首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present a method to quantify the effectiveness of carbon mitigation options taking into account the `permanence' of the emissions reduction. While the issue of permanence is most commonly associated with a `leaky' carbon sequestration reservoir, we argue that this is an issue that applies to just about all carbon mitigation options. The appropriate formulation of this problem is to ask `what is the value of temporary storage?' Valuing temporary storage can be represented as a familiar economic problem, with explicitly stated assumptions about carbon prices and the discount rate. To illustrate the methodology, we calculate the sequestration effectiveness for injecting CO2 at various depths in the ocean. Analysis is performed for three limiting carbon price assumptions: constant carbon prices (assumes constant marginal damages), carbon prices rise at the discount rate (assumes efficient allocation of a cumulative emissions cap without a backstop technology), and carbon prices first rise at the discount rate but become constant after a given time (assumes introduction of a backstop technology). Our results show that the value of relatively deep ocean carbon sequestration can be nearly equivalent to permanent sequestration if marginal damages (i.e., carbon prices) remain constant or if there is a backstop technology that caps the abatement cost in the not too distant future. On the other hand, if climate damages are such as to require a fixed cumulative emissions limit and there is no backstop, then a storage option with even very slow leakage has limited value relative to a permanent storage option.  相似文献   

2.
Abstract

Concern over the “non-permanence” or reversibility of carbon sequestration projects has been prominent in discussions over how to develop guidelines for forest project investments under the Clean Development Mechanism (CDM) of the UNFCCC Kyoto Protocol. Accordingly, a number of approaches have been proposed that aim to help ensure that parties do not receive credit for carbon that is lost before project obligations are fulfilled. These approaches include forest carbon insurance, land reserves, and issuance of expiring credits. The potential costs of each of these different approaches are evaluated using a range of assumptions about project length, risk and discount rate, and a comparison of costs is ventured based on the estimated reduction in value of these credits compared with uninsured, and permanent credits. Obstacles to participation in the different approaches are discussed related to problems of long-term commitments, project scale, rising replacement costs, and low credit value. It is concluded that a system of expiring credits, which could be coupled with insurance or reserves, could guarantee obligations that span time-scales longer than that of conventional insurance policies while maintaining incentives for long-term sequestration.  相似文献   

3.
Concern over the “non-permanence” or reversibility of carbon sequestration projects has been prominent in discussions over how to develop guidelines for forest project investments under the Clean Development Mechanism (CDM) of the UNFCCC Kyoto Protocol. Accordingly, a number of approaches have been proposed that aim to help ensure that parties do not receive credit for carbon that is lost before project obligations are fulfilled. These approaches include forest carbon insurance, land reserves, and issuance of expiring credits. The potential costs of each of these different approaches are evaluated using a range of assumptions about project length, risk and discount rate, and a comparison of costs is ventured based on the estimated reduction in value of these credits compared with uninsured, and permanent credits. Obstacles to participation in the different approaches are discussed related to problems of long-term commitments, project scale, rising replacement costs, and low credit value. It is concluded that a system of expiring credits, which could be coupled with insurance or reserves, could guarantee obligations that span time-scales longer than that of conventional insurance policies while maintaining incentives for long-term sequestration.  相似文献   

4.
Permit trading among polluting parties is now firmly established as a policy tool in a range of environmental policy areas. The Kyoto Protocol accepts the principle that sequestration of carbon in the terrestrial biosphere can be used to offset emissions of carbon from fossil fuel combustion and outlines mechanisms. Although the lack of guaranteed permanence of biological offsets is often viewed as a defect, this paper argues that the absence of guaranteed permanence need not be a fundamental problem. We view carbon emissions as a liability issue. One purpose of an emissions credit system is to provide the emitter with a means to satisfy the carbon liability associated with her firm's (or country's) release of carbon into the atmosphere. We have developed and here expand on a rental approach, in which sequestered carbon is explicitly treated as temporary: the emitter temporarily satisfies his liability by temporarily “parking” his liability, for a fee, in a terrestrial carbon reservoir, or “sink,” such as a forest or agricultural soil. Finally, the paper relates the value of permanent and temporary sequestration and argues that both instruments are tradable and have a high degree of substitutability that allows them to interact in markets.  相似文献   

5.
Permit trading among polluting parties is now firmly established as a policy tool in a range of environmental policy areas. The Kyoto Protocol accepts the principle that sequestration of carbon in the terrestrial biosphere can be used to offset emissions of carbon from fossil fuel combustion and outlines mechanisms. Although the lack of guaranteed permanence of biological offsets is often viewed as a defect, this paper argues that the absence of guaranteed permanence need not be a fundamental problem. We view carbon emissions as a liability issue. One purpose of an emissions credit system is to provide the emitter with a means to satisfy the carbon liability associated with her firm’s (or country’s) release of carbon into the atmosphere. We have developed and here expand on a rental approach, in which sequestered carbon is explicitly treated as temporary: the emitter temporarily satisfies his liability by temporarily “parking” his liability, for a fee, in a terrestrial carbon reservoir, or “sink,” such as a forest or agricultural soil. Finally, the paper relates the value of permanent and temporary sequestration and argues that both instruments are tradable and have a high degree of substitutability that allows them to interact in markets.  相似文献   

6.
The theoretical potential for carbon forests to off-set greenhouse gas emissions may be high but the achievable rate is influenced by a range of economic and social factors. Economic returns (net present value, NPV) were calculated spatially across the cleared land area in Australia for ‘environmental carbon plantings’. A total of 105 scenarios were run by varying discount rate, carbon price, rate of carbon sequestration and costs for plantation establishment licenses for water interception. The area for which NPV was positive ranged from zero ha for tightly constrained scenarios to almost the whole of the cleared land (104 M ha) for lower discount rate and highest carbon price. For the most plausible assumptions for cost of establishment and commercial discount rate, no areas were identified as profitable until a carbon price of AUD$40 t CO2 ?1 was reached. The many practical constraints to plantation establishment mean that it will likely take decades to have significant impact on emission reductions. Every 1 M ha of carbon forests established would offset about 1.4 % of Australia’s year 2000 emissions (or 7.4 Mt CO2 year?1) when an average rate of sequestration per ha was reached. All studies that predict large areas of potentially profitable land for carbon forestry need to be tempered by the realities that constrain land use change. In Australia and globally, carbon plantings can be a useful activity to help mitigate emissions and restore landscapes but it should be viewed as a long-term project in which co-benefits such as biodiversity enhancement can be realised.  相似文献   

7.
The deployment of carbon capture and sequestration (CC&S) technologies is greatly affected by the marginal cost of controlling carbon emissions (also the value of carbon, when emissions permits are traded). Both the severity and timing of emissions limitations and the degree to which emissions limitation obligations can be traded will affect the value of carbon and thereby the timing and magnitude of CC&S technology deployment. Emissions limits that are more stringent in the near term imply higher near-term carbon values and therefore encourage the local development and deployment of CC&S technologies.Trade in emissions obligations lowers the cost of meeting any regional or global emissions limit and so affects the rate of penetration of CC&S technologies. Trade lowers the marginal value of carbon and CC&S penetration in high cost regions and raises the marginal value of carbon and CC&S penetration in low cost regions. The net impact on the world CC&Stechnologies depends on whether their increased use in low-cost regions exceeds the reduced use in high-cost regions.In the long term, CC&S technologies must not only remove carbon but permanently sequester it. If reservoirs are not permanent, then the emissions and costs of control are merely displaced into the future. The paper presents quantitative estimates for the impacts of trade in emissions limitation obligations on the timing, magnitude, and geographic distribution of CC&S technologies and the marginal and total costs of carbon control.  相似文献   

8.
《Climate Policy》2013,13(1):41-54
Abstract

One strategy for mitigating the increase in atmospheric carbon dioxide is to expand the size of the terrestrial carbon sink, particularly forests, essentially using trees as biological scrubbers. Within relevant ranges of carbon abatement targets, augmenting carbon sequestration by protecting and expanding biomass sinks can potentially make large contributions at costs that are comparable or lower than for emission source controls. The Kyoto protocol to the framework convention on climate change includes many provisions for forest and land use carbon sequestration projects and activities in its signatories' overall greenhouse gas mitigation plans. In particular, the protocol provides a joint implementation provision and a clean development mechanism that would allow nations to claim credit for carbon sequestration projects undertaken in cooperation with other countries. However, there are many obstacles for implementing an effective program of land use change and forestry carbon credits, especially measurement challenges. This paper explains the difficulty that even impartial analysts have in assessing the carbon offset benefits of projects. When these measurement challenges are combined with self-interest, asymmetries of information, and large numbers, it prevents to a project-based forest and land use carbon credit program may be insurmountable.  相似文献   

9.
Abstract

Carbon rental has been suggested as a way of providing incentives to sequester carbon in biomass in the context of emissions trading systems for GHG emissions. A rental system works by issuing a credit for sequestered carbon that must be repaid after some fixed term. Rental systems avoid many of the difficulties of ensuring the permanence of sequestered carbon that exist in other institutional arrangements. This article adapts the results of Herzog et al. (2003) to argue that a rental system requires that carbon prices rise more slowly than the value of alternative investments in order to provide adequate incentives, and that there are good reasons to believe that this may not happen. Proponents need to directly address this potential difficulty in advancing arguments that carbon rental should be adopted as policy.  相似文献   

10.
This paper discusses relationships between soil conservation, carbon sequestration, and the Kyoto Protocol. The Kyoto Protocol is the first attempt to use the flexibility of the global market place to stabilize and reduce GHG emissions, mitigate climate change, and promote sustainable development. The protocol emerged first as a framework agreement, but through international negotiations it is progressing into sets of legal articles. These impose obligations on all signatories, but they also identify opportunities for improved environmental land management at local, national and international levels. This is particularly true for soil conservation, where the sequestration of carbon above and below ground increases soil organic matter, enhances soil fertility, and improves production, while concomitantly reducing atmospheric CO2. It is a classic `win-win' situation. Both the evolving opportunities and the obligations under the Kyoto Protocol are discussed in the paper.  相似文献   

11.
Abstract

The European Commission is mandated to consider the inclusion of credits from land-use projects under the clean development mechanism (CDM) and joint implementation (JI), beginning with the second period of the European Union's emission trading scheme (ETS) in its report due in July 2006. Temporary credits from afforestation and reforestation under the CDM are seen by many as posing a technical problem for their use under the ETS. This article summarizes three feasible, efficient and environmentally sound alternatives for achieving the integration of such temporary credits in the European emissions trading market starting in 2008. The first proposal integrates tCERs and lCERs (temporary credits) into the EU ETS by allowing for their direct use for compliance purposes. The second proposal builds on the idea of swapping temporary credits for EU allowances (EUAs) by Member States. The third proposal would not require a political decision at the EU level. Instead supportive Member States or private carbon fund operators would agree to swap temporary credits for the CERs or ERUs they hold in their accounts. All three solutions would be linked to a risk-mitigation strategy based on levying a fee or fixing an exchange rate, which would allow governments to hedge the risk of losing temporary credits.  相似文献   

12.
Biological activities that sequester carbon create CO2 offset credits that could obviate the need for reductions in fossil fuel use. Credits are earned by storing carbon in terrestrial ecosystems and wood products, although CO2 emissions are also mitigated by delaying deforestation, which accounts for one-quarter of anthropogenic CO2 emissions. However, non-permanent carbon offsets from biological activities are difficult to compare with each other and with emissions reduction because they differ in how long they prevent CO2 from entering the atmosphere. This is the duration problem. It results in uncertainty and makes it hard to determine the legitimacy of biological activities in mitigating climate change. Measuring, verifying and monitoring the carbon sequestered in sinks greatly increases transaction costs and leads to rent seeking by sellers of dubious sink credits. While biological sink activities undoubtedly help mitigate climate change and should not be neglected, it is shown that there are limits to the substitutability between temporary offset credits from these activities and emissions reduction, and that this has implications for carbon trading. A possible solution to inherent incommensurability between temporary and permanent credits is also suggested.  相似文献   

13.
Abstract

The role of sinks in the clean development mechanism (CDM) has been a subject of controversy for several reasons; one being that temporary carbon storage in forests appeared to prevent any opportunity to use them as an option to reduce permanent greenhouse gas (GHG) emissions. In Milan (December 2003), the Conference of the Parties (CoP) decided to address this problem by introducing two types of expiring units: temporary CERs (tCERs) and long-term CERs (lCERs). Countries committed to emission reductions may acquire these units to temporarily offset their emissions and thus to postpone permanent emission reductions. As further decided by the CoP, baseline emissions of GHGs and the enhancement of sinks outside the project boundary will not be accounted for in the calculation of tCERs or lCERs. The contribution of CDM-sink projects to GHG emissions abatement will therefore be greater than what will be credited to them. On the other hand, permanent GHG emissions that may result as a consequence of the implementation of sink project activities are treated as non-permanent. If these emissions are above avoided baseline emissions, CDM-sinks will result in net increases of GHG emissions into the atmosphere. After briefly reassessing the non-permanence problem, this article explains how tCERs and lCERs should be quantified according to Decision 19/CP.9 of CoP-9 and how calculations are implemented in the forthcoming software CO2 Land. Using a simple numerical example, it illustrates how the GHG accounting rule adopted at CoP-9 may result in net increases of GHG emissions. In the conclusion, a possible solution to this problem is proposed.  相似文献   

14.
Aviation constitutes about 2.5% of all energy-related CO2 emissions and in addition there are non-CO2 effects. In 2016, the ICAO decided to implement a Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) and in 2017 the EU decided on faster emission reductions in its Emissions Trading System (EU ETS), which since 2012 includes the aviation sector. The effects of these policies on the expected development of air travel emissions from 2017 to 2030 have been analyzed. For the sample country Sweden, the analysis shows that when emissions reductions in other sectors are attributed to the aviation sector as a result of the EU ETS and CORSIA, carbon emissions are expected to reduce by ?0.8% per year (however if non-CO2 emissions are included in the analysis, then emissions will increase). This is much less than what is needed to achieve the 2°C target. Our analysis of potential national aviation policy instruments shows that there are legally feasible options that could mitigate emissions in addition to the EU ETS and CORSIA. Distance-based air passenger taxes are common among EU Member States and through increased ticket prices these taxes can reduce demand for air travel and thus reduce emissions. Tax on jet fuel is an option for domestic aviation and for international aviation if bilateral agreements are concluded. A quota obligation for biofuels is a third option.

Key policy insights
  • Existing international climate policies for aviation will not deliver any major emission reductions.

  • Policymakers who want to significantly push the aviation sector to contribute to meeting the 2°C target need to work towards putting in place tougher international policy instruments in the long term, and simultaneously implement temporary national policy instruments in the near-term.

  • Distance-based air passenger taxes, carbon taxes on jet fuel and quota obligations for biofuels are available national policy options; if they are gradually increased, and harmonized with other countries, they can help to significantly reduce emissions.

  相似文献   

15.
Global agroecosystems can contribute to both climate change mitigation and biodiversity conservation, and market mechanisms provide a highly prospective means of achieving these outcomes. However, the ability of markets to motivate the supply of carbon sequestration and biodiversity services from agricultural land is uncertain, especially given the future changes in environmental, economic, and social drivers. We quantified the potential supply of these services from the intensive agricultural land of Australia from 2013 to 2050 under four global outlooks in response to a carbon price and biodiversity payment scheme. Each global outlook specified emissions pathways, climate, food demand, energy price, and carbon price modeled using the Global Integrated Assessment Model (GIAM). Using a simplified version of the Land Use Trade-Offs (LUTO) model, economic returns to agriculture, carbon plantings, and environmental plantings were calculated each year. The supply of carbon sequestration and biodiversity services was then quantified given potential land use change under each global outlook, and the sensitivity of the results to key parameters was assessed. We found that carbon supply curves were similar across global outlooks. Sharp increases in carbon sequestration supply occurred at carbon prices exceeding 50 $ tCO2−1 in 2015 and exceeding 65 $ tCO2−1 in 2050. Based on GIAM-modeled carbon prices, little carbon sequestration was expected at 2015 under any global outlook. However, at 2050 expected carbon supply under each outlook differed markedly, ranging from 0 to 189 MtCO2 yr−1. Biodiversity services of 3.32% of the maximum may be achieved in 2050 for a 1 $B investment under median scenario settings. We conclude that a carbon market can motivate supply of substantial carbon sequestration but only modest amounts of biodiversity services from agricultural land. A complementary biodiversity payment can synergistically increase the supply of biodiversity services but will not provide much additional carbon sequestration. The results were sensitive to global drivers, especially the carbon price, and the domestic drivers of adoption hurdle rate and agricultural productivity. The results can inform the design of an effective national policy and institutional portfolio addressing the dual objectives of climate change and biodiversity conservation that is robust to future uncertainty in both national and global drivers.  相似文献   

16.
Designing effective mitigation policies for greenhouse gas (GHG) emissions from agriculture requires understanding the mechanisms by which management practices affect emissions in different agroclimatic conditions. Agricultural GHG emissions and carbon sequestration potentials have been extensively studied in the Mediterranean biome, which is a biodiversity hot spot that is highly vulnerable to environmental changes. However, the absolute magnitude of GHG emissions and the extent to which research efforts match these emissions in each production system, are unknown. Here, we estimated GHG emissions and potential carbon sinks associated with crop and livestock production systems in the Mediterranean biome, covering 31 countries and assessing approximately 10,000 emission items. The results were then combined with a bibliometric assessment of 797 research publications to compare emissions estimates obtained with research efforts for each of the studied items. Although the magnitude of GHG emissions from crop production and the associated carbon sequestration potential (261 Tg CO2eq yr−1) were nearly half of those from livestock production (367 Tg CO2eq yr−1), mitigation research efforts were largely focused on the former. As a result, the relative research intensity, which relates the number of publications to the magnitude of emissions, is nearly one order of magnitude higher for crop production than for livestock production (2.6 and 0.4 papers Tg CO2eq−1, respectively). Moreover, this mismatch is even higher when crop and livestock types are studied separately, which indicates major research gaps associated with grassland and many strategic crop types, such as fruit tree orchards, fiber crops, roots and tubers. Most life cycle assessment studies do not consider carbon sequestration, although this single process has the highest magnitude in terms of annual CO2eq. In addition, these studies employ Tier 1 IPCC factors, which are not suited for use in Mediterranean environments. Our analytical results show that a strategic plan is required to extend on-site field GHG measurements to the Mediterranean biome. Such a plan needs to be cocreated among stakeholders and should be based on refocusing research efforts to GHG balance components that have been afforded less attention. In addition, the outcomes of Mediterranean field studies should be integrated into life cycle assessment-based carbon footprint analyses in order to avoid misleading conclusions.  相似文献   

17.
Atmospheric CO2 concentrations can be reduced by storing carbon in vegetation. However, this lowers the concentration gradient between the atmosphere and other potential carbon reservoirs, such as the oceans, and thereby reduces the subsequent inherent rate of removal of CO2 from the atmosphere. Hence, storage of carbon in temporary reservoirs can reduce atmospheric CO2 concentrations in the short term, but if the carbon is released again, it will increase concentrations in the long term. It must, therefore, be considered when, or, indeed whether, to store carbon in vegetation sinks.To determine an optimal strategy, the exact nature of climate-change impacts needs to be considered first. Impacts can be mediated by:1. the direct and instantaneous effect of CO2 and its associated temperature;2. the rate of change in CO2 and its associated temperature;3. the cumulative effect of CO2 and its associated temperature.Carbon stored in permanently maintained vegetation sinks can lower atmospheric CO2 concentrations, but this can be done most effectively if sequestration occurs close to the time when atmospheric concentrations are to be lowered. Similarly, maximal rates of change can be most effectively reduced by carbon sequestration close to the time of anticipated maximal rates of change. For reducing impacts via cumulative forcing, however, early sink activity would be more effective than delayed activity.Temporary carbon stores would only be beneficial for climate change impacts related to the cumulative impact of CO2, but it could even worsen impacts mediated via the instantaneous effect of temperature or those related to the rate of change. Hence, the planting of trees is only beneficial in reducing climate-change impacts if the most serious impacts are those related to the cumulative effect of increased temperature. If other impacts are more serious, then the planting of trees would bring greater benefits if it is delayed until closer to the time when the most severe impacts are to be expected. However, if serious land degradation would result from deforestation, or from a failure to plant trees in the near future, then trees should still be planted in order to maximise the amount of carbon stored on land.  相似文献   

18.
Economics of climate change mitigation forest policy scenarios for Ukraine   总被引:1,自引:0,他引:1  
Abstract

This article reveals the contribution of woodland expansion in Ukraine to climate change mitigation policies. The opportunities for climate change mitigation of three policy scenarios: (1) carbon storage in forests, (2) carbon storage and additional wood-for-fuel substitution, and (3) carbon storage with additional sink policy for wood products, are investigated by using a simulation technique, in combination with cost—benefit analysis. The article concludes that the Ukraine's forests and their expansion offer a low-cost opportunity for carbon sequestration. Important factors that influence the results are the discount rate and the time horizon considered in the models. The findings provide evidence that the storage climate change mitigation forest policy scenario is most viable for the country, under the assumptions considered in this research.  相似文献   

19.
Abstract

The social cost of carbon (SCC) is the value of the climate change impacts from 1 tonne of carbon emitted today as CO2, aggregated over time and discounted back to the present day. We used PAGE2002, the same probabilistic integrated assessment model as used by the Stern Review (Stern et al., 2006), to calculate the SCC and to examine how it varies with discount rate; and find that it is not sensitive to the path of emissions on which the tonne of carbon is superimposed. The mean value of the SCC is $43 per tonne under both a business-as-usual scenario, and under a scenario aimed at stabilizing CO2 concentrations at 550 ppm. This counter-intuitive result is caused by the interplay between the logarithmic relationship between forcing and concentration, the nonlinear relationship of damage to temperature, and discounting. However, the SCC is sensitive to a number of scientific and economic inputs to the model. Two recent distributions for the sensitivity of climate to a doubling of atmospheric CO2 (Murphy et al., 2004; Stainforth et al., 2005) increase the mean value of the SCC from $43 to $68 and $90 per tonne. Using a pure rate of time preference of 0.1% per year, as in the Stern Review, gives a mean SCC of $365 per tonne.  相似文献   

20.
Previous research has demonstrated that soil carbon sequestration through adoption of conservation tillage can be economically profitable depending on the value of a carbon offset in a greenhouse gas (GHG) emissions market. However adoption of conservation tillage also influences two other potentially important factors, changes in soil N2O emissions and CO2 emissions attributed to changes in fuel use. In this article we evaluate the supply of GHG offsets associated with conservation tillage adoption for corn-soy-hay and wheat-pasture systems of the central United States, taking into account not only the amount of carbon sequestration but also the changes in soil N2O emission and CO2 emissions from fuel use in tillage operations. The changes in N2O emissions are derived from a meta-analysis of published studies, and changes in fuel use are based on USDA data. These are used to estimate changes in global warming potential (GWP) associated with adoption of no-till practices, and the changes in GWP are then used in an economic analysis of the potential supply of GHG offsets from the region. Simulation results demonstrate that taking N2O emissions into account could result in substantial underestimation of the potential for GHG mitigation in the central U.S. wheat pasture systems, and large over-estimation in the corn-soy-hay systems. Fuel use also has quantitatively important effects, although generally smaller than N2O. These findings suggest that it is important to incorporate these two effects in estimates of GHG offset potential from agricultural lands, as well as in the design of GHG offset contracts for more complete accounting of the effect that no-till adoption will have on greenhouse gas emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号