首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The vertical hydraulic conductivity of an aquitard at two spatial scales   总被引:4,自引:0,他引:4  
Aquitards protect underlying aquifers from contaminants and limit recharge to those aquifers. Understanding the mechanisms and quantity of ground water flow across aquitards to underlying aquifers is essential for ground water planning and assessment. We present results of laboratory testing for shale hydraulic conductivities, a methodology for determining the vertical hydraulic conductivity (K(v)) of aquitards at regional scales and demonstrate the importance of discrete flow pathways across aquitards. A regional shale aquitard in southeastern Wisconsin, the Maquoketa Formation, was studied to define the role that an aquitard plays in a regional ground water flow system. Calibration of a regional ground water flow model for southeastern Wisconsin using both predevelopment steady-state and transient targets suggested that the regional K(v) of the Maquoketa Formation is 1.8 x 10(-11) m/s. The core-scale measurements of the K(v) of the Maquoketa Formation range from 1.8 x 10(-14) to 4.1 x 10(-12) m/s. Flow through some additional pathways in the shale, potential fractures or open boreholes, can explain the apparent increase of the regional-scale K(v). Based on well logs, erosional windows or high-conductivity zones seem unlikely pathways. Fractures cutting through the entire thickness of the shale spaced 5 km apart with an aperture of 50 microns could provide enough flow across the aquitard to match that provided by an equivalent bulk K(v) of 1.8 x 10(-11) m/s. In a similar fashion, only 50 wells of 0.1 m radius open to aquifers above and below the shale and evenly spaced 10 km apart across southeastern Wisconsin can match the model K(v).  相似文献   

2.
Release of an estimated 150,000 gallons (568,000 L).of 1.2–dichloroethane (EDC) from a buried pipeline into a ditch and surrounding soil resulted in shallow subsurface contamination of a Gulf Coast site. Short-term remediation included removal of EDC DNAPI. (dense nonaqueous phase liquid) by dredging and vacuuming the ditch, and by dredging the river where the ditch discharged. EDC saturation in shallow impacted sediments located beneath the ditch was at or below residual saturation and these sediments were therefore left in place. The ditch was lined, backfilled, and capped. Long-term remediation includes EDC DNAPL recovery and hydraulic containment from the shallow zone with long-term monitoring of the shallow, intermediate, and deep (200 foot) aquifers. Ground water, DNAPL., and dissolved phase models were used to guide field investigations and the selection of an effective remedial action strategy. The DNAPL. modeling was conducted for a two-dimensional vertical cross section of the site, and included the three aquifers separated by two aquitards with microfractures. These aquitards were modeled using a dual porosity approach. Matrix and fracture properties of the aquitards used for DNAPL modeling were determined from small-scale laboratory properties. These properties were consistent with effective hydraulic conductivity determined from ground water flow modeling. A sensitivity analysis demonstrated that the vertical migration of EDC was attenuated by dissolution of EDC into the matrix of the upper aquitard. When the organic/water entry pressure of the aquitard matrix, or the solubility of EDC were decreased to unrealislically low values. EDC DNAPL. accumulated in the aquifer below the upper aquitard.
EDC DNALM, did not reach the regional (deepest) aquifer in any of the cases modeled. The limited extent of vertical EDC migration predicted is supported by ground water monitoring conducted over the four years since the spill.  相似文献   

3.
Pumping test evaluation of stream depletion parameters   总被引:1,自引:0,他引:1  
Lough HK  Hunt B 《Ground water》2006,44(4):540-546
  相似文献   

4.
Vertical depth profiles of pore water isotopes (δD and δ18O) in clay-rich aquitards have been used to show that solute transport is dominated by molecular diffusion, to define the timing of geologic events, and to estimate vertical hydraulic conductivity. The interpretation of the isotopic profiles in these studies was based on pore water samples collected from piezometers installed in nests (typically 4 to 15 piezometers) over depths of 10 to 80 m. Data from piezometer nests generally have poor vertical resolution (meters), raising questions about their capacity to reveal the impact of finer scale heterogeneities such as permeable sand bodies or fractured till zones on solute transport. Here, we used high-resolution (30-cm) depth profiles of δD and δ18O from two continuously cored boreholes in a till aquitard to provide new insights into the effects of sand bodies on solute transport. High-resolution core-derived profiles indicate that such heterogeneities can cause major deviations from one-dimensional diffusion profiles. Further, comparison of piezometer-measured values with best-fit diffusion trends shows subtle deviations, suggesting the presence of heterogeneities that should not be ignored. High-resolution profiles also more clearly defined the contact between the highly fractured oxidized zone and the underlying unoxidized zone than the piezometers.  相似文献   

5.
T.‐L. Tsai 《水文研究》2015,29(22):4779-4793
Accurate and practical calculation of aquitard consolidation is required for a reliable analysis of land subsidence caused by groundwater overexploitation in a multilayered aquifer system because aquitards are generally more compressible than aquifers are. This study proposes a coupled one‐dimensional viscoelastic–plastic consolidation model that considers the combined effect of changes in soil parameters and body force to simulate aquitard consolidation caused by hydraulic head variations in neighbouring aquifers. The proposed model uses variable total stress and simultaneously solves hydraulic head and vertical soil displacement. The constitutive relation based on the Voigt model with different elastic moduli of the spring in normally consolidated and overconsolidated soils is used to describe the viscoelastic–plastic deformation mechanism of aquitards. In addition, the proposed model considers the combined effect of variations in hydraulic conductivity, elastic moduli, and body force on the calculation of aquitard consolidation. Three hypothetical scenarios with various hydraulic head variations in aquifers are used to examine the coupled one‐dimensional viscoelastic–plastic consolidation model. The results show that neglecting plasticity and viscosity of soil causes aquitard consolidation to be respectively underestimated and overestimated. In addition, ignoring body force variation underestimates aquitard consolidation, whereas neglecting soil parameters variation overestimates aquitard consolidation. Two real case scenarios are also studied to further demonstrate the applicability of the coupled one‐dimensional viscoelastic–plastic consolidation model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Ground water/surface water interaction in a fractured rock aquifer   总被引:1,自引:0,他引:1  
In a recent field study of ground water/surface water interaction between a bedrock stream and an underlying fractured rock aquifer, it was determined that the majority of ground water discharge occurred through sparsely located vertical fractures. In this paper, the dominant mechanisms governing ground water/surface water exchange in such an environment are investigated using a numerical model. The study was conducted using several conceptual models based on the field study results. Although the field results provided the motivation for the modeling study, it was not intended to match modeling and field results directly. In addition, the extent of capture zones for discharging or recharging fractures was explored. The results of this study are intended to provide a better understanding of contaminant migration in the vicinity of bedrock streams. Based on the numerical results, the rate of ground water discharge (or recharge) was found to depend on the aperture size of the discharging feature, and on the distribution of hydraulic head with depth within the fracture network. It was determined that the extent of both the capture zone and reverse capture zone for an individual fracture can be extremely large, and will be determined by the height of the stream stage, the fracture apertures of the network, and the hydraulic-head distribution within the network. Because both the stream stage and the hydraulic-head distribution are transient, the size of the capture zone and/or the reverse capture zone for an individual fracture may change significantly over time. As a result, the migration path for contaminants within the fracture network and between the surface and subsurface will also vary significantly with time.  相似文献   

7.
8.
Model ground water ages based on chlorofluorocarbons (CFCs) and tritium/helium-3 (3H/3He) data were obtained from two arrays of nested piezometers located on the north limb of an anticline in fractured sedimentary rocks in the Valley and Ridge geologic province of Pennsylvania. The fracture geometry of the gently east plunging fold is very regular and consists predominately of south dipping to subhorizontal to north dipping bedding-plane parting and east striking, steeply dipping axial-plane spaced cleavage. In the area of the piezometer arrays, which trend north-south on the north limb of the fold, north dipping bedding-plane parting is a more dominant fracture set than is steeply south dipping axial-plane cleavage. The dating of ground water from the piezometer arrays reveals that ground water traveling along paths parallel to the dip direction of bedding-plane parting has younger 3H/3He and CFC model ages, or a greater component of young water, than does ground water traveling along paths opposite to the dip direction. In predominantly unmixed samples there is a strong positive correlation between age of the young fraction of water and dissolved sodium concentration. The travel times inferred from the model ages are significantly longer than those previously calculated by a ground water flow model, which assumed isotropically fractured layers parallel to topography. A revised model factors in the directional anisotropy to produce longer travel times. Ground water travel times in the watershed therefore appear to be more influenced by anisotropic fracture geometry than previously realized. This could have significant implications for ground water models in other areas underlain by similarly tilted or folded sedimentary rock, such as elsewhere in the Valley and Ridge or the early Mesozoic basins.  相似文献   

9.
The hydraulic integrity of aquitards is generally assumed and relies on a few core-scale permeability measurements, drill-stem tests, or textbook values. This approach is because hydraulic data across the full aquitard thickness is generally lacking. Proper assessment of aquitard integrity should be studied at the formation (spanning its entire thickness at a single point) or regional (formation properties at multiple locations throughout the basin) scale. One formation-scale approach uses environmental tracers and advection-dispersion modeling to constrain fluid flow rates. This study demonstrates the use of helium concentrations in quartz as a method of constraining the rate of fluid flow in a 520-m thick aquitard in the Gunnedah Basin, NSW, Australia. Quartz was separated from existing core samples in the Watermark and Porcupine Formations at depths from 750 to 1200 m. The helium was released from these samples by heating and select samples were impregnated with helium to determine the rate of helium diffusion through the quartz. One-dimensional advection-dispersion modeling of the helium profile accounting for diffusive helium exchange between quartz and pore water revealed, that (1) vertical fluid velocity has been on the order of 0.02 mm/year or less for tens to thousands of years, (2) helium is in equilibrium between quartz and pore water, and (3) the helium profile is transient indicating that helium concentrations in the underlying Maules Creek Formation has varied over geological time. Further modeling identified aquitard conditions (thickness and temperature) for which equilibrium exists, a precondition for deriving formation-scale permeability.  相似文献   

10.
A large‐scale groundwater flow and transport model is developed for a deep‐seated (100 to 300 m below ground surface) sedimentary aquifer system. The model is based on a three‐dimensional (3D) hydrostratigraphic model, building on a sequence stratigraphic approach. The flow model is calibrated against observations of hydraulic head and stream discharge while the credibility of the transport model is evaluated against measurements of 39Ar from deep wells using alternative parameterizations of dispersivity and effective porosity. The directly simulated 3D mean age distributions and vertical fluxes are used to visualize the two‐dimensional (2D)/3D age and flux distribution along transects and at the top plane of individual aquifers. The simulation results are used to assess the vulnerability of the aquifer system that generally has been assumed to be protected by thick overlaying clayey units and therefore proposed as future reservoirs for drinking water supply. The results indicate that on a regional scale these deep‐seated aquifers are not as protected from modern surface water contamination as expected because significant leakage to the deeper aquifers occurs. The complex distribution of local and intermediate groundwater flow systems controlled by the distribution of the river network as well as the topographical variation (Tóth 1963) provides the possibility for modern water to be found in even the deepest aquifers.  相似文献   

11.
The hydrogeological behaviour of fault zones in carbonate aquifers is often neglected in conceptual and numerical models. Furthermore, no information is available regarding the relationships between piezometric levels when significant compartmentalization occurs due to the occurrence of low‐flow fault zones. The aim of this study was to refine the conceptualization of subsurface flow in faulted carbonate aquifers and to analyse relationships between sub‐basins within a compartmentalized aquifer system in Southern Italy. The interactions between compartments that straddle low‐flow faults were investigated over four hydrologic years using a statistical approach to compare (i) the hydraulic heads within two wells located up‐ and down‐gradient of tectonic discontinuities as well as (ii) the rainfall and piezometric levels. The results of this study suggest that a set of barriers exists between the wells, and, therefore, the total head loss observed between the wells (approximately 80 m) should be distributed across several aquitards, with one aquitard exhibiting a relatively high permeability or low degree of integrity. Due to slight differences in permeability, transient conditions in aquitards can occur over relatively short periods, which is in agreement with the results of the statistical data analysis. Consequently, rather than being caused by pure aquitards, aquifer system compartmentalization likely results from slight differences in the permeability between lower‐permeability fault zones and adjacent higher‐permeability protoliths. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Duke U. Ophori 《水文研究》2004,18(9):1579-1593
Two‐dimensional regional groundwater flow was simulated based on a conceptual model of low‐permeability crystalline rocks of the Whiteshell Research Area (WRA) in south‐eastern Manitoba. The conceptual model consists of fracture zones that strike in different directions and dip at various angles in the background rock mass. The thickness and hydraulic properties of the fracture zones in the conceptual model were varied as were the fluid properties and the boundary conditions of the groundwater flow system. The effects of these variations on the groundwater flow pattern and on the convective travel time along pathways from a hypothetical disposal vault at 500 m depth to discharge locations at the ground surface were evaluated. The vault was located in the regional discharge area of the groundwater system. A homogeneous conceptual model of the WRA, having only freshwater flow, formed a groundwater flow pattern with a regional flow system. Local flow systems developed increasingly with the introduction of fracture zones 20 m and 3 m thick, and depth‐dependent fluid density. This indicates a reduction in groundwater residence time by fracture zones and fluid density. Flow pathways were analysed using both a stream‐function and a particle‐tracking technique. The pathways and their lengths from the location of the vault to the surface varied spatially according to the flow patterns. The minimum travel time along these pathways was less than 150 000 and greater than 4 000 000 years in models with and without fracture zones, respectively, indicating that the presence of fracture zones was the major controlling factor. A precise knowledge and refinement of conceptual model parameters is necessary during site selection for waste disposal purposes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Fractured shales of the Brunswick Formation provide a major aquifer in the most industrialized region of New Jersey. Numerous cases of ground water contamination have been documented in this formation. However, effectiveness of monitoring and remediation efforts is often hampered by the use of inappropriate concepts regarding ground water flow controls in this complex aquifer system. One such concept presumes that near-vertical fractures parallel to the strike of beds provide principal passages for the flow and produce an anisotropic response to pumping stress. Field evidence presented in this paper confirms that the Brunswick Formation hosts a gently dipping, multiunit, leaky aquifer system that consists of thin water-bearing units and thick intervening aquitards. The water-bearing units are associated with major bedding partings and/or intensely fractured seams. Layered heterogeneity of such a dipping multiunit aquifer system produces an anisotropic flow pattern with preferential flow along the strike of beds. Within the weathered zone, the permeability of the water-bearing units can be greatly reduced. The commonly used hydrogeologic model of the Brunswick as a one-aquifer system, sometimes with vaguely defined "shallow" and "deep" zones, often leads to the development of inadvertent cross-flows within monitoring wells. If undetected, cross-flows may promote contaminant spread into deeper units and impair the quality of hydrogeologic data. Hydrogeologic characterization of the Brunswick shales at any given site should be aimed primarily at identification of the major water-bearing and aquitard units. Recommended techniques for this characterization include fluid logging and other in-well tests.  相似文献   

14.
Large differences in chemistry between sampling points separated In short vertical intervals are often observed in contaminant plumes in both granular and fractured aquifers. However, most regional models assume that such differences will be reduced by dispersive mixing during transport. At a field site located in a discharge area on the Oak Ridge Reservation, Tennessee, ground water flows along discrete flowpaths, as evidenced by the presence of four distinct water types—Ca-HCO3, Ca-Na-HCO3, and Na-Ca-HCO3, and Na-Ca-HCO3-S04—in samples collected from shallow (< 3D in) multilevel wells. The preservation of distinct chemical signatures suggests that ground water must he contained in discrete flow zones during much of its transport time. The chemical composition of the water types can be explained primarily by strata-bound flow over varying flowpath lengths and secondarily by mixing of waters during cross-formational flow in a discharge zone. The hydrochemical facies identified by correlation of water types between the boreholes indicate the general orientation of ground water How paths. These inferred flowpaths are oblique to the orientation of the measured hydraulic gradient and are more closely aligned with bedding and the calculated flow direction. Results of this study indicate that discrete multilevel sampling for analysis of major ions, in addition to information gathered from tracer tests, borehole flow tests. and visual core observations, can provide valuable information on flow directions and preferential flowpaths for contaminant transport.  相似文献   

15.
Two hypotheses have previously been proposed for the source of elevated radon in ground water of southwestern Ohio: (1) penecontemporaneous uranium at the Silurian-Ordovician unconformity, and/or (2) parent radionuclides transported from fragments of uranium-rich Ohio Shale within the glacial drift above the aquifer. To further test the first hypothesis, vertical profiles of dissolved radon in ground water and uranium in rock cores were obtained at two locations immediately underlain by the Silurian/Ordovician unconformity. Radon concentrations exceeding 1000 pCi/l occurred in zones where the bedrock had uranium concentrations greater than 1.5 ppm. Radon concentrations of less than 500 pCi/l occurred in zones where the rock had uranium concentrations below 0.25 ppm. A log-linear regression model between uranium and radon had a correlation coefficient of 0.82. Three aspects of the results support the hypothesis that the source is transported, although not necessarily from fragments of Ohio Shale. First, the high uranium-radon zones did not occur consistently or exclusively at the Silurian/Ordovician unconformity. Second, the high uranium-radon zones are correlated to fracture zones having a higher hydraulic conductivity and thus appear to be related to the zones of greater flow and transport. Third, the amount of uranium-radon disequilibrium increases exponentially with increasing hydraulic conductivity. The hypothesis of a penecontemporaneous source, not supported by our study, arose when previous investigators conducted regional surveys of domestic wells and springs and found a correspondence between elevated radon and the location of the Silurian-Ordovician unconformity. The observations of the previous investigators can be explained by the fact that the basal Silurian is in some places a horizon of higher hydraulic conductivity that facilitates transport. The two most probable external sources of uranium would be uranium-containing detritus in the glacial drift or uranium-containing phosphate fertilizers spread on the surface. Given that the uranium was transported into the aquifer during the Holocene, it could not have generated enough radium in the time elapsed since entering the aquifer to produce the radon levels that were measured. This observation indicates that radium was cotransported with uranium into the zones of high radon.  相似文献   

16.
A conceptual model of anisotropic and dynamic permeability is developed from hydrogeologic and hydromechanical characterization of a foliated, complexly fractured, crystalline rock aquifer at Gates Pond, Berlin, Massachusetts. Methods of investigation include aquifer‐pumping tests, long‐term hydrologic monitoring, fracture characterization, downhole heat‐pulse flow meter measurements, in situ extensometer testing, and earth tide analysis. A static conceptual model is developed from observations of depth‐dependent and anisotropic permeability that effectively compartmentalizes the aquifer as a function of foliation intensity. Superimposed on the static model is dynamic permeability as a function of hydraulic head in which transient bulk aquifer transmissivity is proportional to changes in hydraulic head due to hydromechanical coupling. The dynamic permeability concept is built on observations that fracture aperture changes as a function of hydraulic head, as measured during in situ extensometer testing of individual fractures, and observed changes in bulk aquifer transmissivity as determined from earth tides during seasonal changes in hydraulic head, with higher transmissivity during periods of high hydraulic head, and lower transmissivity during periods of relatively lower hydraulic head. A final conceptual model is presented that captures both the static and dynamic properties of the aquifer. The workflow presented here demonstrates development of a conceptual framework for building numerical models of complexly fractured, foliated, crystalline rock aquifers that includes both a static model to describe the spatial distribution of permeability as a function of fracture type and foliation intensity and a dynamic model that describes how hydromechanical coupling impacts permeability magnitude as a function of hydraulic head fluctuation. This model captures important geologic controls on permeability magnitude, anisotropy, and transience and therefor offers potentially more reliable history matching and forecasts of different water management strategies, such as resource evaluation, well placement, permeability prediction, and evaluating remediation strategies.  相似文献   

17.
Conant B 《Ground water》2004,42(2):243-257
Streambed temperature mapping, hydraulic testing using minipiezometers, and geochemical analyses of interstitial water of the streambed were used to delineate the pattern of ground water discharge in a sandy streambed and to develop a flux-based conceptual model for ground water/surface water interactions. A new and simple empirical method was used to relate fluxes obtained from minipiezometer data to streambed temperatures. The relationship allowed flux to be calculated at locations where only streambed temperature measurements were made. Slug testing and potentiomanometer measurements at 34 piezometers indicated ground water discharge ranged from 0.03 to 446 L/m2/day (and possibly as high as 7060 L/m2/day) along a 60 m long by 11 to 14 m wide reach of river. Complex but similar plan-view patterns of flux were calculated for both summer and winter using hundreds of streambed temperatures measured on a 1 by 2 m grid. The reach was dominated by ground water discharge and 5% to 7% of the area accounted for approximately 20% to 24% of the total discharge. < 12% of the total area consisted of recharge zones or no-discharge zones. A conceptual model for ground water/surface water interactions consisting of five different behaviors was developed based on the magnitude and direction of flux across the surface of the streambed. The behaviors include short-circuit discharge (e.g., high-flow springs), high discharge (e.g., preferential flowpaths), low to moderate discharge, no discharge (e.g., horizontal hyporheic or ground water flow), and recharge. Geological variations at depth played a key role in determining which type of flow behavior occurred in the streambed.  相似文献   

18.
Important observations and parameters for a salt water intrusion model   总被引:1,自引:0,他引:1  
Shoemaker WB 《Ground water》2004,42(6-7):829-840
Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.  相似文献   

19.
Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 microg/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions.  相似文献   

20.
In contaminant hydrogeology, investigations at fractured rock sites are typically undertaken to improve understanding of the fracture networks and associated groundwater flow that govern past and/or future contaminant transport. Conventional hydrogeologic, geophysical, and hydrophysical techniques used to develop a conceptual model are often implemented in open boreholes under conditions of cross-connected flow. A new approach using high-resolution temperature (±0.001°C) profiles measured within static water columns of boreholes sealed using continuous, water-inflated, flexible liners (FLUTe™) identifies hydraulically active fractures under ambient (natural) groundwater flow conditions. The value of this approach is assessed by comparisons of temperature profiles from holes (100 to 200 m deep) with and without liners at four contaminated sites with distinctly different hydrogeologic conditions. The results from the lined holes consistently show many more hydraulically active fractures than the open-hole profiles, in which the influence of vertical flow through the borehole between a few fractures masks important intermediary flow zones. Temperature measurements in temporarily sealed boreholes not only improve the sensitivity and accuracy of identifying hydraulically active fractures under ambient conditions but also offer new insights regarding previously unresolvable flow distributions in fractured rock systems, while leaving the borehole available for other forms of testing and monitoring device installation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号