首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This study is devoted to investigating the content of uranium isotopes in water of the Yenisei River and its tributaries within the territories affected by the operation of Rosatom plants (mining chemical combine, and electrochemical plant). Long-term monitoring of the 238U content by mass spectrometry carried out in two institutes of the Siberian Branch of the Russian Academy of Sciences first revealed the multiple excess of 238U over the background content in different areas of the Yenisei River basin, such as the region of the Yenisei River near the effluents of the mining and chemical combine (MCC), and the territories of the Bol’shaya Tel’ and Kan rivers. In these regions, the 238U content in water reaches 2.1–4.0 μg/l, which exceeds its content upstream from the MCC (0.3–0.6 μg/l) by almost an order of magnitude. The studies of the isotopic composition of uranium in water samples, which were carried out at the Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, showed the presence of a technogenic isotope of uranium 236U in the samples from the Bolshaya Tel’ River and revealed the deviation of the isotope ratio 238U/235U (167 ± 3 and 177 ± 3) from the equilibrium natural ratio (238U/235U = 138). These facts attest to the technogenic origin of part of the uranium in water of the Bol’shaya Tel’ River connected with the activity of MCC. The excess uranium content in the Kan River requires additional studies to ascertain the fraction of uranium of technogenic origin connected with the activity of the electrochemical plant (ECP) (Fig. 1, Table 4).  相似文献   

2.
Amongst fission products formed in atomic reactors, 99Tc is the most hazardous for the environment because of its long half-life (213000 yr), high content in spent nuclear fuel (SNF) (0.8–1.0 kg per ton of SNF), low sorption ability, and high mobility under aerobic conditions. The bulk of 99Tc (∼200 t) is incorporated into SNF. In the course of SNF reprocessing, this radioisotope is released as a separate fraction or along with actinides. More than 60 t of highly concentrated 99Tc have been accumulated to date. It is evident that isolation of 99Tc from the environment is a matter of great urgency. The immobilization of technetium in a highly stable and poorly soluble matrix is a necessary element in settling this problem. Ceramics composed of titanates with pyrochlore, perovskite, and rutile structures are proposed as matrices able to retain technetium along with actinides. The high chemical stability of these compounds has been corroborated by experiments. The difficulties in production of such matrices are related to the fugacity of Tc and the necessity of converting it into Tc(IV). To overcome this obstacle, self-propagating high-temperature synthesis (SHS), characterized by reductive conditions and a high reaction rate, is proposed. The charge for matrix synthesis consists of reducing agents (metallic powders with a strong affinity to oxygen, e.g., Ti and Zr), oxidants (MoO3, Fe2O3, CuO), and additives (TiO2, ZrO2, Y2O3, CaO, etc.), which taken together with other elements form target phases. Instead of Tc, Mo, close in chemical properties, is used in matrix synthesis as a simulator. Samples of Mo-bearing matrices have been synthesized with SHS; their phase compositions and Mo distribution therein are characterized. It has been shown that up to 40 wt % Mo can be incorporated into the synthesized matrices in the form of metal or structural admixtures in titanates. The titanate-zirconate pyrochlore-based matrices are the most appropriate for the joint immobilization of actinides, REEs, and 99Tc.  相似文献   

3.
The subsurface behaviour of 99Tc, a contaminant resulting from nuclear fuels reprocessing, is dependent on its valence (e.g., IV or VII). Abiotic reduction of soluble Tc(VII) by Fe(II)(aq) in pH 6-8 solutions was investigated under strictly anoxic conditions using an oxygen trap (<7.5 × 10−9 atm O2). The reduction kinetics were strongly pH dependent. Complete and rapid reduction of Tc(VII) to a precipitated Fe/Tc(IV) form was observed when 11 μmol/L of Tc(VII) was reacted with 0.4 mmol/L Fe(II) at pH 7.0 and 8.0, while no significant reduction was observed over 1 month at pH 6.0. Experiments conducted at pH 7.0 with Fe(II)(aq) = 0.05-0.8 mmol/L further revealed that Tc(VII) reduction was a combination of homogeneous and heterogeneous reaction. Heterogeneous reduction predominated after approximately 0.01 mmol/L of Fe(II) was oxidized. The heterogeneous reaction was more rapid, and was catalyzed by Fe(II) that adsorbed to the Fe/Tc(IV) redox product. Wet chemical and Fe-X-ray absorption near edge spectroscopy measurements (XANES) showed that Fe(II) and Fe(III) were present in the Fe/Tc(IV) redox products after reaction termination. 57Fe-Mössbauer, extended X-ray adsorption fine structure (EXAFS), and transmission electron microscopy (TEM) measurements revealed that the Fe/Tc(IV) solid phase was poorly ordered and dominated by Fe(II)-containing ferrihydrite with minor magnetite. Tc(IV) exhibited homogeneous spatial distribution within the precipitates. According to Tc-EXAFS measurements and structural modeling, its molecular environment was consistent with an octahedral Tc(IV) dimer bound in bidentate edge-sharing mode to octahedral Fe(III) associated with surface or vacancy sites in ferrihydrite. The precipitate maintained Tc(IV)aq concentrations that were slightly below those in equilibrium with amorphous Tc(IV)O2·nH2O(s). The oxidation rate of sorbed Tc(IV) in the Fe/Tc precipitate was considerably slower than Tc(IV)O2·nH2O(s) as a result of its intraparticle/intragrain residence. Precipitates of this nature may form in anoxic sediments or groundwaters, and the intraparticle residence of sorbed/precipitated Tc(IV) may limit 99Tc remobilization upon the return of oxidizing conditions.  相似文献   

4.
Technetium isotopes 97Tc, 98Tc and 99Tc decay to 97Mo, 98Ru and 99Ru, with half-lives of 2.6 My, 4.1 My, and 0.21 My respectively. If there were early solar system processes that resulted in significant fractionation of Tc from the daughter elements, decay of extant Tc could have led to the creation of Mo and Ru isotopic heterogeneities. To assess the potential of metallic core crystallization to fractionate these elements, we examine the partitioning behavior of Tc relative to Re, Mo and Ru in the Fe-Ni-S system between solid metal and liquid metal alloy. The experimental evidence shows that Tc behaves more like the modestly compatible siderophile element Ru than the more highly compatible siderophile element Re, and that Tc is substantially more compatible than Mo. We also demonstrate a pressure effect in the partitioning of Mo during the crystallization of Fe-Ni-S melts. For a sulfur concentration in the liquid fraction of the core of 10 wt% (16.3 at%), the Jones and Malvin (1990) parameter is −ln(1-2 × 1.09 × 0.163) ≅ 0.44, which yields: D(Re) ≅ 4.1; D(Ru) ≅ 2.3; D(Tc) ≅ 1.7; D(Mo)Lo-P ≅ 1.0;.and D(Mo)Hi-P ≅ 0.5. Our results suggest that detectable Tc-induced isotopic anomalies (≥0.1 ε unit) in Ru and Mo could only be produced by unrealistically extreme degrees of crystallization of metal during asteroidal core fractionation, regardless of the time scales and initial Tc abundances involved.  相似文献   

5.
He  Haibo  Liu  Zaihua  Chen  Chongying  Wei  Yu  Bao  Qian  Sun  Hailong  Hu  Yundi  Yan  Hao 《中国地球化学学报》2019,38(5):613-626

Biological carbon pumping (BCP) is a key process in which dissolved inorganic carbon in terrestrial aquatic ecosystems is utilized by aquatic autotrophs for photosynthesis and transformed into autochthonous organic matter (AOC). However, the mechanisms underlying BCP and the amount of generated AOC deposited effectively, are still poorly understood. Therefore, we conducted a systematic study combining modern hydrochemical monitoring and a sediment trap experiment in Fuxian Lake (Yunnan, SW China), the second-deepest plateau, oligotrophic freshwater lake in China. Temperature, pH, EC (electrical conductivity), DO (dissolved O2), [HCO3], [Ca2+], SIc, partial CO2 (pCO2) pressure, and carbon isotopic compositions of HCO313CDIC) in water from Fuxian Lake all displayed distinct seasonal and vertical variations. This was especially apparent in an inverse correlation between pCO2 and DO, indicating that variations of hydrochemistry in the lake water were mainly controlled by the metabolism of the aquatic phototrophs. Furthermore, the lowest C/N ratios and highest δ13Corg were recorded in the trap sediments. Analyses of the C/N ratio demonstrated that the proportions of AOC ranged from 30% to 100% of all OC, indicating that AOC was an important contributor to sedimentary organic matter (OC). It was calculated that the AOC flux in Fuxian Lake was 20.43 t C km−2 in 2017. Therefore, AOC produced by carbonate weathering and aquatic photosynthesis could potentially be a significant carbon sink and may have an important contribution to solving the lack of carbon sinks in the global carbon cycle.

  相似文献   

6.
Diurnal variations of hydrochemistry were monitored at a spring and two pools in a travertine-depositing stream at Baishuitai, Yunnan, SW China. Water temperature, pH and specific conductivity were measured in intervals of 5 and 30 min for periods of 1 to 2 days. From these data the concentrations of Ca2+, HCO3, calcite saturation index, and CO2 partial pressure were derived. The measurements in the spring of the stream did not show any diurnal variations in the chemical composition of the water. Diurnal variations, however, were observed in the water of the two travertine pools downstream. In one of them, a rise in temperature (thus more CO2 degassing) during day time and consumption of CO2 due to photosynthesis of submerged aquatic plants accelerated deposition of calcite, whereas in the other pool, where aquatic plants flourished and grew out of the water (so photosynthesis was taking place in the atmosphere), the authors suggest that temperature-dependent root respiration underwater took place, which dominated until noon. Consequently, due to the release of CO2 by the root respiration into water, which dominated CO2 production by degassing induced by temperature increase, the increased dissolution of calcite was observed. This is the first time anywhere at least in China that the effect of root respiration on diurnal hydrochemical variations has been observed. The finding has implications for sampling strategy within travertine-depositing streams and other similar environments with stagnant water bodies such as estuaries, lakes, reservoirs, pools and wetlands, where aquatic plants may flourish and grow out of water.  相似文献   

7.
通过对中国西北干旱区石羊河流域民勤盆地三角城古湖泊沉积物有机质碳同位素组成(δ13Corg)分析,表明末次冰期与全新世时气候和植被有明显的差异,末次冰期δ13Corg总体偏轻(-30‰~-25‰),而全新世碳同位素组成则有较大的变化,在早全新世碳同位素组成有多次短期快速变重(-10‰左右)的变化,中全新世碳同位素组成总体偏重(-20‰~-10‰),晚全新世碳同位素组成偏轻(-25‰左右)。分析表明湖泊沉积物有机质碳同位素组成反映了陆生C3植物和湖泊内源水生植物变化的关系,末次冰期以来西北干旱区C4植物不发育,偏重的有机质碳同位素值与C4植物无关。从沉积物中有机质组分、元素等分析表明,末次冰期时主要以河流相沉积为主,湖泊中有机质主要来源于上游祁连山的陆生C3植物,有机碳含量较低,表明当时的上游的陆生植被不繁盛,区域气候较干冷;从全新世开始,三角城古湖泊开始形成,沉积物中碳同位素组成偏重的有机质主要来源于湖泊中的沉水植物,此时湖泊水体较大,湖泊生产力较高。而沉积物中有机质碳同位素组成偏轻时期的有机质主要来源于挺水植物、陆生C3植物,较低的有机碳含量说明该时期陆生植被不发育,气候较干冷,湖泊水体较小  相似文献   

8.
The H2O and H2 solubilities in an albite melt at 1200° C and 2 kbar over the entire range of gas phase composition, from pure hydrogen to pure water were studied in gas-media pressure vessels. The water solubility initially increases with increasing hydrogen content until a maximum of 9.19 wt% H2O atXH 2 v =0.1 is reached, withXH 2 v >0.1 the water solubility decreases. The hydrogen solubility curve has a maximum atXH 2 v =0.42 where the concentration reaches 0.206 wt% H2O. Over the entire compositional range1H NMR (nuclear magnetic resonance) spectra show distinct absorption lines due to protons bound to OH groups and to isolated firmly bound water molecules. In NMR and Raman spectra there were no bands attributable to the H–H vibrations of molecular hydrogen. The X-ray photo-electronic spectra of hydrogen-bearing glasses show the Si2p (99 eV) band which corresponds to the zero-valency silicon. The formation of OH groups and molecular water during interaction between hydrogen-bearing fluids and melts under reducing conditions has a qualitative effect, the same as for water dissolution. Another point of interest is that hydrogen-bearing melts undergo more depolymerization than do hydrous melts.  相似文献   

9.
This study was designed to investigate non-point source nutrient pollution and its influences on submerged aquatic plant community structure and biological invasion in the Weeks Bay National Estuarine Research Reserve (WBNERR). A monthly vegetation survey was conducted to document plant abundance and changes in community structure; physicochemical data and water samples were collected on a bi-monthly basis to monitor environmental conditions (i.e., pH, salinity, dissolved oxygen, light intensity, and attenuation) and water column nutrient (NO2/NO3 and NH4+) and chlorophyll a concentrations. A total of seven submerged aquatic species were identified at the WBNERR with the occurrence of only one non-native species (Hydrilla verticillata). Statistical analyses suggest that water column nitrogen concentrations along with variations in dissolved oxygen (0.6–11.5 mg L−1), light attenuation, pH (5.6–8.6), and temperature (11–33°C) play key roles in determining the aquatic plant abundance and distribution in the WBNERR.  相似文献   

10.
Various aquatic plants from Lake Qinghai, the largest inland saline lake in China, and terrestrial plants from the surrounding area were investigated for the distribution of n-alkanes and their δD values. The n-alkanes in the samples range from C15 to C33 with C preference index (CPI) values of 4.0–29.7. The n-C23 or n-C25 alkane is the dominant compound in the aquatic submerged plants. The aquatic emergent and terrestrial plants have an abundance maximum at n-C27, n-C29 or n-C31. The average chain length (ACL) values, ranging from 26.0 to 29.6, are closely related to the plant species. The n-alkanes from the aquatic plants have mean δD values of −169‰ to −121‰ and those from the terrestrial plants values of −173‰ to −109‰. The H isotopic composition (δD) and fractionation differ significantly among the plants studied. Comparison shows that additional evaporative enrichment of the lake water associated with saline lakes and humidity influence the δD values of the n-alkanes in aquatic and terrestrial plants, respectively. The mean δD values of n-alkanes in the plants decrease with increasing ACL value. The n-alkanes from the different types of plants are more depleted in D relative to environmental water and those from aquatic plants (with a mean value of −143‰) have a greater isotopic fractionation than terrestrial plants (mean value −113‰).  相似文献   

11.
High-temperature x-ray powder diffraction study by the full pattern Rietveld method of orthorhombic CaGeO3 (Pbnm at ambient condition) perovskite confirms the previously observed phase transition at Tc=520 K. The measured volumetric thermal expansion coefficients are 3.1 x 10-5 (K-1) below Tc and 3.5x 10-5 (K-1) above Tc. The space group at T>Tc has been tentatively identified as Cmcm. Such a transition involves the disappearance of one of the two octahedral rotations in the (001) plane, and the doubling of the unit cell volume, with c axis unchanged. Although this transition should be of first order from symmetry considerations, the distortion of the Pbnm phase decreases continuously as the temperate approaches Tc and there is no observable volume discontinuity at Tc. The measured heat capacity places an upper limit on the enthalpy of transition of 50 J/mol, which is quite reasonable in terms of the crystallographic nature of this phase transition.A National Science Foundation Science and Technology Center  相似文献   

12.
Carbonates often accompany lake and lake‐margin deposits in both modern and ancient geological settings. If these carbonates are formed in standing water, their stable isotope values reflect the aquatic chemistry at the time of precipitation and may provide a proxy for determining regional hydrologic conditions. Carbonate rhizoliths and water samples were collected from a playa lake in eastern Nevada. Pilot Valley (~43°N) is a closed‐basin, remnant playa from the Quaternary desiccation of palaeo‐Lake Bonneville. Water is added to the playa margin by free convection of dense brines to the east and forced convection of freshwater off the alluvial fan to the west. Both freshwater and saline springs dot the playa margin at the base of an alluvial fan. Water samples collected from seven springs show a range from ?16 to ?0·2‰ (Vienna Standard Mean Ocean Water), and are consistent with published values. The δ18Ocalcite values from rhizolith samples range from ?18·3 to ?6·7‰ (Vienna Pee Dee Belemnite), and the average is ?12‰ V‐PDB (1 ? σ SD 2‰). With the exception of samples from Little Salt Spring, the range in the δ18Ocalcite values collected from the rhizoliths confirms that they form in equilibrium with ambient water conditions on the playa. The initial geochemical conditions for the spring waters are dictated by local hydrology: freshwater springs emerge in the northern part of the basin to the east of a broad alluvial fan, and more saline springs emerge to the south where the influence of the alluvial fan diminishes. Rhizoliths are only found near the southern saline springs and their δ13Ccalcite values, along with their morphology, indicate that they only form around saltgrass (Distichlis sp.). As the residence time of water on the playa increases, evaporation, temperature change and biological processes alter the aquatic chemistry and initiate calcite precipitation around the plant stems. The range in δ18Ocalcite values from each location reflects environmental controls (e.g. evaporation and temperature change). These rhizoliths faithfully record ambient aquatic conditions during formation (e.g. geochemistry and water depth), but only record a partial annual signal that is constrained by saltgrass growth and the presence of standing water on the playa margin.  相似文献   

13.
The chemical and isotopic characteristics of the water and suspended particulate materials(SPM)in the Yellow River were investigated on the samples collected from 29 hydrological monitoring stations in the mainstem and several major tributaries during 2004 to 2007.TheδD andδ~(18)O values of the Yellow River water vary in large ranges from-32‰to-91‰and from-3.1‰to-12.5‰,respectively.The characters of H and O isotope variations indicate that the major sources of the Yellow River water are meteoric water and snow melting water,and water cycle in the Yellow River basin is affected strongly by evaporation process and human activity.The average SPM content(9.635g/L)of the Yellow River is the highest among the world large rivers.Compared with the Yangtze River,the Yellow River SPM has much lower clay content and significantly higher contents of clastic silicates and carbonates.In comparison to the upper crust rocks,the Yellow River SPM contains less SiO_2,CaO,K_2O and Na_2O,but more TFe_2O_3,Co,Ni,Cu,Zn,Pb and Cd.The abnormal high Cd contents found in some sample may be related to local industrial activity.The REE contents and distribution pattern of the Yellow River SPM are very close to the average value of the global shale.The averageδ~(30)Si_(SPM)in the Yellow River(-0.11‰)is slightly higher than the average value(-0.22‰)of the Yangtze River SPM.The major factors controlling theδ~(30)Si_(SPM)of the Yellow River are the soil supply,the isotopic composition of the soil and the climate conditions.The TDS in the Yellow River are the highest among those of world large rivers.Fair correlations are observed among Cl~-,Na~+,K~+,and Mg~(2+)contents of the Yellow River water,indicating the effect of evaporation.The Ca~(2+)and Sr~(2+)concentrations show good correlation to the SO_4~(2-)concentration rather than HCO_3~-concentration,reflecting its origin from evaporates.The NO_3~-contents are affected by farmland fertilization.The Cu,Zn and Cd contents in dissolved load of the Yellow River water are all higher than those of average world large rivers,reflecting the effect of human activity.The dissolved load in the Yellow River water generally shows a REE distribution pattern parallel to those for the Yangtze River and the Xijiang River.Theδ~(30)Si values of the dissolved silicon vary in a range from 0.4‰to 2.9‰,averaging1.34‰.The major processes controlling the D_(Si)andδ~(30)Si_(Diss)of the Yellow River water are the weathering process of silicate rocks,growth of phytolith in plants,evaporation,dissolution of phytolith in soil,growth of fresh water diatom,adsorption and desorption of aqueous monosilicic acid on iron oxide and human activities.The averageδ~(30)Si_(Diss)value of the Yellow River is significantly lower than that of the Nile River,Yangtze River and Siberia rivers,but higher than those of other rivers,reflecting their differences in chemical weathering and biological activity.Theδ~(34)S_(SO4)values of the Yellow River water range from-3.8‰to 14.1‰,averaging 7.97‰.There is some correlation between SO_4~(2-)content andδ~(34)S_(SO4).The factors controlling theδ~(34)S_(SO4)of the Yellow River water are the SO_4 in the meteoric water,the SO_4 from gypsum or anhydrite in evaporite rocks,oxidation and dissolution of sulfides in the mineral deposits,magmatic rocks and sedimentary rocks,the sulfate reduction and precipitation process and the sulfate from fertilizer.The~(87)Sr/~(86)Sr ratios of all samplesrange from 0.71041 to 0.71237,averaging 0.71128.The variations in the~(87)Sr/~(86)Sr ratio and Sr concentration of river water are primarily caused by mixing of waters of various origins with different~(87)Sr/~(86)Sr ratios and Sr contents resulting from water-rock interaction with different rock types.  相似文献   

14.
Lipids extracted from lacustrine deposits in the paleolake Qarhan of the Qaidam basin in the northeastern Tibetan Plateau were determined by conventional gas chromatography-mass spectrometry. Several series of biomarkers were identified, mainly including n-alkanes, n-alkan-2-ones, n-alkanoic acids, branched alkanes, triterpenoids and steroids, indicative of various biogenic contributions. On the basis of cluster analysis, the n-C15, n-C17, n-C19 alkanes were proposed to be derived from algae and/or photosynthetic bacteria, the n-C21, n-C23, n-C25 homologues from aquatic plants, and the n-C29, n-C31 homologues from vascular plants. In contrast, the n-C27 alkane is not categorized in the n-C29 and n-C31 group of alkanes, probably due to more complex origins including both aquatic and vascular plants, and/or differential biodegradation. Stratigraphically, layers-2, 4 and 5 were found to show a close relationship in n-alkane distribution, associated with a positive shift in carbon isotope composition of bulk organic matter (δ13Corg), inferring a cold/dry period. Layers-1 and 6 were clustered together in association with a negative δ13Corg, excursion, probably indicating a relatively warm/humid climate. The potential coupling between the n-alkane distributions and δ13Corg, suggests a consequence of vegetation change in response to climate change, with the late MIS3 being shown to be unstable, thought to be the climatic optimum in the Tibetan Plateau. Our results suggest that the cluster analysis used in this study probably provides an effective and authentic method to investigate the n-alkane distribution in paleolake sediments.  相似文献   

15.
The carbon isotope composition (δ13C values) of long chain n-alkanes in lake sediments has been considered a reliable means of tracking changes in the terrigenous contribution of plants with C3 and C4 photosynthetic pathways. A key premise is that long chain leaf wax components used for isotope analysis are derived primarily from terrigenous higher plants. The role of aquatic plants in affecting δ13C values of long chain n-alkanes in lacustrine sediments may, however, have long been underestimated. In this study, we found that a large portion of long chain n-alkanes (C27 and C29) in nearshore sediments of the Lake Qinghai catchment was contributed by submerged aquatic plants, which displayed a relatively positive carbon isotope composition (e.g. −26.7‰ to −15.7‰ for C29) similar to that of terrestrial C4 plants. Thus, the use of δ13C values of sedimentary C27 and C29 n-alkanes for tracing terrigenous vegetation composition may create a bias toward significant overestimation/underestimation of the proportion of terrestrial C4 plants. For sedimentary C31, however, the contribution from submerged plants was minor, so that the δ13C values for C31 n-alkane in surface sediments were in accord with those of the modern terrestrial vegetation in the Lake Qinghai region. Moreover, we found that changes in the δ13C values of sedimentary C27 and C29 n-alkanes were closely related to water depth variation. Downcore analysis further demonstrated the significant influence of endogenous lipids in lake sediments for the interpretation of terrestrial C4 vegetation and associated environment/climate reconstruction. In conclusion, our results suggest that the δ13C values of sedimentary long chain n-alkanes (C27, C29 and C31) may carry different environmental signals. While the δ13C values of C31 were a reliable proxy for C4/C3 terrestrial vegetation composition, the δ13C values of C27 and C29 n-alkanes may have recorded lake ecological conditions and sources of organic carbon, which might be affected by lake water depth.  相似文献   

16.
99Technetium (99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life (t1/2 = 2.13 × 105 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron, either in aqueous form (Fe2+) or in mineral form [Fe(II)], has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) has not been investigated. In this study the reactivity of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Surface Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total structural Fe content of these clay minerals, after surface Fe-oxide removal, ranged from 0.7% to 30.4% by weight, and the structural Fe(III)/Fe(total) ratio ranged from 45% to 98%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with structural Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella putrefaciens CN32 cells as a mediator. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. In the S-I series, smectite (montmorillonite) was the most reducible (18% and 41% without and with AQDS, respectively) and illite the least (1% for both without and with AQDS). The extent and initial rate of bioreduction were positively correlated with the percent smectite in the S-I series (i.e., layer expandability). Fe(II) in the bioreduced clay minerals subsequently was used to reduce Tc(VII) to Tc(IV) in PIPES buffer. Similar to the trend of bioreduction, in the S-I series, reduced NAu-2 showed the highest reactivity toward Tc(VII), and reduced illite exhibited the least. The initial rate of Tc(VII) reduction, after normalization to clay and Fe(II) concentrations, was positively correlated with the percent smectite in the S-I series. Fe(II) in chlorite and palygorskite was also reactive toward Tc(VII) reduction. These data demonstrate that crystal chemical parameters (layer expandability, Fe and Fe(II) contents, and surface area, etc.) play important roles in controlling the extent and rate of bioreduction and the reactivity toward Tc(VII) reduction. Reduced Tc(IV) resides within clay mineral matrix, and this association could minimize any potential of reoxidation over long term.  相似文献   

17.
Fatty acid (FA) composition and stable isotope (δ13C, δ15N) signatures of four aquatic plants, plankton, sediment, soil and suspended particulate organic matter (SPOM) collected from open floodplain lakes (Várzea) and rivers of the central Brazilian Amazon basin were gathered during high and low water stages in 2009. SPOM from Várzea had a major contribution of autochthonous material from phytoplankton and C3 aquatic plants. As shown from stable isotope composition of SPOM (δ13C −31.3 ± 3.2‰; δ15N 3.6 ± 1.5‰), the C4 aquatic phanerogam (δ13C −13.1 ± 0.5‰; δ15N 4.1 ± 1.7‰) contribution appeared to be weak, although these plants were the most abundant macrophyte in the Várzea. During low water season, increasing concentration of 18:3ω3 was recorded in the SPOM of lakes. This FA, abundant mainly in the Várzea plants (up to 49% of total FAs), was due to the accumulation of their detritus in the ecosystem. This dry season, when connectivity with the river mainstem was restricted, was also characterized by a high concentration in the SPOM of the cyanobacteria marker 16:1ω7 (up to 21% of total FAs). The FA compositions of SPOM from the Amazon River also exhibited significant seasonal differences, in particular a higher concentration of 16:1ω7 and 18:3ω3 during the dry season. This suggests a seasonal contribution of autochthonous material produced in Várzea to the Amazon River SPOM.  相似文献   

18.
Using the Chiller computer program, we performed modeling of the mechanisms of the joint transport and deposition of Au and Sb from various ore-forming solutions during the formation of Au-Sb deposits. Three models are considered by the example of the Uderei Au-Sb deposit in the Yenisei Ridge: (1) simple cooling (cooling only), (2) iso-enthalpy boiling (P = f(T)), and (3) solution–rock interaction (rock titration model). The behavior of Sb(III) and Au(I) in the system Au–Sb–Fe–Cu–Pb–Zn–As–H2O–Cl–H2S–CO2 under hydrothermal conditions was studied. It is shown that both weakly alkaline (near-neutral) and reduced acidic Feaq2+-enriched low-chloride high-CO2 and high-chloride hydrothermal solutions play a crucial role in the formation of gold parageneses of Au-Sb ores.  相似文献   

19.
Complex oxides of the pyrochlore (space groups Fd3m, [8]A2 [6]B2O7) and garnet (Ia3d, [8]A3 [6]B2 [4]T3O12) structures (“A” = Ca2+, Ln3+/4+, An3+/4+; “B” = (Ti, Sn, Hf, and Zr)4+ in pyrochlore, and Al3+, Ga3+, and Fe3+ in garnet alone; “T” = (Al3+, Ga3+, and Fe3+) are promising matrices for actinide-bearing wastes. In order to identify optimal compositions of these phases, their isomorphic capacity with respect to REE, actinides, and other components of wastes was examined. The long-term behavior of the matrix at a repository was predicted based on data obtained on the behavior of pyrochlores and garnets under ion irradiation and 244Cm decay and on the determined leaching rates of REE from the matrices because of their interaction with aqueous solutions, including that after amorphization. In order to propose efficient synthesis techniques, samples prepared with the use of various methods were studied. The possibility of incorporating long-lived decay products of 99Tc into the crystalline matrices was analyzed.  相似文献   

20.
The Yunmeng Shan metamorphic core complex (MCC) is composed of the lower plate, the upper plate and the detachment zone. The detachment zone consists of ductile shear zone (mylonite zone), chloritized microbreccias zone and the brittle fault plane. The ductile shear zone contains mylonitic rocks, protomylonites, and mylonites. Finite strain measurements of feldspar porphyroclasts from those rocks using the Rf/φ method show that the strain intensities increase from mylonitic rocks (Es=0.66–0.72) to protomylonites (Es=0.66–0.83), and to mylonites (Es=0.71–1.2). The strain type is close to flatten strain. Kinematic vorticity estimated by Polar Mohr diagrams suggest that foliations and lineation of mylonite (0.47相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号