首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 144 毫秒
1.
最小二乘偏移可以消除非规则采集、带限子波等因素对偏移结果的不利影响,提高成像剖面的分辨率和照明度,但巨大的计算成本严重制约了该方法的应用前景.本文基于地震数据的局部平面波合成/分解策略,对传统Kirchhoff时间正演/偏移的计算过程进行改进,发展了一种快速的最小二乘Kirchhoff射线束叠前时间偏移方法.同需要逐道数据映射运算的常规最小二乘Kirchhoff叠前时间偏移相比,本文方法不但具备相当的成像精度和反演收敛速度,同时由于数据的正/反向映射运算只需在稀疏的射线束中心位置进行,因此计算效率得到了大幅度的提升.文中给出的模型和实际数据算例证明了本方法的正确性和有效性.  相似文献   

2.
Conventional seismic data processing methods based on post‐stack time migration have been playing an important role in coal exploration for decades. However, post‐stack time migration processing often results in low‐quality images in complex geological environments. In order to obtain high‐quality images, we present a strategy that applies the Kirchhoff prestack time migration (PSTM) method to coal seismic data. In this paper, we describe the implementation of Kirchhoff PSTM to a 3D coal seam. Meanwhile we derive the workflow of 3D Kirchhoff PSTM processing based on coal seismic data. The processing sequence of 3D Kirchhoff PSTM includes two major steps: 1) the estimation of the 3D root‐mean‐square (RMS) velocity field; 2) Kirchhoff prestack time migration processing. During the construction of a 3D velocity model, dip moveout velocity is served as an initial migration velocity field. We combine 3D Kirchhoff PSTM with the continuous adjustment of a 3D RMS velocity field by the criteria of flattened common reflection point gathers. In comparison with post‐stack time migration, the application of 3D Kirchhoff PSTM to coal seismic data produces better images of the coal seam reflections.  相似文献   

3.
The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.  相似文献   

4.
Parsimonious post‐stack migration is extended to three dimensions. By tracing single rays back along each incident wave direction (as determined by a local slant stack at the receivers), the ray tracing can be embedded in the migration. This approach significantly reduces the computer time and disk space needed because it is not necessary to build and save image time maps; 3D migration can be performed on a workstation or personal computer rather than using a supercomputer or cluster. The location of a reflector in the output image is defined by tracing a zero‐offset ray to the one‐way traveltime (the image condition); the orientation of the reflector is defined as a surface perpendicular to the raypath. The migration impulse response operator is confined to the first Fresnel zone around the estimated reflection point, which is much smaller than the large isochronic surface in traditional Kirchhoff depth migration. Additional efficiency is obtained by applying an amplitude threshold to reduce the amount of data to be migrated. Tests on synthetic data show that the proposed implementation of parsimonious 3D post‐stack Kirchhoff depth migration is at least two orders of magnitude faster than traditional Kirchhoff migration, at the expense of slightly degraded migration image coherence. The proposed migration is expected to be a useful complement to conventional time migrations for fast initial imaging of subsurface structures and for real‐time imaging of near‐offset sections during data acquisition for quality control.  相似文献   

5.
基于全变分原理的多震源混合数据直接偏移方法   总被引:4,自引:3,他引:1       下载免费PDF全文
多震源混合地震采集技术,即将多个震源以一定编码方式连续地激发,得到多炮混合的地震数据.该技术能减少地震采集时间,节约采集成本,但是混合数据的直接偏移会在成像剖面中引入严重的串扰噪声,影响成像效果.从数学上看,地震成像属于典型的数学物理反问题,可以采用线性反演方法求解一个正则化约束的最小二乘(LS)优化问题,获得更高质量的成像结果.全变分(TV)正则化方法是图像去噪和复原领域中广泛应用的热点技术,其能在去除噪声的过程中保留图像的边缘信息和不连续性.在对TV图像去噪复原方法原理分析的基础上,本文将多震源混合数据直接偏移成像问题转换成图像复原的极小化能量泛函问题,用TV正则化代替传统最小二乘偏移(LSM)中的L2范数正则化,提出基于全变分原理的混合数据直接偏移方法.该方法使用基于梯度的快速迭代收缩阈值与快速梯度投影组合算法——FISTA/FGP求解最优化问题,能有效压制串扰噪声,增强同相轴连续性,提高成像分辨率.理论模型测试结果表明:将本方法应用于混合数据,无论是去噪效果还是成像精度都得到显著改善.  相似文献   

6.
An amplitude-preserving migration aims at imaging compressional primary (zero-or) non-zero-offset reflections into 3D time or depth-migrated reflections so that the migrated wavefield amplitudes are a measure of angle-dependent reflection coeffcients. The principal objective is the removal of the geometrical-spreading factor of the primary reflections. Various migration/inversion algorithms involving weighted diffraction stacks proposed recently are based on Born or Kirchhoff approximations. Here, a 3D Kirchhoff-type zero-offset migration approach, also known as a diffraction-stack migration, is implemented in the form of a time migration. The primary reflections of the wavefield to be imaged are described a priori by the zero-order ray approximation. The aim of removing the geometrical- spreading loss can, in the zero-offset case, be achieved by not applying weights to the data before stacking them. This case alone has been implemented in this work. Application of the method to 3D synthetic zero-offset data proves that an amplitude-preserving migration can be performed in this way. Various numerical aspects of the true-amplitude zero-offset migration are discussed.  相似文献   

7.
Least-squares reverse time migration has the potential to yield high-quality images of the Earth. Compared with acoustic methods, elastic least-squares reverse time migration can effectively address mode conversion and provide velocity/impendence and density perturbation models. However, elastic least-squares reverse time migration is an ill-posed problem and suffers from a lack of uniqueness; further, its solution is not stable. We develop two new elastic least-squares reverse time migration methods based on weighted L2-norm multiplicative and modified total-variation regularizations. In the proposed methods, the original minimization problem is divided into two subproblems, and the images and auxiliary variables are updated alternatively. The method with modified total-variation regularization solves the two subproblems, a Tikhonov regularization problem and an L2-total-variation regularization problem, via an efficient inversion workflow and the split-Bregman iterative method, respectively. The method with multiplicative regularization updates the images and auxiliary variables by the efficient inversion workflow and nonlinear conjugate gradient methods in a nested fashion. We validate the proposed methods using synthetic and field seismic data. Numerical results demonstrate that the proposed methods with regularization improve the resolution and fidelity of the migration profiles and exhibit superior anti-noise ability compared with the conventional method. Moreover, the modified-total-variation-based method has marginally higher accuracy than the multiplicative-regularization-based method for noisy data. The computational cost of the proposed two methods is approximately the same as that of the conventional least-squares reverse time migration method because no additional forward computation is required in the inversion of auxiliary variables.  相似文献   

8.
Iterative migration velocity analysis is computationally expensive, where most of the computation time is used for generating prestack depth images. By using a reduced form of Kirchhoff migration, denoted as wave path migration, we can significantly speed up the depth imaging process and reduce the entire velocity analysis expense accordingly. Our results with 2D synthetic and field data show that wave path migration velocity analysis can efficiently improve the velocity model and the wave path migration velocity analysis updated velocity correlates well with that from the Kirchhoff migration velocity analysis. The central processing unit comparison shows that, for a 2D synthetic and field data set, wave path migration velocity analysis is six times faster than Kirchhoff migration velocity analysis. This efficiency should be even greater for 3D data.  相似文献   

9.
层状各向异性介质转换波克希霍夫叠前时间偏移   总被引:5,自引:2,他引:5       下载免费PDF全文
在克希霍夫叠前时间偏移处理中,地震波走时的计算方法是决定大偏移距地震资料成像品质的重要因素.在常规的三维转换波各向异性叠前时间偏移公式中,走时的计算是基于等效单层各向异性介质的非双曲线方法.用这种方法处理的成像道集,在偏移/深度比超过一定阈值后,成像道集中的反射同相轴将出现过偏现象,这种偏移不平的同相轴将影响偏移叠加的最佳响应,使得偏移成像波组呈低频化特征,最终降低三维转换波偏移成像质量.我们采用层状介质的走时计算方法代替常规算法,并且利用了常规方法的转换波各向异性偏移速度模型.基于层状介质的算法能够提高大偏移距转换波走时计算精度,克服中浅地层大偏移距远道成像道集中反射同相轴逐渐上翘的问题.两个地区的三维转换波资料处理结果证实,基于层状各向异性介质的转换波克希霍夫叠前时间偏移方法,明显改善了反射成像剖面的连续性和分辨率,提高成像剖面构造的可解释性.  相似文献   

10.
最小二乘傅立叶有限差分偏移   总被引:6,自引:1,他引:5       下载免费PDF全文
一般偏移算法是用反演算子通过解析方法求解.最小二乘偏移方法采用另一种思路,即采用数值方法,通过解一个线性离散反问题来索求解.这样我们试着寻找一个模型匹配地震数据并能表现出其某些特点来得到偏移图像.最小二乘法能减少偏移赝像,得到更精确的偏移效果.Kirchhoff算子在最小二乘偏移方法中应用较广,但需要较多的迭代次数,而且具有Kirchhoff偏移的缺点.本文把最小二乘方法运用到基于波长延拓的波动方程偏移方法中,为提高最小二乘偏移的效率,可采用效率较高的正传播算子和反传播算子.我们利用效率较高,能适应剧烈横向变速的傅立叶有限差分正传播和反传播算子来做叠后最小二乘偏移.数值实例表明,通过少数的共轭梯度法迭代,就能得到与真实模型差别很微小的偏移效果.对于傅式变换我们采用了数值软件FFTW,其变换速度比常规FFT算法一般要快六倍以上,进一步提高了效率.本文算法很容易在并行机上实现,这些特点在处理大型数据时大有裨益.  相似文献   

11.
三维叠前深度偏移的准三维算法研究   总被引:5,自引:4,他引:5  
介绍了目前叠前偏移方法的研究状况,引入准三维算法的概念并对其进行了讨论,同时对共方位角偏移算子作了详细的介绍,最后,给出了运用共方位角偏移算子在实际中的应用结果,认为共方位角方法具有运算速度快,适应范围大的优点,有较好的研究开发前景。  相似文献   

12.
Least-squares reverse time migration is often formulated as an iterative updating process, where estimating the gradient of the misfit function is necessary. Traditional time domain shot-profile least-squares reverse time migration is computationally expensive because computing the gradient involves solving the two-way wave equation several times in every iteration. To reduce the computational cost of least-squares reverse time migration, we propose a double-plane-wave least-squares reverse time migration method based on a misfit function for frequency-domain double-plane-wave data. In double-plane-wave least-squares reverse time migration, the gradient is computed by multiplying frequency-domain plane-wave Green's functions with the corresponding double-plane-wave data residual. Because the number of plane-wave Green's functions used for migration is relatively small, they can be pre-computed and stored in a computer's discs or memory. We can use the pre-computed plane-wave Green's functions to obtain the gradient without solving the two-way wave equation in each iteration. Therefore, the migration efficiency is significantly improved. In addition, we study the effects of using sparse frequency sampling and sparse plane-wave sampling on the proposed method. We can achieve images with correct reflector amplitudes and reasonable resolution using relatively sparse frequency sampling and plane-wave sampling, which are larger than that determined by the Nyquist theorem. The well-known wrap-around artefacts and linear artefacts generated due to under-sampling frequency and plane wave can be suppressed during iterations in cases where the sampling rates are not excessively large. Moreover, implementing the proposed method with sparse frequency sampling and sparse plane-wave sampling further improves the computational efficiency. We test the proposed double-plane-wave least-squares reverse time migration on synthetic models to show the practicality of the method.  相似文献   

13.
一种基于平面波静态编码的最小二乘逆时偏移方法   总被引:3,自引:2,他引:1       下载免费PDF全文
平面波偏移是一种面炮偏移方法,相对于常规逐炮偏移,其具有较高的计算效率.然而常规平面波偏移方法成像精度低,且成像时会产生串扰噪音.为此,本文在实现常规平面波偏移算法基础上,引入反演思想实现了基于静态平面波编码的最小二乘偏移理论方法及处理流程,在优化算法基础上对平层模型和复杂砂砾断块模型进行了成像测试并与其他成像策略进行对比.研究结果表明:基于时移编码的平面波最小二乘偏移能有效抑制低频成像噪音和串扰噪音,补偿中深部成像能量,是一种较为有效的保幅成像策略.  相似文献   

14.
地震勘探是寻找油气的重要手段之一.对于复杂构造地区,地震偏移成像成为地震资料处理流程中最重要的一环.由于叠前时间偏移尤其是Kirchhoff叠前时间偏移适应性强、计算效率高、成本低的自身特点,该方法在油气勘探中发挥着重要作用.对于该方法的成像精确性的研究有着重大的科研和工业价值.本文利用弯曲射线方法计算走时,加入保幅权函数,结合去假频技术、MPI并行技术,以SEG三维盐丘模型和某区域三维实际资料为研究对象,实现三维保幅弯曲射线Kirchhoff叠前时间偏移.将该方法偏移结果与传统的叠前时间偏移方法偏移结果进行对比分析,结果表明:本文采用的方法主要有以下两方面的优越性:第一,引入了弯曲射线计算走时,实现了弯曲射线叠前时间偏移,提高了成像的精确性;第二,引入了保幅权函数,实现了保幅叠前时间偏移,提高偏移结果的信噪比.  相似文献   

15.
天然气水合物的富集往往与断裂、底辟及泥火山等构造有关,这就要求地震成像要精确,而针对水合物的地震处理又要以保真保幅为前提,因此快速高效而又有较高成像质量的的保幅Kirchhoff弯曲射线叠前时间偏移技术被广泛应用于三维水合物资料处理中。与直射线Kirchhoff叠前时间偏移技术相比,弯曲射线Kirchhoff叠前时间偏移同样具有快速高效的特点,同时成像精度在一定程度上可媲美叠前深度偏移。在实际资料的应用中可发现,基于保幅Kirchhoff弯曲射线叠前时间偏移技术处理的地震剖面可精确地刻画气体通道,有利于天然气水合物富集区的识别。  相似文献   

16.
3D Kirchhoff migration (KM) smears a trace's time sample along a quasi-ellipsoid in the model space. This is a costly and sometimes noisy process as reflection energy is smeared far away from the actual reflector position, introducing far-field migration artefacts. As a reduced form of 3D KM, 3D wavepath migration (WM) smears a picked reflection arrival to a small Fresnel zone portion centred about the specular reflection point, leading to fewer migration artefacts and reduced computation time. Both the traveltime and the angle of incidence are required by WM for locating the specular reflection point. Our results with 3D prestack synthetic data show that WM generates fewer migration artefacts and can sometimes define complex structure better than KM. Our results with 3D prestack field data show that WM can mostly suppress migration artefacts and can sometimes resolve reflection interfaces better than KM. The CPU comparison shows that, for both the synthetic and field data examples, WM can be more than an order of magnitude faster than KM. The limitation with 3D WM is that the angle of incidence calculation is sensitive to the recording geometry and the signal-to-noise (S/N) ratio, which can lead to blurred images.  相似文献   

17.
Kirchhoff叠前时间偏移角度道集   总被引:8,自引:5,他引:3       下载免费PDF全文
邹振  刘洪  刘红伟 《地球物理学报》2010,53(5):1207-1214
提出三维Kirchhoff叠前时间偏移角度域共像点道集的改进算法,克服传统角度求取算法局限,可计算相对倾斜地层法线入射角;与Kirchhoff直射线叠前时间偏移求角度算法相比,本文方法考虑射线弯曲效应,包含层速度,角度范围加大,更接近真实入射角;计算走时采取弯曲射线或者适应线性横向变速介质的非对称走时等算法,角度道集在大角度处得到拉平;采用相对保幅的权因子以及覆盖次数校正技术,有利于叠前AVA反演.模型测试结果表明:叠前时间偏移角度道集,相对CMP、CRP所转化角度道集,更准确反应AVA效应;实际三维数据测试表明本文方法可以提供品质优良的角度道集,适用于AVA分析、反演,提高叠前反演分辨率.  相似文献   

18.
We propose a combined migration velocity analysis and imaging method based on Kirchhoff integral migration and reverse time migration, using the residual curvature analysis and layer stripping strategy to build the velocity model. This method improves the image resolution of Kirchhoff integral migration and reduces the computations of the reverse time migration. It combines the advantages of efficiency and accuracy of the two migration methods. Its application in tunnel seismic prediction shows good results. Numerical experiments show that the imaging results of reverse time migration are better than the imaging results of Kirchhoff integral migration in many aspects of tunnel prediction. Field data show that this method has efficient computations and can establish a reasonable velocity model and a high quality imaging section. Combination with geological information can make an accurate prediction of the front of the tunnel geological structure.  相似文献   

19.
We show that it is possible to estimate the background velocity for prestack depth migration in 2D laterally varying media using a non-linear optimization technique called very fast simulated annealing (VFSA). We use cubic splines in the velocity model parametrization and make use of either successive pairs of shot gathers or several constant-offset sections as input data for the inversion. A Kirchhoff summation scheme based on first-arrival traveltimes is used to migrate/model the input data during the velocity analysis. We evaluate and compare two different measures of error. The first is defined in the recorded data or (x,t) domain and is based on a reflection-tomography criterion. The second is defined in the migrated data or (x,z) domain and is based on a migration-misfit criterion. Depth relaxation is used to improve the convergence and quality of the velocity analysis while simultaneously reducing the computational cost. Further, we show that by coarse sampling in the offset domain the method is still robust. Our non-linear optimization approach to migration velocity analysis is evaluated for both synthetic and real seismic data. For the velocity-analysis method based on the reflection-tomography criterion, traveltimes do not have to be picked. Similarly, the migration-misfit criterion does not require that depth images be manually compared. Interpreter intervention is required only to restrict the search space used in the velocity-analysis problem. Extension of the proposed schemes to 3D models is straightforward but practical only for the fastest available computers.  相似文献   

20.
为适应实际生产中对大规模三维工区数据处理的效果及效率的要求,提出了按三维成像体输出成像结果的3D Kirchhoff积分法偏移实现方案.将地震数据按共偏移距道集形式排放,每个共偏移距数据的偏移类似于一个3D叠后Kirchhoff积分偏移,极大地降低了对计算机内存和局部盘及I/O通讯率的要求.每个地震道的成像(输出等时面)在由炮检点连线定义的旋转坐标系中进行,更好地考虑了偏移孔径计算及反假频处理.同时兼顾了超大规模地震数据PSTM成像处理中内存需求量、I/O通讯问题、并行处理方案及效率优化的细节问题.并行计算用偏移距号和每个共偏移距数据体中的线号作为一级和二级索引进行任务分解,更适应当前计算机集群中计算节点比较多的情况.最后考虑了在基本不影响效率的前提下的断点保护处理方案.理论及实际数据测试结果说明了该方案的可行性,与商业软件的对比验证了该方案的优越性.在此较完善的实现方案基础上,可以容易地把更优越的积分类偏移方法迅速推向实用化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号