首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple analytic theory describing the 1:1 orbital resonance is presented and applied to Saturn's coorbiting pair, 1980S1 and 1980S3. These satellites are very small and can approach to within 15,000 km, but are prevented from passing each other by their mutual gravitational interaction. The long-term stability of the S1–S3 orbital configuration is discussed in this paper, and a tie between the 1966 and 1980 observations is establised.  相似文献   

2.
We analyze the possibility of determining the masses of outer planetary satellites from their mutual gravitational perturbations via ground-based observations. Such a technique has been applied in (Emelyanov, 2005b) to determine the mass of the Jovian satellite Himalia. In this paper, we use the least-squares method to compute the errors of satellite masses inferred from simulated observations. We analyze several of the most suitable variants of groups of outer satellites of planets with maximum mutual attraction. We found that the mass of the Satumian satellite Phoebe (S9) can be refined by continuing observations of the satellite S25 Mundilfari until 2027. We show that the masses of other known outer planetary satellites cannot be determined from ground-based observations.  相似文献   

3.
A general theory for the figures of satellites, which are synchronously rotating in the gravitational field of a planet, is developed to the first approximation. Love numbers, figure parameters, and gravitational moments for two- and three-layer models of the Galilean satellites, Titan, and Saturn's icy satellites are calculated. With the assumed accuracy for flyby measurements of gravitational moments it should be possible to determine the degree of differentiation of Ganymede. The differences between equatorial a and polar c semiaxes, as derived from the observational data, appear to be exaggerated for Io and Mimas (although better agreement between calculated and observed values of (a?c) could be obtained if this satellite had a larger mass). For Enceladus the observed value of (a?c) is in satisfactory agreement with calculations, based on different types of trial models. However, in order to discriminate between different Enceladus trial models, it is necessary to determine the figure parameters more precisely.  相似文献   

4.
The recently discovered coorbital satellites of Saturn, 1980S1 and 1980S3, are shown to be librating in horseshoe orbits. By considering the effects of tangential forces on the semimajor axes of the satellite orbits, we derive an accurate relation between the sum of the satellite masses and (a) their minimum angular separation, (b) the variation of their angular separation with time and (c) the libration period. Observations of (b) and (c) are the most practical methods of determining the satellite masses. The orbits of the coorbital satellites of Dione and Tethys are discussed. We demonstrate the possibility of calculating a new value for the mass of Dione and we show that one of the coorbital satellites of Tethys could be moving in a horseshoe orbit even though another satellite is librating in a tadpole orbit about the leading Lagrangian equilibrium point L4. The origin of coorbital satellites and the stability of their orbits are discussed.  相似文献   

5.
Most of the positions of faint satellite images obtained during the 1966 Saturn ring plane crossing fit the period of the coorbital satellites 1980 S1 and 1980 S3. In 1966 the satellites were separated by 137° in orbital longitude. Until the mutual interaction of the satellites is understood and applied to derive the precise orbital motion, the 1966 and 1980 observations cannot be linked.  相似文献   

6.
The orbital gravitational potential energies of the planets and of the satellites have been estimated and compared to the gravitational potential energies of the bodies themselves and to the gravitational potential energy of the Sun. From the point of view of the gravitational potential energy distribution two quite different groups of the planets can be distinguished clearly. However, the gravitational potential energy of the systems is mainly concentrated within the central bodies, only about 10–5 in orbiting bodies.  相似文献   

7.
The physical characteristics radius, mass, mean density, gravitational potential and acceleration, gravitational and internal energy are presented with the aid of the gamma function forN-dimensional, radially-symmetric polytropes. The virial theorem with external pressure is derived in the relativistic limit, with Newtonian gravitation still valid. The gravitational energy of polytropes obeying the generalized Schuster—Emden integral is shown to be finite. Finiteness of mass and radius is discussed for the cases of practical interestN=1 (slab),N=2 (cylinder), andN=3 (sphere). Uniform contraction or expansion ofN-dimensional polytropes is considered in the last section.  相似文献   

8.
The Maxwell equations for gravitational fields previously assumed by Sciama are derived from elementary considerations. The Lagrangian for a gravitating mass in a non-inertial coordinate system yields equations of motion leading to force definitions for a gravitational field intensity and a gravitational induction field. The non-inertial velocity of the coordinate system plays the role of a vector potential contributing to the generalized momenta of bodies moving in the system. A Lagrangian density constructed from the force-defined fields then lead to the source definitions of gravitational fields. It is found that positive field energy densities require repulsive gravitational forces, whereas attractive forces imply the violation of the conservation of energy. This paradox is resolved by representing gravitational quantities as pure-imaginary entities. Thus characterized, the equations which define gravitational fields become identical to Maxwell's equations but are pure-imaginary. This suggests a combined representation for gravitational and electromagnetic fields which, in covariant form, indicates both the well known equivalence of mass and energy and a possible equivalence of charge and energy. From orthogonality considerations, it is conjectured that this latter energy is gravitational, and that, whereas gravitational fields interact with electromagnetic energy, electromagnetic fields interact with gravitational energy. Parts of this work were completed at Air Force Cambridge Research Laboratories, Bedford, Mass., U.S.A.  相似文献   

9.
《Icarus》1987,71(1):69-77
The gravitational influence of moonlets or satellites on the radial structure of the rings of Saturn has been calculated numerically. A drastic change in the surface mass density is obtained even after a single scattering process of the ring particles on a moonlet (satellite). The final surface density shows a significant radial structure, which has been used to estimate the radius and the mass of moonlets or satellites embedded in rings of low optical depth (E ring, Cassini division, C ring).  相似文献   

10.
The position of the satellite within the protonebula, the influence of the parent planet, particularly the relative effects of tidal (gravitational) as opposed to radiogenic (internal) heat generating processes, as well as the type of ice, exert a control on the evolutionary histories of the Jovian and Saturnian satellites. The landscapes of the moons are modified by surface deformational processes (tectonic activity derived from within the body) and externally derived cratering. The geological history of the Galilean satellites is deduced from surface stratigraphic successions of geological units. Io and Europa, with crater-free surfaces, are tectonically more advanced than crater-saturated Callisto.Two thermal-drive models are proposed based on: an expression for externally derived gravitational influences between two bodies; and internal heat generation via radiogenic decay (expressed by surface area/volume ratio). Both parameters, for the Galilean satellites, are plotted against an inferred product of tectonic processes — the age of the surface terrain. From these diagrams, the tectonic evolutionary state of the more distant Saturnian system are predicted. These moons are fitted into an evolutionary framework for the Solar System.Based on a paper presented at the 1985 Royal Astronomical Society of New Zealand Conference, Hamilton, New Zealand.  相似文献   

11.
The effect of the dense atmosphere of Titan on the tidal variations of the external gravitational potential of degree two is quantified. The atmospheric tides perturb the external gravitational potential of Titan in two ways. First, the atmosphere itself contributes directly to the external gravitational potential with a period of 15.945 days. Second, the variable loading of the atmosphere induces mass redistribution within Titan, which also changes the external gravitational potential. It is shown that the relative atmospheric contributions to the tides are most likely less than 2% and vanish almost completely for the most plausible models with a subsurface ocean. This suggest that atmospheric tidal perturbations will contribute only negligibly to Cassini measurements of Titan's gravitational field so that the tidal Love numbers derived from these observations can be directly interpreted in terms of the satellite's interior.  相似文献   

12.
周旭华  吴斌 《天文学报》2002,43(3):327-332
大气、固体地球及海洋组成了一个复杂、变化的地球动力学系统,这一系统中的任一质量分布变化都将产生地球引力场变化。采用全球7000多个地面气象台站的月平均降水及温度资料、NCEP提供气压月均值、TOPEX/Poseidon卫星测高资料和WOA98海水温度及盐度模型计算了大气、陆地水储量和海水质量分布变化引起地球低阶引力场系数变化。比较综合大气、陆地水储量和海水质量分布变化对带谐项J2,J3,J4影响的计算结果和人卫激光卫星的测定结果,可以看出,大气、陆地水储量和海水质量分布变化是引起地球低阶引力场系数周年变化的重要激发源。  相似文献   

13.
A novel formulation of the quadrupole equation for potential stellar gravitational‐wave power estimation is derived. The derivation commences with the classical Einstein quadrupole formalism and then utilizes Newton's second law to establish a simplified formulation involving the radius of gyration of a mass or system of masses involving a pair of massive stars either on orbit about one another, or otherwise separated, or a star with a dumbbell‐like or aspherical mass distribution and an impulsive force acting on the mass or masses in order to estimate the power of a gravitational wave that is generated. A numerical example, based upon the well‐known gravitational‐wave power observed to be generated by PSR 1913+16, is utilized to test the formulation. Potential applications to stellar jets, including stellar‐black‐hole produced jets, are cited as examples of the potential applications of the novel quadrupole formulation. It is suggested that the gravitational waves, generated by the applications suggested, might be detected by the proposed space‐based Laser Interferometer Space Antenna or LISA. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We calculate chemical evolution models for 4 dwarf spheroidal satellites of the Milky Way (Carina, Ursa Minor, Leo I and Leo II) for which reliable non-parametric star formation histories have been derived. We find that galaxies showing one single burst of star formation (Ursa Minor and Leo II) require a dark halo slightly larger that the current estimates for their tidal radii for the gas heated by supernovae to be retained until the observed stellar population has formed. Systems showing extended star formation histories however (Carina and Leo I), are consistent with the idea that their tidally limited dark haloes provide the necessary gravitational potential wells to retain their gas. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

15.
The secular Love and the secular tidal numbers have been computed for eight synchronously orbiting satellites in the solar system for which the triaxiality parameters and satellite-centric gravitational constant are available. Excepting Deimos the total mass of which should be first refined, the secular Love and tidal numbers are rather close to unity, as a rule. That is why, the centrifugal and tidal distortions can be assumed responsible for the actual figures of the synchronously orbiting satellites resulting from the primordial spheres, as well as, their static equilibrium nearly satisfied. The hypothesis of the origin of synchronously orbiting satellites by accretion in orbits is supported by the results obtained.  相似文献   

16.
The gravitational influence of a large body (moonlet; satellite) on the radial structure of planetary rings has been calculated numerically. A drastical change of the surface mass density is obtained even after a single scattering process of the ring-particles on a moonlet (satellite). The final surface density shows a significant radial structure, which has been used to estimate radius and mass of satellites embedded in rings of low optical depth (E-ring, Cassini-division, C-ring of Saturn).  相似文献   

17.
Radio Doppler data generated by the Deep Space Network (DSN) from the recent encounters of the Galileo spacecraft with the Galilean satellites have been used to determine the mass (GM) and unnormalized quadruple gravity coefficients in the external gravitational fields of the Galilean satellites. Therefore, a series of internal structure models, which satisfy the given constraints for the mean density and the mean moment of inertia, can be presented by solving Emden equations. And some dynamical parameters can also be calculated based on the density distributions given by internal structure models.  相似文献   

18.
Binary systems are quite common within the populations of near-Earth asteroids, main-belt asteroids, and Kuiper belt asteroids. The dynamics of binary systems, which can be modeled as the full two-body problem, is a fundamental problem for their evolution and the design of relevant space missions. This paper proposes a new shape-based model for the mutual gravitational potential of binary asteroids, differing from prior approaches such as inertia integrals, spherical harmonics, or symmetric trace-free tensors. One asteroid is modeled as a homogeneous polyhedron, while the other is modeled as an extended rigid body with arbitrary mass distribution. Since the potential of the polyhedron is precisely described in a closed form, the mutual gravitational potential can be formulated as a volume integral over the extended body. By using Taylor expansion, the mutual potential is then derived in terms of inertia integrals of the extended body, derivatives of the polyhedron’s potential, and the relative location and orientation between the two bodies. The gravitational forces and torques acting on the two bodies described in the body-fixed frame of the polyhedron are derived in the form of a second-order expansion. The gravitational model is then used to simulate the evolution of the binary asteroid (66391) 1999 KW4, and compared with previous results in the literature.  相似文献   

19.
《Global and Planetary Change》2006,50(1-2):112-126
Signatures between monthly global Earth gravity field solutions obtained from GRACE satellite mission data are analyzed with respect to continental water storage variability. GRACE gravity field models are derived in terms of Stokes' coefficients of a spherical harmonic expansion of the gravitational potential from the analysis of gravitational orbit perturbations of the two GRACE satellites using GPS high–low and K-band low–low intersatellite tracking and on-board accelerometry. Comparing the GRACE observations, i.e., the mass variability extracted from temporal gravity variations, with the water mass redistribution predicted by hydrological models, it is found that, when filtering with an averaging radius of 750 km, the hydrological signals generated by the world's major river basins are clearly recovered by GRACE. The analyses are based on differences in gravity and continental water mass distribution over 3- and 6-month intervals during the period April 2002 to May 2003. A background model uncertainty of some 35 mm in equivalent water column height from one month to another is estimated to be inherent in the present GRACE solutions at the selected filter length. The differences over 3 and 6 months between the GRACE monthly solutions reveal a signal of some 75 mm scattering with peak values of 400 mm in equivalent water column height changes over the continents, which is far above the uncertainty level and about 50% larger than predicted by global hydrological models. The inversion method, combining GRACE results with the signal and stochastic properties of a hydrological model as ‘a priori’ in a statistical least squares adjustment, significantly reduces the overall power in the obtained water mass estimates due to error reduction, but also reflects the current limitations in the hydrological models to represent total continental water storage change in particular for the major river basins.  相似文献   

20.
The importance of an accurate model of the Moon gravity field has been assessed for future navigation missions orbiting and/or landing on the Moon, in order to use our natural satellite as an intermediate base for next solar system observations and exploration as well as for lunar resources mapping and exploitation. One of the main scientific goals of MAGIA mission, whose Phase A study has been recently funded by the Italian Space Agency (ASI), is the mapping of lunar gravitational anomalies, and in particular those on the hidden side of the Moon, with an accuracy of 1 mGal RMS at lunar surface in the global solution of the gravitational field up to degree and order 80. MAGIA gravimetric experiment is performed into two phases: the first one, along which the main satellite shall perform remote sensing of the Moon surface, foresees the use of Precise Orbit Determination (POD) data available from ground tracking of the main satellite for the determination of the long wavelength components of gravitational field. Improvement in the accuracy of POD results are expected by the use of ISA, the Italian accelerometer on board the main satellite. Additional gravitational data from recent missions, like Kaguya/Selene, could be used in order to enhance the accuracy of such results. In the second phase the medium/short wavelength components of gravitational field shall be obtained through a low-to-low (GRACE-like) Satellite-to-Satellite Tracking (SST) experiment. POD data shall be acquired during the whole mission duration, while the SST data shall be available after the remote sensing phase, when the sub-satellite shall be released from the main one and both satellites shall be left in a free-fall dynamics in the gravity field of the Moon. SST range-rate data between the two satellites shall be measured through an inter-satellite link with accuracy compliant with current state of art space qualified technology. SST processing and gravitational anomalies retrieval shall benefit from a second ISA accelerometer on the sub-satellite in order to decouple lunar gravitational signal from other accelerations. Experiment performance analysis shows that the stated scientific requirements can be achieved with a low mass and low cost sub-satellite, with a SST gravimetric mission of just few months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号