首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Paris Agreement, which entered into force in 2016, sets the ambitious climate change mitigation goal of limiting the global temperature increase to below 2°C and ideally 1.5°C. This puts a severe constraint on the remaining global GHG emissions budget. While international shipping is also a contributor to anthropogenic GHG emissions, and CO2 in particular, it is not included in the Paris Agreement. This article discusses how a share of a global CO2 budget over the twenty-first century could be apportioned to international shipping, and, using a range of future trade scenarios, explores the requisite cuts to the CO2 intensity of shipping. The results demonstrate that, under a wide range of assumptions, existing short-term levers of efficiency must be urgently exploited to achieve mitigation commensurate with that required from the rest of the economy, with virtually full decarbonization of international shipping required as early as before mid-century.

Key policy insights

  • Regulatory action is key to ensuring the international shipping sector’s long-term sustainability.

  • For the shipping industry to deliver mitigation in line with the Paris Agreement, virtually full decarbonization needs to be achieved.

  • In the near term, immediate and rapid exploitation of available mitigation measures is of critical importance.

  • Any delay in the transition will increase the risk of stranded assets, or diminish the chances of meeting the Paris Agreement's temperature commitments.

  相似文献   

2.
In the recent climate change negotiations it was declared that the increase in global temperature should be kept below 2°C by 2100, relative to pre-industrial levels. China's CO2 emissions from energy and cement processes already account for nearly 24% of global emissions, a trend that is expected to keep increasing. Thus the role of China in global GHG mitigation is crucial. A scenario analysis of China's CO2 emissions is presented here and the feasibility of China reaching a low-carbon scenario is discussed. The results suggest that recent and continued technological progress will make it possible for China to limit its CO2 emissions and for these emissions to peak before 2025 and therefore that the global 2°C target can be achieved.

Policy relevance

In signing the Copenhagen Accord, China agreed to the global 2°C target. Results from this article could be used to justify low-carbon development policies and negotiations. While many still doubt the feasibility of a low-carbon pathway to support the global 2°C target, the results suggest that such a pathway can be realistically achieved. This conclusion should increase confidence and guide the policy framework further to make possible China's low-carbon development. Related policies and measures, such as renewable energy development, energy efficiency, economic structure optimization, technology innovation, low-carbon investment, and carbon capture and storage (CCS) development, should be further enhanced. Furthermore, China can play a larger role in the international negotiations process. In the global context, the 2°C target could be reaffirmed and a global regime on an emissions mitigation protocol could be framed with countries’ emissions target up to 2050.  相似文献   

3.
Limiting global warming to ‘well below’ 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase even further to 1.5°C is an integral part of the 2015 Paris Agreement. To achieve these aims, cumulative global carbon emissions after 2016 should not exceed 940 – 390?Gt of CO2 (for the 2°C target) and 167 – ?48?Gt of CO2 (for the 1.5°C target) by the end of the century. This paper analyses the EU’s cumulative carbon emissions in different models and scenarios (global models, EU-focused models and national carbon mitigation scenarios). Due to the higher reductions in energy use and carbon intensity of the end-use sectors in the national scenarios, we identify an additional mitigation potential of 26–37 Gt cumulative CO2 emissions up to 2050 compared to what is currently included in global or EU scenarios. These additional reductions could help to both reduce the need for carbon dioxide removals and bring cumulative emissions in global and EU scenarios in line with a fairness-based domestic EU budget for a 2°C target, while still remaining way above the budget for 1.5°C.

Key policy insights
  • Models used for policy advice such as global integrated assessment models or EU models fail to consider certain mitigation potential available at the level of sectors.

  • Global and EU models assume significant levels of CO2 emission reductions from carbon capture and storage to reach the 1.5°C target but also to reach the 2°C target.

  • Global and EU model scenarios are not compatible with a fair domestic EU share in the global carbon budget either for 2°C or for 1.5°C.

  • Integrating additional sectoral mitigation potential from detailed national models can help bring down cumulative emissions in global and EU models to a level comparable to a fairness-based domestic EU share compatible with the 2°C target, but not the 1.5°C aspiration.

  相似文献   

4.
Aviation constitutes about 2.5% of all energy-related CO2 emissions and in addition there are non-CO2 effects. In 2016, the ICAO decided to implement a Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) and in 2017 the EU decided on faster emission reductions in its Emissions Trading System (EU ETS), which since 2012 includes the aviation sector. The effects of these policies on the expected development of air travel emissions from 2017 to 2030 have been analyzed. For the sample country Sweden, the analysis shows that when emissions reductions in other sectors are attributed to the aviation sector as a result of the EU ETS and CORSIA, carbon emissions are expected to reduce by ?0.8% per year (however if non-CO2 emissions are included in the analysis, then emissions will increase). This is much less than what is needed to achieve the 2°C target. Our analysis of potential national aviation policy instruments shows that there are legally feasible options that could mitigate emissions in addition to the EU ETS and CORSIA. Distance-based air passenger taxes are common among EU Member States and through increased ticket prices these taxes can reduce demand for air travel and thus reduce emissions. Tax on jet fuel is an option for domestic aviation and for international aviation if bilateral agreements are concluded. A quota obligation for biofuels is a third option.

Key policy insights
  • Existing international climate policies for aviation will not deliver any major emission reductions.

  • Policymakers who want to significantly push the aviation sector to contribute to meeting the 2°C target need to work towards putting in place tougher international policy instruments in the long term, and simultaneously implement temporary national policy instruments in the near-term.

  • Distance-based air passenger taxes, carbon taxes on jet fuel and quota obligations for biofuels are available national policy options; if they are gradually increased, and harmonized with other countries, they can help to significantly reduce emissions.

  相似文献   

5.
A cumulative emissions approach is increasingly used to inform mitigation policy. However, there are different interpretations of what ‘2°C’ implies. Here it is argued that cost-optimization models, commonly used to inform policy, typically underplay the urgency of 2°C mitigation. The alignment within many scenarios of optimistic assumptions on negative emissions technologies (NETs), with implausibly early peak emission dates and incremental short-term mitigation, delivers outcomes commensurate with 2°C commitments. In contrast, considering equity and socio-technical barriers to change, suggests a more challenging short-term agenda. To understand these different interpretations, short-term CO2 trends of the largest CO2 emitters, are assessed in relation to a constrained CO2 budget, coupled with a ‘what if’ assumption that negative emissions technologies fail at scale. The outcomes raise profound questions around high-level framings of mitigation policy. The article concludes that applying even weak equity criteria, challenges the feasibility of maintaining a 50% chance of avoiding 2°C without urgent mitigation efforts in the short-term. This highlights a need for greater engagement with: (1) the equity dimension of the Paris Agreement, (2) the sensitivity of constrained carbon budgets to short-term trends and (3) the climate risks for society posed by an almost ubiquitous inclusion of NETs within 2°C scenarios.

POLICY RELEVANCE

Since the Paris meeting, there is increased awareness that most policy ‘solutions’ commensurate with 2°C include widespread deployment of negative emissions technologies (NETs). Yet much less is understood about that option’s feasibility, compared with near-term efforts to curb energy demand. Moreover, the many different ways in which key information is synthesized for policy makers, clouds the ability of policy makers to make informed decisions. This article presents an alternative approach to consider what the Paris Agreement implies, if NETs are unable to deliver more carbon sinks than sources. It illustrates the scale of the climate challenge for policy makers, particularly if the Agreement’s aim to address ‘equity’ is accounted for. Here it is argued that much more attention needs to be paid to what CO2 reductions can be achieved in the short-term, rather than taking a risk that could render the Paris Agreement’s policy goals unachievable.  相似文献   


6.
For agriculture, there are three major options for mitigating greenhouse gas (GHG) emissions: 1) productivity improvements, particularly in the livestock sector; 2) dedicated technical mitigation measures; and 3) human dietary changes. The aim of the paper is to estimate long-term agricultural GHG emissions, under different mitigation scenarios, and to relate them to the emissions space compatible with the 2 °C temperature target. Our estimates include emissions up to 2070 from agricultural soils, manure management, enteric fermentation and paddy rice fields, and are based on IPCC Tier 2 methodology. We find that baseline agricultural CO2-equivalent emissions (using Global Warming Potentials with a 100 year time horizon) will be approximately 13 Gton CO2eq/year in 2070, compared to 7.1 Gton CO2eq/year 2000. However, if faster growth in livestock productivity is combined with dedicated technical mitigation measures, emissions may be kept to 7.7 Gton CO2eq/year in 2070. If structural changes in human diets are included, emissions may be reduced further, to 3–5 Gton CO2eq/year in 2070. The total annual emissions for meeting the 2 °C target with a chance above 50 % is in the order of 13 Gton CO2eq/year or less in 2070, for all sectors combined. We conclude that reduced ruminant meat and dairy consumption will be indispensable for reaching the 2 °C target with a high probability, unless unprecedented advances in technology take place.  相似文献   

7.
This article illustrates the main difficulties encountered in the preparation of GHG emission projections and climate change mitigation policies and measures (P&M) for Kazakhstan. Difficulties in representing the system with an economic model have been overcome by representing the energy system with a technical-economic growth model (MARKAL-TIMES) based on the stock of existing plants, transformation processes, and end-use devices. GHG emission scenarios depend mainly on the pace of transition in Kazakhstan from a planned economy to a market economy. Three scenarios are portrayed: an incomplete transition, a fast and successful one, and even more advanced participation in global climate change mitigation, including participation in some emission trading schemes. If the transition to a market economy is completed by 2020, P&M already adopted may reduce emissions of CO2 from combustion by about 85 MtCO2 by 2030 – 17% of the emissions in the baseline (WOM) scenario. One-third of these reductions are likely to be obtained from the demand sectors, and two-thirds from the supply sectors. If every tonne of CO2 not emitted is valued up to US$10 in 2020 and $20 in 2030, additional P&M may further reduce emissions by 110 MtCO2 by 2030.  相似文献   

8.
Agricultural GHG mitigation policies are important if ambitious climate change goals are to be achieved, and have the potential to significantly lower global mitigation costs [Reisinger, A., Havlik, P., Riahi, K., van Vliet, O., Obersteiner, M., & Herrero, M. (2013). Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 117, 677–690]. In the post-Paris world of ‘nationally determined contributions’ to mitigation, the prospects for agricultural mitigation policies may rest on whether they are in the national economic interest of large agricultural producers. New Zealand is a major exporter of livestock products; this article uses New Zealand as a case study to consider the policy implications of three global policy scenarios at the global, national and farm levels. Building on global modelling, a model dairy farm and a model sheep and beef farm are used to estimate the changes in profit when agricultural emissions are priced and mitigated globally or not, and priced domestically or not, in 2020. Related to these scenarios is the metric or GHG exchange rate. Most livestock emissions are non-CO2, with methane being particularly sensitive to the choice of metric. The results provide evidence that farm profitability is more sensitive to differing international policy scenarios than national economic welfare. The impact of the choice of metric is not as great as the impact of whether other countries mitigate agricultural emissions or not. Livestock farmers do best when agricultural emissions are not priced, as livestock commodity prices rise significantly due to competition for land from forestry. However, efficient farmers may still see a rise in profitability when agricultural emissions are fully priced worldwide.

Policy relevance

Exempting agricultural emissions from mitigation significantly increases the costs of limiting warming to 2 °C, placing the burden on other sectors. However, there may be a large impact on farmers if agricultural emissions are priced domestically when other countries are not doing the same. The impacts of global and national climate policies on farmers need to be better understood in order for climate policies to be politically sustainable. Transitional assistance that is not linked to emission levels could help, as long as the incentives to mitigate are maintained. In the long run, efficient farmers may benefit from climate policy; international efforts should focus on mitigation options and effective domestic policy development, rather than on metrics.  相似文献   

9.
IPCC第六次评估报告第三工作组报告交通运输章评估了该行业温室气体的减缓措施和转型路径。1990年以来,全球交通运输部门温室气体排放量一直增长,2019年已经成为全球第四大排放源,仅次于电力、工业以及农业、林业和其他土地利用(AFOLU)部门,其增长速度超过其他最终用途行业。报告强调了交通减排的重要性,主要的减排措施包括三方面:首先是减少需求,其次是对陆路交通部门进行脱碳,再次是对重型的水运和航空运输等进行脱碳。评估的多种燃料和动力技术处于不同的商业化水平,它们未来应用时间节点和规模各有不同。对于陆路交通来说,需要继续推进电气化;对于水运和航空来说需要进一步应用低碳技术,并优化国际管理机制;从中长期来看,所有部门都需要强调运输服务需求管理和运输效率的提升。情景相关的文献评述分析表明,全球温升目标要求全经济部门采取减排措施,特别是交通电气化的减排潜力在很大程度上取决于电力部门的脱碳。如果不采取减缓措施,交通运输部门排放在2050年可能增长65%(相对2010年);如果成功实施减缓战略,该部门的排放量将减少68%,这也与全球1.5℃温升目标要求相一致。关于这些减缓措施的分析和判断,对我国交通运输部门实现碳中和与碳达峰具有重要的参考意义。  相似文献   

10.
A change in economic structure influences the total energy consumption as well as CO2 emissions of a country, given the inherent difference in levels of energy intensity and energy fuel mix of different economic sectors. Its significance has been recognized in recent literature on China’s emission mitigation which could arguably raise China’s mitigation potential and thus the possibility of keeping the 2-degree trajectory on track. This article utilizes the past trend of economic structural change of five East Asian developed economies to project the energy consumption and CO2 emissions of China in the coming decades. A special delineation of the economic sector is made, putting private consumption together with the three typical economic production sectors, to resolve the mismatch between the statistical data of energy consumption and economic production, in that residential energy consumption is typically merged into the tertiary sector, although it does not directly correspond to gross domestic product (GDP) output. Results suggest that the level of CO2 emissions would be lower if China followed a development pathway emphasizing the development of the tertiary sector and continuously shrinking her secondary sector, making it possible for China to contribute more to global carbon mitigation. The impact from the rise of private consumption would be relatively insignificant compared to deindustrialization. In addition to continuous improvement in technology, economic structural change, which reduces carbon emission intensity, would be essential for China to be able to achieve the carbon emission level pledged in the Paris Agreement.

Key policy insights

  • For China, significant economic structural reform, particularly deindustrialization, is necessary to achieve the goal of ‘peak emission by 2030’.

  • Any additional contribution from China to the global effort to maintain a 2-degree trajectory would be limited – from a ‘fair-contribution’ perspective based on share of population or GDP – because the implied mitigation targets would be almost impossible to achieve.

  • If developing countries follow the pathway of developed economies, particularly in developing energy-intensive industries, energy consumption and CO2 emissions would significantly increase, reducing the possibility of keeping global temperature rise within the 2-degree Celsius benchmark.

  相似文献   

11.
Globally, agriculture and related land use change contributed about 17% of the world’s anthropogenic GHG emissions in 2010 (8.4 GtCO2e yr?1), making GHG mitigation in the agriculture sector critical to meeting the Paris Agreement’s 2°C goal. This article proposes a range of country-level targets for mitigation of agricultural emissions by allocating a global target according to five approaches to effort-sharing for climate change mitigation: responsibility, capability, equality, responsibility-capability-need and equal cumulative per capita emissions. Allocating mitigation targets according to responsibility for total historical emissions or capability to mitigate assigned large targets for agricultural emission reductions to North America, Europe and China. Targets based on responsibility for historical agricultural emissions resulted in a relatively even distribution of targets among countries and regions. Meanwhile, targets based on equal future agricultural emissions per capita or equal per capita cumulative emissions assigned very large mitigation targets to countries with large agricultural economies, while allowing some densely populated countries to increase agricultural emissions. There is no single ‘correct’ framework for allocating a global mitigation goal. Instead, using these approaches as a set provides a transparent, scientific basis for countries to inform and help assess the significance of their commitments to reducing emissions from the agriculture sector.

Key policy insights
  • Meeting the Paris Agreement 2°C goal will require global mitigation of agricultural non-CO2 emissions of approximately 1 GtCO2e yr?1 by 2030.

  • Allocating this 1 GtCO2e yr?1 according to various effort-sharing approaches, it is found that countries will need to mitigate agricultural business-as-usual emissions in 2030 by a median of 10%. Targets vary widely with criteria used for allocation.

  • The targets calculated here are in line with the ambition of the few countries (primarily in Africa) that included mitigation targets for the agriculture sector in their (Intended) Nationally Determined Contributions.

  • For agriculture to contribute to meeting the 2°C or 1.5°C targets, countries will need to be ambitious in pursuing emission reductions. Technology development and transfer will be particularly important.

  相似文献   

12.
The Paris Agreement is the last hope to keep global temperature rise below 2°C. The consensus agrees to holding the increase in global average temperature to well below 2°C above pre-industrial levels, and to aim for 1.5°C. Each Party’s successive nationally determined contribution (NDC) will represent a progression beyond the party’s then current NDC, and reflect its highest possible ambition. Using Ireland as a test case, we show that increased mitigation ambition is required to meet the Paris Agreement goals in contrast to current EU policy goals of an 80–95% reduction by 2050. For the 1.5°C consistent carbon budgets, the technically feasible scenarios' abatement costs rise to greater than €8,100/tCO2 by 2050. The greatest economic impact is in the short term. Annual GDP growth rates in the period to 2020 reduce from 4% to 2.2% in the 1.5°C scenario. While aiming for net zero emissions beyond 2050, investment decisions in the next 5–10 years are critical to prevent carbon lock-in.

Key policy insights

  • Economic growth can be maintained in Ireland while rapidly decarbonizing the energy system.

  • The social cost of carbon needs to be included as standard in valuation of infrastructure investment planning, both by government finance departments and private investors.

  • Technological feasibility is not the limiting factor in achieving rapid deep decarbonization.

  • Immediate increased decarbonization ambition over the next 3–5 years is critical to achieve the Paris Agreement goals, acknowledging the current 80–95% reduction target is not consistent with temperature goals of ‘well below’ 2°C and pursuing 1.5°C.

  • Applying carbon budgets to the energy system results in non-linear CO2 emissions reductions over time, which contrast with current EU policy targets, and the implied optimal climate policy and mitigation investment strategy.

  相似文献   

13.
《Climate Policy》2013,13(4):355-376
Many stabilization scenarios have examined the implications of stabilization on the assumption that all regions and all sectors of all of the world's economies undertake emissions mitigations wherever and whenever it is cheapest to do so. This idealized assumption is just one of many ways in which emissions mitigation actions could play out globally, but not necessarily the most likely. This paper explores the implications of generic policy regimes that lead to stabilization of CO2 concentrations under conditions in which non-Annex I regions delay emissions reductions and in which carbon prices vary across participating regions. The resulting stabilization scenarios are contrasted with the idealized results. Delays in the date by which non-Annex I regions begin to reduce emissions raise the price of carbon in Annex I regions relative to the price of carbon in Annex I in an idealized regime for any given CO2 concentration limit. This effect increases the longer the delay in non-Annex I accession, the lower the non-Annex I carbon prices relative to the Annex I prices, and the more stringent the stabilization level. The effect of delay is very pronounced when CO2 concentrations are stabilized at 450 ppmv, however the effect is much less pronounced at 550 ppmv and above. For long delays in non-Annex I accession, 450 ppmv stabilization levels become infeasible.  相似文献   

14.
While the international community has agreed on the long-term target of limiting global warming to no more than 2 °C above pre-industrial levels, only a few concrete climate policies and measures to reduce greenhouse gas (GHG) emissions have been implemented. We use a set of three global integrated assessment models to analyze the implications of current climate policies on long-term mitigation targets. We define a weak-policy baseline scenario, which extrapolates the current policy environment by assuming that the global climate regime remains fragmented and that emission reduction efforts remain unambitious in most of the world’s regions. These scenarios clearly fall short of limiting warming to 2 °C. We investigate the cost and achievability of the stabilization of atmospheric GHG concentrations at 450 ppm CO2e by 2100, if countries follow the weak policy pathway until 2020 or 2030 before pursuing the long-term mitigation target with global cooperative action. We find that after a deferral of ambitious action the 450 ppm CO2e is only achievable with a radical up-scaling of efforts after target adoption. This has severe effects on transformation pathways and exacerbates the challenges of climate stabilization, in particular for a delay of cooperative action until 2030. Specifically, reaching the target with weak near-term action implies (a) faster and more aggressive transformations of energy systems in the medium term, (b) more stranded investments in fossil-based capacities, (c) higher long-term mitigation costs and carbon prices and (d) stronger transitional economic impacts, rendering the political feasibility of such pathways questionable.  相似文献   

15.
In this study, a long-range energy alternative planning (LEAP) model was built to evaluate the relative priority of three kinds of policies expected to be implemented for the energy-intensive manufacturing sectors (EIMS) in China to achieve CO2 mitigation and energy conservation targets. These policies encourage (1) the use of more electricity instead of coal; (2) the continuous improvement of energy efficiency; and (3) a shift to other less energy-demanding sectors. The results indicate that the policy of shifting economic activity from the EIMS to other sectors is most helpful for China to achieve its targets of mitigating CO2 emissions and conserving energy. Encouraging the EIMS to use more electricity can help China to achieve a higher proportion of non-fossil-fuel based energy in its overall primary energy consumption. No single policy will allow China to achieve all the targets, emphasizing the need for an integrated policy design that combines all types of policies.

Key policy insights

  • The policy of encouraging a shift to less energy intensive industries should receive the highest priority in aiming to peak China's energy-related CO2 emissions as early as possible, and lower overall CO2 emissions, coal consumption and primary energy consumption in the long run.

  • Encouraging a shift to electricity should go hand-in-hand with greater energy efficiency, otherwise such a policy cannot help China significantly reduce energy-related CO2 emissions.

  • Encouraging the EIMS to use more electricity should receive the highest priority in helping China achieve a higher proportion of non-fossil-fuel based energy in its overall primary energy consumption.

  相似文献   

16.
Attaining deep greenhouse gas (GHG) emission reductions in industry in order to support a stringent climate change control target will be difficult without recourse to CO2 capture and storage (CCS). Using the insights from a long-term bottom-up energy systems model, and undertaking a sectoral assessment, we investigated the importance of CCS in the industrial sector. Under climate policy aimed at limiting atmospheric concentration of GHGs to 650 ppm CO2e, costs could increase fivefold when CCS is excluded from the portfolio of mitigation option measures in the industry sector as compared to when CCS is excluded in the power sector. This effect is driven largely by the lack of alternatives for deep emission reductions in industry. Our main policy conclusion is that a broader recognition of CCS in industrial applications in both current policy discussions and research, development, and demonstration funding programmes is justified. In recognition of the heterogeneity of the many types of industrial production processes, the size and location of industrial CO2 sources, the specific need for CCS-retrofitting, and the exposure of most industrial sectors to international trade, policies aimed at supporting CCS must distinguish between the different challenges faced by the power and industrial sectors.  相似文献   

17.
This article explores the causes for differences in the average CO2 emissions intensity of the new passenger car (NPC) fleet in member states (MS) across Europe. Although EU policies mitigating CO2 emissions from NPCs have been in place since 1999, MS strongly diverge in the absolute amount and relative change in emissions over the last decade. The authors employ a qualitative approach to analyse the factors, in particular national vehicle taxes, contributing to this divergence and the relative contribution of national and European policies in reducing national CO2 emissions from NPCs. The analysis shows that there has been a significant reduction in CO2 emissions intensity of NPCs since 2007 across most MS, compared with the six years previous to that date. This would indicate that EU-wide policies, such as the CO2 vehicles regulation, along with the economic recession in 2008, have influenced national NPC CO2 emissions. Generally, countries with CO2-differentiated vehicle taxes are observed as more likely to have achieved greater reductions in CO2 emissions. However, over the same period there have been many confounding factors, such as economic instability in the EU, that also influence NPC emissions. Using more detailed case study analyses of six countries, the authors find that there is scope for well-designed national vehicle tax policies to drive NPC emissions down further than the EU average. In countries with the highest success rate, such as the Netherlands, the design of the vehicle tax, as part of a well-aligned policy package, has been very important in delivering the biggest reductions in CO2 emissions from NPCs.

POLICY RELEVANCE

The transport sector continues to be an intractable source of CO2 emissions. Governments around the world are seeking effective policies to deal with the increase in passenger car CO2 emissions appropriate to their own circumstances. This article examines the experience of EU MS with CO2-differentiated vehicle taxes in reducing CO2 emissions in the context of other national and international contributing factors. It should therefore both be useful to policy makers and contribute to climate policy research in general.  相似文献   


18.
Emissions from the production of iron and steel could constitute a significant share of a 2°C global emissions budget (around 19% under the IEA 2DS scenario). They need to be reduced, and this could be difficult under nationally based climate policy approaches. We compare a new set of nationally based modelling (the Deep Decarbonization Pathways Project) with best practice and technical limit benchmarks for iron and steel and cement emissions. We find that 2050 emissions from iron and steel and cement production represent an average 0.28?tCO2 per capita in nationally based modelling results, very close to the technical limit benchmark of 0.21?tCO2 per capita, and over 2.5 times lower than the best practice benchmark of 0.72?tCO2 per capita. This suggests that national projections may be overly optimistic about achievable emissions reductions in the absence of global carbon pricing and an international research and development effort to develop low emissions technologies for emissions-intensive products. We also find that equal per capita emissions targets, often the basis of proposals for how global emissions budgets should be allocated, would be inadequate without global emissions trading. These results show that a nationally based global climate policy framework, as has been confirmed in the Paris Agreement, could lead to risks of overshooting global emissions targets for some countries and carbon leakage. Tailored approaches such as border taxes, sectoral emissions trading or carbon taxes, and consumption-based carbon pricing can help, but each faces difficulties. Ultimately, global efforts are needed to improve technology and material efficiency in emissions-intensive commodities manufacturing and use. Those efforts could be supported by technology standards and a globally coordinated R&D effort, and strengthened by the adoption of global emissions budgets for emissions-intensive traded goods.

Policy relevance

This article presents new empirical findings on global iron and steel and cement production in a low-carbon world economy, demonstrates the risks associated with a nationally based global climate policy framework as has been confirmed in the Paris Agreement, and analyses policy options to deal with those risks.  相似文献   

19.
In principle, many climate policymakers have accepted that large-scale carbon dioxide removal (CDR) is necessary to meet the Paris Agreement’s mitigation targets, but they have avoided proposing by whom CDR might be delivered. Given its role in international climate policy, the European Union (EU) might be expected to lead the way. But among EU climate policymakers so far there is little talk on CDR, let alone action. Here we assess how best to ‘target’ CDR to motivate EU policymakers exploring which CDR target strategy may work best to start dealing with CDR on a meaningful scale. A comprehensive CDR approach would focus on delivering the CDR volumes required from the EU by 2100, approximately at least 50 Gigatonnes (Gt) CO2, according to global model simulations aiming to keep warming below 2°C. A limited CDR approach would focus on an intermediate target to deliver the CDR needed to reach ‘net zero emissions’ (i.e. the gross negative emissions needed to offset residual positive emissions that are too expensive or even impossible to mitigate). We argue that a comprehensive CDR approach may be too intimidating for EU policymakers. A limited CDR approach that only addresses the necessary steps to reach the (intermediate) target of ‘net zero emissions’ is arguably more achievable, since it is a better match to the existing policy paradigm and would allow for a pragmatic phase-in of CDR while avoiding outright resistance by environmental NGOs and the broader public.

Key policy insights

  • Making CDR an integral part of EU climate policy has the potential to significantly reshape the policy landscape.

  • Burden sharing considerations would probably play a major role, with comprehensive CDR prolonging the disparity and tensions between progressives and laggards.

  • Introducing limited CDR in the context of ‘net zero’ pathways would retain a visible primary focus on decarbonization but acknowledge the need for a significant enhancement of removals via ‘natural’ and/or ‘engineered’ sinks.

  • A decarbonization approach that intends to lead to a low level of ‘residual emissions’ (to be tackled by a pragmatic phase-in of CDR) should be the priority of EU climate policy.

  相似文献   

20.
China is now the world's biggest annual emitter of greenhouse gases with 7467 million tons (Mt) carbon dioxide equivalent (CO2e) in 2005, with agriculture accounting for 11% of this total. As elsewhere, agricultural emissions mitigation policy in China faces a range of challenges due to the biophysical complexity and heterogeneity of farming systems, as well as other socioeconomic barriers. Existing research has contributed to improving our understanding of the technical potential of mitigation measures in this sector (i.e. what works). But for policy purposes it is important to convert these measures into a feasible economic potential, which provides a perspective on whether agricultural emissions reduction (measures) are low cost relative to mitigation measures and overall potential offered by other sectors of the economy. We develop a bottom-up marginal abatement cost curve (MACC) representing the cost of mitigation measures applicable in addition to business-as-usual agricultural practices. The MACC results demonstrate that while the sector offers a maximum technical potential of 402 MtCO2e in 2020, a reduction of 135 MtCO2e is potentially available at zero or negative cost (i.e. a cost saving), and 176 MtCO2e (approximately 44% of the total) can be abated at a cost below a threshold carbon price ≤¥ 100 (approximately €12) per tCO2e. Our findings highlight the relative cost effectiveness of nitrogen fertilizer and manure best management practices, and animal breeding practices. We outline the assumptions underlying MACC construction and discuss some scientific, socioeconomic and institutional barriers to realizing the indicated levels of mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号