首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas). Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen) in a Mississippian marine shale decomposed to gas (C1–C5). The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour), nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock) than at 350°C by thermal cracking (12 μg C1–C5/g rock). The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible.  相似文献   

2.
The recent report of low-temperature catalytic gas from marine shales took on additional significance with the subsequent disclosure of natural gas and low-temperature gas at or near thermodynamic equilibrium in methane, ethane, and propane. It is important because thermal cracking, the presumed source of natural gas, cannot generate these hydrocarbons at equilibrium nor can it bring them to equilibrium over geologic time. The source of equilibrium and the source of natural gas are either the same (generation under equilibrium control) or closely associated. Here we report the catalytic interconversion of hydrocarbons (metathesis) as the source of equilibrium in experiments with Cretaceous Mowry shale at 100°C. Focus was on two metathetic equilibria: methane, ethane, and propane, reported earlier, Q (K = [(C1)*(C3)]/[(C2)2]), and between these hydrocarbons and n-butane, Q* (K = [(C1)*(n-C4)]/[(C2)*(C3)]), reported here for the first time. Two observations stand out. Initial hydrocarbon products are near equilibrium and have maximum average molecular weights (AMW). Over time, products fall from equilibrium and AMW in concert. It is consistent with metathesis splitting olefin intermediates [Cn] to smaller intermediates (fission) as gas generation creates open catalytic sites ([ ]): [Cn] + [ ] → [Cn-m] + [Cm]. Fission rates increasing exponentially with olefin molecular weight could contribute to these effects. AMW would fall over time, and selective fission of [C3] and [n-C4] would draw Q and Q* from equilibrium. The results support metathesis as the source of thermodynamic equilibrium in natural gas.  相似文献   

3.
The idea that natural gas is the thermal product of organic decomposition has persisted for over half a century. Crude oil is thought to be an important source of gas, cracking to wet gas above 150°C, and dry gas above 200°C. But there is little evidence to support this view. For example, crude oil is proving to be more stable than previously thought and projected to remain intact over geologic time at typical reservoir temperatures. Moreover, when oil does crack, the products do not resemble natural gas. Oil to gas could be catalytic, however, promoted by the transition metals in carbonaceous sediments. This would explain the low temperatures at which natural gas forms, and the high amounts of methane. This idea gained support recently when the natural progression of oil to dry gas was duplicated in the laboratory catalytically. We report here the isotopic composition of catalytic gas generated from crude oil and pure hydrocarbons between 150 and 200°C. δ13C for C1 through C5 was linear with 1/n (n = carbon number) in accordance with theory and typically seen in natural gases. Over extended reaction, isobutane and isopentane remained lighter than their respective normal isomers and the isotopic differentials were constant as all isomers became heavier over time. Catalytic methane, initially −51.87‰ (oil = −22.5‰), progressed to a final composition of −26.94‰, similar to the maturity trend seen in natural gases: −50‰ to −20‰. Catalytic gas is thus identical to natural gas in molecular and isotopic composition adding further support to the view that catalysis by transition metals may be a significant source of natural gas.  相似文献   

4.
Four seep sites located within an ∼20 km2 area offshore Georgia (Batumi seep area, Pechori Mound, Iberia Mound, and Colkheti Seep) show characteristic differences with respect to element concentrations, and oxygen, hydrogen, strontium, and chlorine isotope signatures in pore waters, as well as impregnation of sediments with petroleum and hydrocarbon potential. All seep sites have active gas seepage, near surface authigenic carbonates and gas hydrates. Cokheti Seep, Iberia Mound, and Pechori Mound are characterized by oil-stained sediments and gas seepage decoupled from deep fluid advection and bottom water intrusion induced by gas bubble release. Pechori Mound is further characterized by deep fluid advection of lower salinity pore fluids. The Pechori Mound pore fluids are altered by mineral/water reactions at elevated temperatures (between 60 and 110 °C) indicated by heavier oxygen and lighter chlorine isotope values, distinct Li and B enrichment, and K depletion. Strontium isotope ratios indicate that fluids originate from late Oligocene strata. This finding is supported by the occurrence of hydrocarbon impregnations within the sediments. Furthermore, light hydrocarbons and high molecular weight impregnates indicate a predominant thermogenic origin for the gas and oil at Pechori Mound, Iberia Mound, and Colkheti Seep. C15+ hydrocarbons at the oil seeps are allochtonous, whereas those at the Batumi seep area are autochthonous. The presence of oleanane, an angiosperm biomarker, suggests that the hydrocarbon source rocks belong to the Maikopian Formation. In summary, all investigated seep sites show a high hydrocarbon potential and hydrocarbons of Iberia Mound, Colkheti Seep, and Pechori Mound are predominantly of thermogenic origin. However, only at the latter seep site advection of deep pore fluids is indicated.  相似文献   

5.
Organic geochemical analyses of fine-grained rocks from the 9.590 km Bertha Rogers No. 1 well have been carried out: total organic carbon, Soxhlet extraction and silica gel chromatography, C15+ saturated and aromatic hydrocarbon gas chromatography and mass spectrometry, pyrolysis, kerogen analysis, X-ray diffraction and visual kerogen analysis.Rocks ranged in age from Permian to Ordovician; the well has an estimated bottom hole temperature of 225°C. Some data from this study are inconsistent with conventional theories concerning the generation and thermal destruction of hydrocarbons. For example, appreciable amounts of C15+ gas-condensate-like hydrocarbons are present in very old rocks currently at temperatures where current theory predicts that only methane and graphite should remain. Also, substantial amounts of pyrolyzable C15+ hydrocarbons remain on the kerogen in these deeply buried Paleozoic rocks. This suggests, at least in somes cases, that temperatures much higher than those predicted by current theory are required for generation and thermal destruction of hydrocarbons. The data from this well also suggest that original composition of organic matter and environment of deposition may have a much stronger influence on the organic geochemical characteristics of fine-grained sediments than has previously been ascribed to them. The results from this well, from other deep hot wells in which temperatures exceed 200°C, and from laboratory experiments, suggest that some of the basic concepts of the generation and maturation of petroleum hydrocarbons may be in error and perhaps should be reexamined.  相似文献   

6.
A suite of 27 oils from the Qinjiatun–Qikeshu oilfields in the Lishu Fault Depression of the Songliao Basin was analyzed using whole oil gas chromatography. In combination with the relative distribution of C27, C28, and C29 regular steranes, detailed geochemical analyses of light hydrocarbons in oil samples revealed crude oils characterized by the dual input of lower aquatic organisms and higher terrestrial plants. Several light hydrocarbon indicators suggest that the liquid hydrocarbons have maturities equivalent to vitrinite reflectances of around 0.78%–0.93%. This is consistent with the maturity determination of steranes C29 20S/(20S + 20R) and C29 ααβ/(ααα + αββ). Crude oils derived from the two distinct oilfields likely both have source rocks deposited in a lacustrine environment based on light hydrocarbon parameters and on higher molecular weight hydrocarbon parameters. The results show that light hydrocarbon data in crude oils can provide important information for understanding the geochemical characteristics of the Qinjiatun–Qikeshu oils during geologic evolution.  相似文献   

7.
A gas condensate from well ND1 in the Jizhong Depression of the Bohai Bay Basin, China is characterized by two-dimensional gas chromatography with flame ionization detector (GC × GC–FID) and time-of-flight mass spectrometry (GC × GC–TOFMS). This condensate is sourced from the fourth member of the Shahejie Formation (Es4) but reservoired in the Mesoproterozoic Wumishan Formation carbonate at a depth of 5641–6027 m and the reservoir temperature is 190–201 °C. It is the deepest and the highest temperature discovery in the basin to date. The API gravity of the condensate is 51° and the sulfur content is < 0.04%. A total of 4955 compounds were detected and quantified. Saturated hydrocarbons, aromatic hydrocarbons and non-hydrocarbon account for 94.8%, 5.1% and 0.02% of the condensate mass, respectively. Some long chain alkylated cyclic alkanes, decahydronaphthalenes and diamondoids are tentatively identified in this condensate. The C6–C9 light hydrocarbon parameters show that the gas condensate was generated at relatively high maturity but its generation temperature derived from the dimethylpentane isomer ratio seems far lower than the current reservoir temperature. Some light hydrocarbon parameters indicate evaporative fractionation may also be involved due to multiple-charging and mixing. The diamondoid concentrations and gas oil ratio (GOR) suggest that the ND1 condensate results from 53.3–55% cracking. Since significant liquids remain, the exploration potential of ultra-deep buried hill fields in the Bohai Bay Basin remains high.  相似文献   

8.
Light hydrocarbons in subsurface sediments   总被引:1,自引:0,他引:1  
The major features and numerous compositional details of the indigenous C2–C7 hydrocarbon suites of argillaceous sediments are systematically temperature dependent. The relative concentrations of alicyclic compounds exhibit a consistent maximum at subsurface temperatures close to 170°F (77°C) without regard to the chemical nature of the bulk of the kerogen, whether rich or poor in hydrogen, though this strongly affects the specific yield. A continuous increase in relative alkane content follows at higher temperatures. Indices of paraffinicity may be devised. One such, termed the ‘heptane value’ (essentially the percentage of n-heptane in the b.p. range 80.7–100.9°C), possesses a linear association with temperature, provides an index of catagenesis, and frequently provides a means of appraising paleotemperatures. Regressions of heptane value on temperature are compared in two composite stratigraphic sections dominated by kerogens representing two extremes of composition. The regression coefficients differ by 7%. Yields of light hydrocarbons increase exponentially in these sections by more than three orders of magnitude along sub-parallel, temperature-dependent curves. These similarities infer universally similar generating reactions and compositionally similar suites of light hydrocarbons at given subsurface temperatures, regardless of kerogen type, particularly for sections which underwent burial and heating during the Tertiary period.  相似文献   

9.
The Deccan Syneclise is considered to have significant hydrocarbon potential.However,significant hydrocarbon discoveries,particularly for Mesozoic sequences,have not been established through conventional exploration due to the thick basalt cover over Mesozoic sedimentary rocks.In this study,near-surface geochemical data are used to understand the petroleum system and also investigate type of source for hydrocarbons generation of the study area.Soil samples were collected from favorable areas identified by integrated geophysical studies.The compositional and isotopic signatures of adsorbed gaseous hydrocarbons(methane through butane) were used as surface indicators of petroleum micro-seepages.An analysis of 75 near-surface soil-gas samples was carried out for light hydrocarbons(C1-C4) and their carbon isotopes from the western part of Tapti graben,Deccan Syneclise,India.The geochemical results reveal sites or clusters of sites containing anomalously high concentrations of light hydrocarbon gases.High concentrations of adsorbed thermogenic methane(C_1 = 518 ppb) and ethane plus higher hydrocarbons(ΣC_(2+) = 977 ppb) were observed.Statistical analysis shows that samples from 13% of the samples contain anomalously high concentrations of light hydrocarbons in the soil-gas constituents.This seepage suggests largest magnitude of soil gas anomalies might be generated/source from Mesozoic sedimentary rocks,beneath Deccan Traps.The carbon isotopic composition of methane,ethane and propane ranges are from-22.5‰ to-30.2‰ PDB,-18.0‰to 27.1‰ PDB and 16.9‰-32.1‰ PDB respectively,which are in thermogenic source.Surface soil sample represents the intersection of a migration conduit from the deep subsurface to the surface connected to sub-trappean Mesozoic sedimentary rocks.Prominent hydrocarbon concentrations were associated with dykes,lineaments and presented on thinner basaltic cover in the study area,which probably acts as channel for the micro-seepage of hydrocarbons.  相似文献   

10.
Based on thermal simulation experiment, interactions between volcanic fluids and source rocks were studied. Gas generations in the dry system and fluid system under different temperatures were analyzed. The results showed that the various types of source rocks are similar in composition, containing gaseous C1-C5 hydrocarbons, H2 and CO2 whose gas yields increase with increasing temperature. The gas yield of source rocks of type I is the high- est, followed by type II, and that of source rocks of type III is the lowest, indicating that the yield of hydrocarbon gases is related to their hydrocarbon generating potential. Although the generating potential of type III is the lowest, it can still be regarded as a useful gas source when it is buried deeply enough. The basic volcanic fluid restrains the generation of gaseous hydrocarbons in different types of source rocks, but promotes the generation of inorganic gases.  相似文献   

11.
In 2001 a surface geochemical survey was carried out in the Carpathian Foredeep, in the area between Jaros?aw and Radymno (SE Poland) where multihorizon gas deposits were discovered. These deposits accumulate microbial CH4 with small amounts of N2 and higher molecular weight gaseous hydrocarbons. Soil–gas composition in the hydrocarbon fields in the study area is relatively different from the original composition of natural gas occurring in the subsurface reservoir. In 449 analyzed soil gas samples collected from 1.2 m depth relatively low concentrations were found for CH4 (median value 2.2 ppm) and its homologues (median value of total alkanes C2–C4 – 0.02 ppm). Alkenes were encountered in 36.3% of the analyzed samples (mean value of total alkenes C2–C4 – 0.015 ppm) together with distinctly higher concentrations of H2 (maximum value – 544 ppm, mean value – 42 ppm) and CO2 (maximum value – 10.26 vol.%, mean value – 2.27 vol.%). Individual, very high concentrations of CH4 (up to about 35 vol.%) resulted from sub-surface biochemical reactions whereas higher alkanes detected in soil gases (up to about 68 ppm) originated from deep gas accumulations. Both the H2 and alkenes may be indirect indicators of deep hydrocarbon accumulations. Carbon dioxide may also be useful for hydrocarbon exploration, revealing increased concentrations in those sampling sites where CH4 concentrations are strongly depleted, presumably due to bacterial oxidation. These relationships are valid only for the study area and should not be extended as an universal principle.  相似文献   

12.
Natural gas in the Xujiahe Formation of the Sichuan Basin is dominated by hydrocarbon (HC) gas, with 78–79% methane and 2–19% C2+ HC. Its dryness coefficient (C1/C1–5) is mostly < 0.95. The gas in fluid inclusions, which has low contents of CH4 and heavy hydrocarbons (C2+) and higher contents of non-hydrocarbons (e.g. CO2), is a typical wet gas produced by thermal degradation of kerogen. Gas produced from the Upper Triassic Xujiahe Formation (here denoted field gas) has light carbon isotope values for methane (δ13C1: −45‰ to −36‰) and heavier values for ethane (δ13C2: −30‰ to −25‰). The case is similar for gas in fluid inclusions, but δ13C1 = −36‰ to −45‰ and δ13C2 = −24.8‰ to −28.1‰, suggesting that the gas experienced weak isotopic fractionation due to migration and water washing. The field gas has δ13CCO2 values of −15.6‰ to −5.6‰, while the gas in fluid inclusions has δ13CCO2 values of −16.6‰ to −9‰, indicating its organic origin. Geochemical comparison shows that CO2 captured in fluid inclusions mainly originated from source rock organic matter, with little contribution from abiogenic CO2. Fluid inclusions originate in a relatively closed system without fluid exchange with the outside following the gas capture process, so that there is no isotopic fractionation. They thus present the original state of gas generated from the source rocks. These research results can provide a theoretical basis for gas generation, evolution, migration and accumulation in the basin.  相似文献   

13.
The reactions of a terminal alkene (1-octadecene) and a polymethyl phenol (2,3,6-trimethylphenol) on activated carbon have been investigated in closed system pyrolysis experiments in the temperature range 170-340 °C. The reaction products of 1-octadecene included methane, isomeric octadecenes, methyl substituted alkanes, alkyl aromatics and an homologous series of n-alkanes with carbon numbers indicative of progressive single carbon depletion of the reactant. The reaction products of 2,3,6-trimethylphenol also contained methane, as well as C1-C4 methyl phenols produced by demethylation and methyl transfer reactions. A carbon surface reaction involving the formation of a reactive single carbon intermediate (i.e. methylene/carbene) is proposed. This reaction accounts for the products observed from the pyrolysis experiments and also is consistent with liquid hydrocarbon distributions found in petroleum basins. Methane was the dominant (ca. 85% of C1-C4) gaseous hydrocarbon product of 2,3,6-trimethylphenol but accounted for only ca. 17% of the C1-C4 hydrocarbons from 1-octadecene. These findings suggest that single carbon surface reactions may play an important role in the geochemical formation of crude oil and natural gas and that the composition of the source material and therefore the type of organic compounds undergoing such reactions, influences the hydrocarbon gas composition in sedimentary basins.  相似文献   

14.
Pyrolysis experiments were carried out on Monterey formation kerogen and bitumen and Green River formation kerogen (Type II and I, respectively), in the presence and absence of montmorillonite, illite and calcite at 200 and 300°C for 2–2000 hours. The pyrolysis products were identified and quantified and the results of the measurements on the gas and condensate range are reported here.A significant catalytic effect was observed for the pyrolysis of kerogen with montmorillonite, whereas small or no effects were observed with illite and calcite, respectively. Catalytic activity was evident by the production of up to five times higher C1–C6 hydrocarbons for kerogen with montmorillonite than for kerogen alone, and by the dominance of branched hydrocarbons in the C4–C6 range (up to 90% of the total amount at any single carbon number). This latter effect in the presence of montmorillonite is attributed to cracking via a carbonium-ion [carbocation] intermediate which forms on the acidic sites of the clay. No catalytic effect, however, was observed for generation of methane and C2 hydrocarbons which form by thermal cracking. The catalysis of montmorillonite was significantly greater during pyrolysis of bitumen than for kerogen, which may point to the importance of the early formed bitumen as an intermediate in the production of low molecular weight hydrocarbons. Catalysis by minerals was also observed for the production of carbon dioxide.These results stress the importance of the mineral matrix in determining the type and amount of gases and condensates forming from the associated organic matter under thermal stress. The literature contains examples of gas distributions in the geologic column which can be accounted for by selective mineral catalysis, mainly during early stages of organic matter maturation.  相似文献   

15.
Organic inclusions could be formed at the stages of either primary or secondary migration of hydrocarbons so long as mineral crystallization or recrystallization takes place in the sediments, presenting a direct indicator of oil/gas evolution, migration and abundance. Based on the study of organic inclusions in carbonate-type reservoir beds of commercial importance from North China, Xingjing, North Jiangsu, Jianghan, Sichuan and Guizhou in China, many inclusion parameters for oil/gas potential assessment of carbonate reservoir beds are summarized in this paper, including: 1) Types of organic inclusion: Commercially important oil beds are characterized by inclusions consisting of either pure liquid hydrocarbons or liquid plus minor gaseous hydrocarbons, while commercially important gas reservoirs are characterized by inclusions consisting of either pure gaseous hydrocarbons or gas plus minor liquid hydrocarbons. 2) Quantity of organic inclusions: The number of organic inclusions in commercially important oil/gas reservoirs is over 60% of the total inclusion percentage. 3) Temperature of saline inclusions: The homogenization temperatures of contemporaneous saline inclusions in oil reservoirs range from 91–161 °C, while in gas reservoirs from 150–250 °C). 4) Inclusion composition: In commercially important oil reservoirs, C1/C2=2−10, C1/C3=2−4, C1/C4=2−21, (C2−C4)/(C1−C4)(%)>20, (CH4+CO+H2)/CO2 (molecules/g)=0.5−1.0, and in C2−C3−nC4 triangle diagram there should be an upside-down triangle with the apex within the ellipse, while in commercial gas reservoirs, C1/C2=10−35, C1/C3=14−82, C1/C4=21−200, (C2−C4)/(C1−C4)(%)<20, (CH4+CO+H2)/CO2>1, and there would be an upright triangle with the apex within the ellipse. The above-mentioned parameters have been used to evaluate a number of other unknown wells or regions and the results are very satisfactory. It is valid to use organic inclusions as an indicator to assess the oil/gas potential during oil/gas exploration and prospecting. This approach is effective, economic, rapid, and easy to popularize.  相似文献   

16.
Surface adsorbed gas surveys and geo-microbiological surveys are known techniques of petroleum exploration and aim towards risk reduction in exploration by way of identifying the areas warm with hydrocarbons and to establish intense exploration priorities amongst the identified warm areas. The present investigation aims to explore correlation between the adsorbed gas distribution pattern with the distribution of the counts of methane, ethane, propane and butane microbial oxidizers in the sub soil samples to establish the role of the latter in identifying the upward migration of hydrocarbons especially in the known petroliferous Krishna-Godavari Basin, India. A total of 135 soil samples were collected near oil and gas fields of Tatipaka, Pasarlapudi areas of Krishna Godavari Basin, Andhra Pradesh. The soil samples were collected from a depth of 2?C2.5 m. The samples collected, were analyzed for indicator hydrocarbon oxidizing bacteria, adsorbed light gaseous hydrocarbons and carbon isotopes (??13Cmethane). The microbial prospecting studies showed the presence of high bacterial population for methane (3.94 × 105 cfu/gm), ethane (3.85 × 105 cfu/gm), propane (4.85 × 105 cfu/gm) and butane oxidizing bacteria (3.63 × 105 cfu/gm) in soil samples indicating microseepage of hydrocarbons. The light gaseous hydrocarbon analysis showed 83 ppb, 92 ppb, 134 ppb, 187 ppb and 316 ppb of C1, C2, C3, nC4 and nC5, respectively, and the carbon isotopic composition of ??13C1 of the samples ranged between ? 36.6 ?? to ?22.7?? (Pee Dee Belemnite) values, which presents convincing evidence that the adsorbed soil gases collected from these sediments are of thermogenic origin. Geo-microbial prospecting method and adsorbed soil gas and carbon isotope studies have shown good correlation with existing oil/ gas fields of K.G basin. Microbial surveys indicating microseepage of hydrocarbons can, therefore, independently precede other geochemical and geophysical surveys to delineate areas warm with hydrocarbons and mapped microbiological anomalies may provide focus for locales of hydrocarbon accumulation in the K.G basin.  相似文献   

17.
Gas generation in the deep reaches of sedimentary basins is usually considered to take place via the primary cracking of short alkyl groups from overmature kerogen or the secondary cracking of petroleum. Here, we show that recombination reactions ultimately play the dominant role in controlling the timing of late gas generation in source rocks which contain mixtures of terrigeneous and marine organic matter. These reactions, taking place at low levels of maturation, result in the formation of a thermally stable bitumen, which is the major source of methane at very high maturities. The inferences come from pyrolysis experiments performed on samples of the Draupne Formation (liptinitic Type II kerogen) and Heather Formation (mixed marine-terrigeneous Type III kerogen), both Upper Jurassic source rocks stemming from the Norwegian northern North Sea Viking Graben system. Non-isothermal closed system micro scale sealed vessel (MSSV) pyrolysis, non-isothermal open system pyrolysis and Rock Eval type pyrolysis were performed on the solvent extracted, concentrated kerogens of the two immature samples. The decrease of C6+ products in the closed system MSSV pyrolysis provided the basis for the calculation of secondary gas (C1-5) formation. Subtraction of the calculated secondary gas from the total observed gas yields a “remaining” gas. In the case of the Draupne Formation this is equivalent to primary gas cracked directly from the kerogen, as detected by a comparison with multistep open pyrolysis data. For the Heather Formation the calculated remaining gas formation profile is initially attributable to primary gas but there is a second major gas pulse at very high temperature (>550 °C at 5.0 K min−1) that is not primary. This has been explained by a recondensation process where first formed high molecular weight compounds in the closed system yield a macromolecular material that undergoes secondary cracking at elevated temperatures. The experiments provided the input for determination of kinetic parameters of the different gas generation types, which were used for extrapolations to a linear geological heating rate of 10−11 K min−1. Peak generation temperatures for the primary gas generation were found to be higher for Heather Formation (Tmax = 190 °C, equivalent to Ro appr. 1.7%) compared to Draupne Formation (Tmax = 175 °C, equivalent to appr. Ro 1.3%). Secondary gas peak generation temperatures were calculated to be 220 °C for the Heather Formation and 205 to 215 °C for the Draupne Formation, respectively, with equivalent vitrinite reflectance values (Ro) between 2.4% and 2.0%. The high temperature secondary gas formation from cracking of the recombination residue as detected for the Heather Formation is quantitatively important and is suggested to occur at very high temperatures (Tmax approx. 250 °C) for geological heating rates. The prediction of a significant charge of dry gas from the Heather Formation at very high maturity levels has important implications for petroleum exploration in the region, especially to the north of the Viking Graben where Upper Jurassic sediments are sufficiently deep buried to have experienced such a process.  相似文献   

18.
To understand reaction pathways and isotope systematics during mineral-catalyzed abiotic synthesis of hydrocarbons under hydrothermal conditions, experiments involving magnetite and CO2 and H2-bearing aqueous fluids were conducted at 400 °C and 500 bars. A robust technique for sample storage and transfer from experimental apparatus to stable isotope mass spectrometer provides a methodology for integration of both carbon and hydrogen isotope characterization of reactants and products generated during abiogenic synthesis experiments. Experiments were performed with and without pretreatment of magnetite to remove background carbon associated with the mineral catalyst. Prior to experiments, the abundance and carbon isotope composition of all carbon-bearing components were determined. Time-series samples of the fluid from all experiments indicated significant concentrations of dissolved CO and C1-C3 hydrocarbons and relatively large changes in dissolved CO2 and H2 concentrations, consistent with formation of additional hydrocarbon components beyond C3. The existence of relatively high dissolved alkanes in the experiment involving non-pretreated magnetite in particular, suggests a complex catalytic process, likely involving reinforcing effects of mineral-derived carbon with newly synthesized hydrocarbons at the magnetite surface. Similar reactions may be important mechanisms for carbon reduction in chemically complex natural hydrothermal systems. In spite of evidence supporting abiotic hydrocarbon formation in all experiments, an “isotopic reversal” trend was not observed for 13C values of dissolved alkanes with increasing carbon number. This may relate to the specific mechanism of carbon reduction and hydrocarbon chain growth under hydrothermal conditions at elevated temperatures and pressures. Over time, significant 13C depletion in CH4 suggests either depolymerization reactions occurring in addition to synthesis, or reactions between the C1-C3 hydrocarbons and carbon species absorbed on mineral surfaces and in solution.  相似文献   

19.
In recent surface sediments there is no indication of any of the saturated C3–C7 gasolinerange hydrocarbons which are so common in petroleum. Appreciable gasoline-range hydrocarbon generation (85–180°C) of 80 ppm by weight of dry rock, or more, occurs only with increased temperature due to deeper burial, below about 8000 ft in the Los Angeles basin and below 12,500 ft in the Ventura basin. Because of the lower temperature gradient in the Ventura basin, the zone of substantial gasoline generation is considerably deeper there than in the Los Angeles basin. However, the subsurface temperature range over which substantial gasoline generation occurs is practically the same in the two basins. This demonstrates that the subsurface temperature, not depth, is the controlling factor in gasoline generation in source rocks. For appreciable gasoline generation somewhat higher subsurface temperatures are required than for equivalent generation of heavy hydrocarbons boiling above 325°C. Appreciable generation of the C1–C4 wet gas components of 75 ppm by weight of dry rock, or more, takes place quite deep also; in the Los Angeles basin it occurs below 10,000 ft.The composition of the gasoline-range hydrocarbons generated changes gradually with increasing depth, temperature and age of the shales. In deep strata the gasolines from shale cannot be distinguished from the gasolines of waxy crude oils in the same basin. The gasoline-range hydrocarbons mature with depth, temperature and age of the sediments, very much like the heavy hydrocarbons investigated earlier.Based on the similarity of analyses of heavy as well as of gasoline-range hydrocarbons from crude oils and from certain deep shales, a secure identification has been made of mature oil source beds in the Los Angeles and San Joaquin Valley oil basins of California. The combined results of these studies provide strong evidence for the origin of petroleum from the organic matter of sediments.  相似文献   

20.
Surface adsorbed gas surveys and geo-microbiological surveys are well known techniques of petroleum exploration and aim towards risk reduction in exploration by way of identifying the areas warm with hydrocarbons and to establish inter-se exploration priorities amongst the identified warm areas. The thermogenic surface adsorbed gaseous hydrocarbons distribution patterns in petroliferous areas are considered to be a credible evidence for the upward migration of hydrocarbons. The present investigation aims to explore correlation between the adsorbed gas distribution pattern and microbial oxidizers in identifying the upward migration of hydrocarbons especially in the tropical black soil terrain of known petroliferous Mehsana Block of North Cambay Basin, India. A set of 135 sub-soil samples collected, were analyzed for indicator hydrocarbon oxidizing bacteria, adsorbed light gaseous hydrocarbons and carbon isotope ratios (13Cmethane and δ13Cethane). The microbial prospecting studies showed the presence of high bacterial population for methane (5.4 × 106 cfu/gm), ethane (5.5 × 106 cfu/gm), propane (4.6 × 106 cfu/gm) and butane oxidizing bacteria (4.6 × 106 cfu/gm) in soil samples. The light gaseous hydrocarbon analysis showed that the concentration ranges of C1, C2, C3, iC4 and nC4 are 402 ppb, 135 ppb, 70 ppb, 9 ppb and 18 ppb, respectively, and the value of carbon isotope ranges of methane ?29.5 to ?43.0‰ (V-PDB) and ethane ?19.1 to ?20.9‰ (V-PDB). The existence of un-altered petroliferous microseep (δ13C, ?43‰) of catagenetic origin is observed in the study area. Geo-microbial prospecting method and adsorbed soil gas and carbon isotope studies have shown good correlation with existing oil/gas fields of Mehsana. Microbial surveys can independently precede other geochemical and geophysical surveys to delineate area warm with hydrocarbons, and mapped microbiological anomalies may provide focus for locales of hydrocarbon accumulation in the Mehsana Block of Cambay Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号