. Dykes of a high-Al subgroup (> 12 wt.% Al2O3) share Fe contents, εNd2.0 Ga values (? 2.3 to ? 3.4), La/Yb and Th/Nb ratios with Archean ferropicrites, and may represent evolved ferropicrite melts. A low-Al subgroup (< 12 wt.% Al2O3) has relatively lower Yb contents (< 2 ppm) and fractionated HREE patterns that indicate the presence of garnet in their melting residue. A comparison with ~ 5 GPa experimentally-derived melts suggests that these dykes may be derived from garnet-bearing pyroxenite or peridotite. The εNd2.0 Ga values (? 0.3 to ? 2.0) of these dykes lie between the compositions of Archean granitoids and Paleoproterozoic alkaline rocks, signifying their petrogenesis involved both crustal and mantle components.Paleoproterozoic dykes containing a crustal component occur within, or close to, an isotopically enriched Archean terrane (TDM 4.3–3.1 Ga), whereas dykes without this component occur in an isotopically juvenile terrane (TDM < 3.1 Ga). The lack of a crustal component and the positive εNd2.0 Ga values of dykes intruding the latter suggest that the crust they intruded was either too cold to be assimilated, or that its lower crust and/or lithosphere were Paleoproterozoic in age. In contrast, the ubiquitous presence of a crustal component and the diversity of mantle sources for dykes intruding the enriched terrane (lherzolite, harzburgite, pyroxenite) suggest a warmer crust with underlying heterogeneous lithospheric mantle.  相似文献   

18.
Through detailed studies we have delineated a suite of banded TTG gneisses from the Zanhuang Complex. The protolith of the gneisses, predominantly tonalite, has undergone intensive metamorphism, deformation and anatexis and in a banded structure is intimately associated with melanocratic dioritic gneiss and leucocratic trondhjemitic veins. SHRIMP Zircon U–Pb data show that the tonalite was formed ca. 2692 ± 12 Ma ago. The tonalitic gneiss has the features of high SiO2 (67.76–73.31%), high Al2O3 (14.38–15.83%), rich in Na2O (4.48–5.07%) and poor in K2O (0.77–1.93%). The gneiss is strongly fractioned in REE ((La/Yb)N = 12.02–24.65) and shows a weak positive Eu anomaly (Eu/Eu* = 1.05–1.64). It has high contents of Ba (199–588 ppm) and Sr (200–408 ppm), low contents of Yb (0.32–1.00 ppm) and Y (3.41–10.3 ppm) with high Sr/Y ratios (21.77–96.77) and depletion in HFSE Nb, Ta and Ti. These characteristics are similar to those of the high-Si adakitic rocks. The melanocratic dioritic gneiss has low SiO2 (59.81%), high MgO (6.34%), high Al2O3 (14.02%) contents, rich in Na2O (3.7%) and poor in K2O (1.79%), with high Mg index (Mg# = 67). REE and trace elements are on the whole similar to that of the tonalitic gneiss, but compatible element abundances V (116 ppm), Cr (249 ppm), Co (37 ppm) and Ni (179 ppm) are higher. The leucocratic felsic bands (approximating trondhjemite in composition) have major oxides similar to that of the TTG gneisses but the REE and compatible elements are extremely low, which are indicative of the products of anatexis. The tonalitic gneiss has positive εNd(t) (2.37–3.29) and low initial Sr (0.69719–0.70068) values with depleted mantle Nd model age of ca. 2.8 Ga, suggesting its generation from partial melting of mantle-derived juvenile crust. The dioritic gneiss was also derived from subduction environment, but has undergone significant metasomatism of mantle wedge. The delineation of the ca. 2.7 Ga TTG gneisses in the Zanhuang Complex further proves that the North China Craton experienced large-scale continental crustal accretion in early Neoarchean, and gives new constraints on the subdivision of the early blocks and greenstone belts of the craton.  相似文献   

19.
Pure-iron end-member hibbingite, Fe2(OH)3Cl(s), may be important to geological repositories in salt formations, as it may be a dominant corrosion product of steel waste canisters in an anoxic environment in Na–Cl- and Na–Mg–Cl-dominated brines. In this study, the solubility of Fe2(OH)3Cl(s), the pure-iron end-member of hibbingite (FeII, Mg)2(OH)3Cl(s), and Fe(OH)2(s) in 0.04 m to 6 m NaCl brines has been determined. For the reactionFe2(OH)3Cl(s) + 3H+ ? 3 H2O + 2 Fe2+ + Cl?,the solubility constant of Fe2(OH)3Cl(s) at infinite dilution and 25 °C has been found to be log10 K = 17.12 ± 0.15 (95% confidence interval using F statistics for 36 data points and 3 parameters). For the reactionFe(OH)2(s) + 2H+ ? 2 H2O + Fe2+,the solubility constant of Fe(OH)2 at infinite dilution and 25 °C has been found to be log10 K = 12.95 ± 0.13 (95 % confidence interval using F statistics for 36 data points and 3 parameters). For the combined set of solubility data for Fe2(OH)3Cl(s) and Fe(OH)2(s), the Na+–Fe2+ pair Pitzer interaction parameter θNa+/Fe2+ has been found to be 0.08 ± 0.03 (95% confidence interval using F statistics for 36 data points and 3 parameters). In nearly saturated NaCl brine we observed evidence for the conversion of Fe(OH)2(s) to Fe2(OH)3Cl(s). Additionally, when Fe2(OH)3Cl(s) was added to sodium sulfate brines, the formation of green rust(II) sulfate was observed, along with the generation of hydrogen gas. The results presented here provide insight into understanding and modeling the geochemistry and performance assessment of nuclear waste repositories in salt formations.  相似文献   

20.
《Applied Geochemistry》2005,20(5):875-897
The water–rock interaction processes occurring in the low-temperature, shallow volcanic aquifers of central-southern Italy were simulated by means of the EQ3/6 Software Package in reaction progress mode. In the investigation both the Roman Magmatic Province and Monte Amiata, which belongs to the Tuscan Magmatic Province, were included. The average K2O content of the volcanic rocks from the two areas is similar but the main K-bearing phases are leucite, in the Roman Magmatic Province, and sanidine, at Monte Amiata.Computed concentrations of major dissolved components and SiO2 are consistent with analytical data, suggesting that the results of the EQ3/6 runs are reliable simulations of the natural water–rock interaction processes. Hence, EQ3/6 results can be used to investigate the transfer of K from rocks to water.It turns out that the attainment of saturation with sanidine, during early stages of rock dissolution, limits K concentration in the Monte Amiata groundwaters to around an average of 2.9 ± 1.3 mg L−1 (1SD). In the silica undersaturated Roman Magmatic Province, saturation with leucite is not attained during the evolution of groundwaters and, consequently, K concentration reaches comparatively high levels, with an average of 24.6 ± 27.1 mg L−1 (1SD). Most of these unusually high K concentrations are due to natural weathering of silicates without any anthropogenic influence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号