首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
赵春雷  赵成刚  张卫华  蔡国庆 《岩土力学》2014,35(11):3056-3064
为了真实地描述饱和密砂在循环加载过程中的变形行为,需要引入考虑剪胀阶段组构变化的宏观参量。在已有的基于状态参量的本构模型基础上,引入反映组构变化的剪胀内变量,简称组构-剪胀内变量z。以相变线PTL作为参考线,采用基于相变的状态参量判断砂土在初始时刻和任意时刻体积变形的变化趋势,并通过z对剪胀比d的影响,考虑反向加载过程中塑性变形的累积,建立了一个针对饱和密砂的循环加载的弹塑性本构模型。该模型根据试验现象将已有模型中的塑性剪切模量区分为首次加载模量与再加载模量,能较好地模拟排水情况下砂土循环加载的胀-缩变化过程。最后,针对密砂的三轴排水情况,利用文中模型进行预测,并把预测结果与试验结果进行比较,结果表明该模型能够总体反映砂土循环加载的变形行为。  相似文献   

2.
SANISAND is the name of a family of bounding surface plasticity constitutive models for sand within the framework of critical state theory, which have been able to realistically simulate the sand behavior under conventional monotonic and cyclic loading paths. In order to incorporate the important role of evolving fabric anisotropy, one such model was modified within the framework of the new anisotropic critical state theory and named SANISAND-F model. Yet the response under continuous stress principal axes rotation requires further modification to account for the effect of ensuing noncoaxiality on the dilatancy and plastic modulus. This modification is simpler than what is often proposed in the literature, since it does not incorporate an additional plastic loading mechanism and/or multiple dilatancy and plastic modulus expressions. The new model named SANISAND-FN is presented herein and is validated against published data for loading that includes drained stress principal axes rotation on Toyoura sand.  相似文献   

3.
The purpose of this paper is to present a simple, unified critical state constitutive model for both clay and sand. The model, called CASM (Clay And Sand Model), is formulated in terms of the state parameter that is defined as the vertical distance between current state (v, p′) and the critical state line in vln p′ space. The paper first shows that the standard Cam-clay models (i.e. the original and modified Cam-clay models) can be reformulated in terms of the state parameter. Although the standard Cam-clay models prove to be successful in modelling normally consolidated clays, it is well known that they cannot predict many important features of the behavior of sands and overconsolidated clays. By adopting a general stress ratio-state parameter relation to describe the state boundary surface of soils, it is shown that a simple, unified constitutive model (CASM) can be developed for both clay and sand. It is also demonstrated that the standard Cam-clay yield surfaces can be either recovered or approximated as special cases of the yield locus assumed in CASM. The main feature of the proposed model is that a single set of yield and plastic potential functions has been used to model the behaviour of clay and sand under both drained and undrained loading conditions. In addition, it is shown that the behaviour of overconsolidated clays can also be satisfactorily modelled. Simplicity is a major advantage of the present state parameter model, as only two new material constants need to be introduced when compared with the standard Cam-clay models. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
张凌凯  王睿  张建民  唐新军 《岩土力学》2019,40(7):2547-2554
为合理反映颗粒破碎对堆石料力学特性的影响,基于试验结果分析,得出了堆石料在压缩和剪切作用下的颗粒破碎特性规律。通过引入压缩破碎和剪切破碎的相关参数,借鉴已有本构模型的合理定义,吸收临界状态理论和边界面理论的优点,发展了考虑颗粒破碎和状态相关的堆石料静动力统一弹塑性本构模型,并阐述了模型参数的确定方法。该模型不仅能够反映堆石料在静力荷载作用下的低压剪胀、高压剪缩、应变软化和硬化等特性,还能够反映在循环荷载作用下应力-应变的滞回特性和残余变形的累积效应。最后为验证模型的合理性,分别对堆石料的静力三轴和循环三轴试验进行了数值模拟预测,结果表明:模型预测与试验数据吻合良好,所提出的本构模型能够合理地描述颗粒破碎对堆石料静动力变形特性的影响。  相似文献   

5.
The critical state concept has been widely used in soil mechanics. The purpose of this study is to apply this concept in the framework of multi-mechanism elastoplasticity. The developed model has two yield surfaces: one for shear sliding and one for compression. In this model, the location of the critical state line is explicitly considered and related to the actual material density to control the peak strength and the phase transformation characteristics. The stress reversal technique is incorporated into the model for describing clay behavior under complex loading including changes of stress direction. The determination of the model parameters is discussed; it requires only one drained or undrained triaxial test up to failure with an initial isotropic consolidation stage. The model is used to simulate drained and undrained tests under monotonic loading with different over-consolidation ratios on various remolded and natural clays, including true triaxial tests with different Lode’s angles. Drained and undrained tests under cyclic loadings are also simulated by using the set of parameters determined from monotonic tests. The comparison between experimental results and numerical simulations demonstrate a good predictive ability of this new simple model.  相似文献   

6.
The cyclic behaviours of embedded offshore structures under different cyclic loading levels are related to the cyclic shakedown and degradation of the surrounding soils. In the present study, a damage-dependent bounding-surface model based on a newly proposed hardening rule was developed to predict the cyclic shakedown and degradation of saturated clay and the effect of the initial anisotropic stress state. By extending the Masing’s rule to the bounding-surface plasticity theory, the stress reversal point is taken as the generalised homological centre of the bounding surface. With movement of the generalised homological centre, at lower stress amplitudes, the cyclic process ends at a steady state, and cyclic shakedown is reached. At higher stress amplitudes, a damage parameter related to the accumulated deviatoric plastic strain is incorporated into the form of the bounding surface, which is hence able to contract to model degradations in stiffness and strength. To take into account the effects of initial anisotropic conditions on the cyclic behaviour of soils, an initial anisotropic tensor is introduced in the bounding surface. The developed model is validated through undrained isotropic and anisotropic cyclic triaxial tests in normally consolidated and overconsolidated saturated clay under both one-way and two-way loadings. Both cyclic shakedown and degradation are well reproduced by the model, as is the anisotropy effect induced by the initial anisotropic consolidation process.  相似文献   

7.
基于临界状态土力学框架,建立了一个适用于往返循环荷载作用的砂土边界面本构模型。采用无纯弹性域假设,认为受到反向荷载的瞬时土体就产生塑性变形,砂土的弹性区域退化为一个点。屈服面为倒子弹头型,由于砂土孔隙比与压力之间不存在惟一对应的关系,使得屈服面大小无法与体积应变直接耦合,故采用塑性偏应变而不是剑桥模型那种塑性体应变作为硬化参数。流动法则采用加入状态参数的修正的Rowe应力剪胀关系,体现了依赖状态的剪胀思想。屈服面大小的比值 反映了塑性模量的演化,并推导了 的表达式。只用1套参数,该模型就能合理地模拟砂土在不同密度和固结压力下循环荷载的应力-应变关系曲线。  相似文献   

8.
A new elastoplastic model called loading memory surface based on the critical state concept and the multi‐surface framework is proposed for geomaterials. The model uses a hypoelastic formulation and two plastic mechanisms. The formulations of the model are made in three‐dimensional stress–strain space and work under both monotonic and cyclic loadings. A newly introduced formalism makes it possible to obtain the cyclic response directly from the monotonic loading one. This formalism gives a three‐dimensional generalization of the well‐known Masing rule. The model has been validated against test results of Hostun sand under several conditions: monotonic and cyclic, drained and undrained, tests in compression and in extension, and at different confining pressures and different densities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A large number of constitutive models for geomaterials, such as soils and rocks, have been proposed over the last three decades. Those models have been implemented into computer codes and have been successfully used to solve practical engineering problems particularly under monotonic loading conditions. Compared with the models for monotonic loadings, more improvements for cyclic models are necessary in order to obtain more accurate predictions for the dynamic behavior of geomaterials, e.g., the behavior during earthquakes. A cyclic elastoplastic model has been developed in this study for sandy soils; it is based on the kinematical hardening rule with a yield function that includes the changes in the stress ratio and the mean effective stress considering the degradation of the yield surface. From a simulation with the present model, it has been found that strong non-associativity leads to a large decrease in the mean effective stress during cyclic deformations under undrained conditions, while the model with the associated flow rule does not. This result is quite important because the mean effective stress becomes almost zero at the state of full liquefaction. Compared with the experimental results, the model can accurately reproduce the cyclic behavior of soil.  相似文献   

10.
杨召焕  王建华 《岩土力学》2016,37(Z1):63-71
在临界状态弹塑性力学的框架内,建立了可以考虑循环荷载作用下各向异性对饱和软土力学特性影响的边界面塑性模型。该模型采用非关联的流动法则,引入了反映土体各向异性的内变量,利用该内变量的初始值描述初始各向异性,采用一种理论更为严谨、模型参数确定更为恰当的旋转硬化法则描述循环加载过程中各向异性的演化,利用更新映射中心的径向映射法则和与塑性偏应变路径长度有关的塑性模量插值规律,保证模型能够模拟循环加载时应力-应变响应的非线性、滞回性、应变累积性等基本特性,解释了模型参数的物理意义和确定方法,特别是给出了一种合理确定描述土体初始各向异性状态变量方法。通过文献中等压固结和偏压固结饱和黏土的循环三轴试验结果与模型预测结果的对比验证了模型的合理性。  相似文献   

11.
张平阳  夏才初  周舒威  周瑜  胡永生 《岩土力学》2015,36(12):3354-3359
循环加-卸载岩石本构模型是预测压气储能洞室长期稳定性的关键,但目前还没有适用的本构模型,因此,提出了一种能够描述岩石循环加载和卸载的本构模型。鉴于岩石在循环作用下损伤不断累积,将基于Weibull分布的岩石损伤软化模型进行拓展,并用内变量疲劳本构模型描述每个循环的初始模量和卸载模量的变化,进而得到循环加-卸载作用下的岩石本构模型,然后将该模型与现有的试验结果进行对比。该模型物理意义明确,涉及的参数较少,且便于拟合。提出的循环加-卸载下岩石本构模型对试验数据拟合效果较好,能较准确地反映循环荷载上、下限值对应的轴向应变,也能反映出循环内部变形模量衰减的趋势。该模型的成功建立为循环加-卸载下岩石本构模型的研究提供了新思路。  相似文献   

12.
An elastoplastic-viscoplastic constitutive model for soils is presented in this study, based on an original approach concerning viscous modelling. In this approach, the viscous behaviour is defined by internal viscous variables and a viscous yield surface. The model has been developed from a basic elastoplastic model (CJS model) by considering an additional viscous mechanism. The evolution of the viscous yield surface is governed by a particular hardening called ‘viscous hardening’. This model is able to explain the time-dependent behaviour of soils such as creep (primary, secondary and un-drained creep rupture), stress relaxation and strain rate effects in static and cyclic loadings. The existing problems in the classical elasto-viscoplastic models related to the plasticity failure, the rapid loading and the cyclic loading are solved in the proposed model. The physical meanings and the identification strategy of model parameters are clearly given. The validation on certain triaxial test results and the simulation of cyclic triaxial test indicate the capacity of this model in prediction of time-dependent behaviour of clayey soils.  相似文献   

13.
This paper presents a constitutive model for describing the stress-strain response of sands under cyclic loading. The model, formulated using the critical state theory within the bounding surface plasticity framework, is an upgraded version of an existing model developed for monotonic behaviour of cohesionless sands. With modification of the hardening law, plastic volumetric strain increment and unloading plastic modulus, the original model was modified to simulate cyclic loading. The proposed model was validated against triaxial cyclic loading tests for Fuji River sand, Toyoura sand and Nigata sand. Comparison between the measured and predicted results suggests that the proposed modified model can capture the main features of cohesionless sands under drained and undrained cyclic loading.  相似文献   

14.
A new constitutive model for soft structured clays is developed based on an existing model called S‐CLAY1S, which is a Cam clay type model that accounts for anisotropy and destructuration. The new model (E‐SCLAY1S) uses the framework of logarithmic contractancy to introduce a new parameter that controls the shape of the yield surface as well as the plastic potential (as an assumed associated flow rule is applied). This new parameter can be used to fit the coefficient of earth pressure at rest, the undrained shear strength or the stiffness under shearing stress paths predicted by the model. The improvement to previous constitutive models that account for soil fabric and bonding is formulated within the contractancy framework such that the model predicts the uniqueness of the critical state line and its slope is independent of the contractancy parameter. Good agreement has been found between the model predictions and published laboratory results for triaxial compression tests. An important finding is that the contractancy parameter, and consequently the shape of the yield surface, seems to change with the degree of anisotropy; however, further study is required to investigate this response. From published data, the yield surface for isotropically consolidated clays seems ‘bullet’ or ‘almond’ shaped, similar to that of the Cam clay model; while for anisotropically consolidated clays, the yield surface is more elliptical, like a rotated and distorted modified Cam clay yield surface. © 2015 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.  相似文献   

15.
16.
In this paper a novel modelling procedure is proposed to estimate whole-life settlements of tolerably mobile sliding foundations. A new kinematic hardening-critical state-state parameter constitutive model, the Memory Surface Hardening model, is implemented in a one-dimensional analysis to predict accumulated vertical settlements under drained lateral cyclic loading. The Memory Surface Hardening model performance is compared with the Modified Cam Clay and Severn-Trent Sand models. The Memory Surface Hardening model is adopted to simulate available experimental data from centrifuge tests to predict the settlement of a sliding foundation at the final stable state (i.e. no further volume changes occur).  相似文献   

17.
Xiong  Yong-lin  Ye  Guan-lin  Xie  Yi  Ye  Bin  Zhang  Sheng  Zhang  Feng 《Acta Geotechnica》2019,14(2):313-328

This study presents a sophisticated elastoplastic constitutive model for unsaturated soil using Bishop-type skeleton stress and degree of saturation as state variables in the framework of critical state soil mechanism. The model is proposed in order to describe the coupled hydromechanical behavior of unsaturated soil irrespective of what kind of the loadings or the drainage conditions may be. At the same time, a water retention characteristic curve considering the influence of deformation on degree of saturation is also proposed. In the model, the superloading and subloading concepts are introduced to consider the influences of overconsolidation and structure on deformation and strength of soils. The proposed model only employs nine parameters, among which five parameters are the same as those used in Cam-Clay model. The other four parameters have the clear physical meanings and can be easily determined by conventional soil tests. The capability and accuracy of the proposed model have been validated carefully through a series of laboratory tests such as isotropic loading tests and triaxial monotonic and cyclic compression tests under different mechanical and hydraulic conditions.

  相似文献   

18.
Studies in the past have tried to reproduce the mechanical behaviour of granular materials by proposing constitutive relations based on a common assumption that model parameters and parameters describing the properties, including gradation of individual grains are inevitably linked. However successful these models have proved to be, they cannot account for the changes in granular assembly behaviour if the grains start to break during mechanical loading. This paper proposes to analyse the relation between grading change and the mechanical behaviour of granular assembly. A way to model the influence of grain breakage is to use a critical state‐based model. The influence of the amount of grain breakage during loading, depending on the individual grain strength and size distribution, can be introduced into constitutive relations by means of a new parameter that controls the evolution of critical state with changes in grain size distribution. Experimental data from a calcareous sand, a quartz sand, and a rockfill material were compared with numerical results and good‐quality simulations were obtained. The main consequences of grain breakage are increased compressibility and a gradual dilatancy disappearance in the granular material. The critical state concept is also enriched by considering its overall relation to the evolution of the granular material. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A three-dimensional elastoplastic soil constitutive model capable of capturing the response of granular soils under low-frequency cyclic loading is introduced and verified. The model is piecewise linear with a hyperbolic stress-strain relationship. The size of the hysteresis loop is controlled using different scaling factors with a shift in the backbone curve at load reversal. The model introduces a new algorithm to better capture the soil’s response upon reloading for plane strain. Model verification with experimental results at different scales shows that the model has good capabilities in capturing the response of granular soils under low frequency cyclic loading.  相似文献   

20.
刘莹  黄茂松  江杰  马少坤 《岩土力学》2015,36(Z1):193-198
随着海洋工程建设的快速发展,海洋环境中的地基稳定性逐渐成为学者和工程师关注的热点问题,建立一个简化的饱和黏土循环加载模型对于长期循环荷载下海上构筑物的设计具有重要意义。针对饱和黏土的循环弱化特性,在Hardin-Drnevich等效非线性模型的基础上,建立了考虑循环弱化的饱和黏土简化非线性模型来描述循环加载下饱和黏土的应力-应变关系,模型中引入了由循环加载期间产生的累积塑性变形控制的强度和模量衰减比公式。通过参数分析,说明了形状参数 与n以及残余衰减比与衰减系数等参数的意义和作用。通过对文献中单向循环试验和双向循环试验结果的模拟,验证了该简化模型可以较好地描述循环加载时饱和黏土应力应变滞回圈的演变规律以及循环加载后饱和黏土的强度和刚度弱化现象。简化模型大大提高了计算效率,与传统的土体弹塑性模型相比更加便于工程应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号