首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Basalts dredged along the Mid-Atlantic Ridge axis between 10°N and 17°N have been studied for their trace element characteristics [1]. To give complementary information on mantle source history and magma genesis, these samples have been analysed for their SrNdPb isotopic compositions. There is a good correlation between the structure of the ridge axis which shows a topographic anomaly centered around 14°N and hygromagmaphile element ratios such as Rb/Sr, (Nb/Zr)N or Sm/Nd as well as isotopic ratios plotted as a function of latitude. The samples coming from the 14°N topographic high show new MORB SrNd isotopic characteristics which pictured in a classical mantle array diagram, put their representative points close to HIMU sources of ocean islands such as St. Helena, Tubuaïand Mangaia. The 14°N mantle source presents geochemical characteristics which indicate mantle differentiation processes and a mantle history that are more distinct than so far envisaged from typical MORB data. Pb data indicates that the 14°N mantle source cannot be the result of binary mixing between a depleted mantle and a HIMU-type source. Rather, the enriched endmember could itself be a mixture of Walvis-like and HIMU-like materials. The geochimical observations presented favour the model of an incipient ridge-centered plume, in agreement with [1].  相似文献   

2.
Basalts from young seamounts situated within 6.8 m.y. of the East Pacific Rise, between 9° and 14°N latitude, display significant variations in 143Nd/144Nd (0.51295–0.51321), 87Sr/86Sr (0.7025–0.7031), and(La/Sm)N (0.415–3.270). Nd and Sr isotope ratios are anti-correlated and form a trend roughly parallel to the “mantle array” on a143Nd/144Nd vs.87Sr/86Sr variation diagram. Nd and Sr isotope ratios display negative and positive correlations, respectively, with(La/Sm)N. The geochemical variations observed at the seamounts are nearly as great or greater than those observed over several hundred kilometers of the Reykjanes Ridge, or at the islands of Iceland or Hawaii.

Samples from one particular seamount, Seamount 6, display nearly the entire observed range of chemical variations, offering an ideal opportunity to constrain the nature of heterogeneities in the source mantle. Systematics indicative of magma mixing are recognized when major elements, trace elements, trace element ratios, and isotope ratios are compared with each other in all possible permutations. The source materials required to produce the end-member magmas are: (1) a typical MORB-source-depleted peridotite; and (2) a relatively enriched material which may represent ancient mantle segregations of basaltic melt, incompletely mixed remnants of subducted ocean crust, or metasomatized peridotite such as that found at St. Paul's Rocks or Zabargad Island. Due to the proximity of the seamounts to the East Pacific Rise (EPR), the source materials are thought to comprise an intimate mixture in the mantle immediately underlying the seamounts and the adjacent EPR. Lavas erupted at the ridge axis display a small range of isotopic and incompatible trace element compositions because the large degrees of melting and presence of magma chambers tend to average the chemical characteristics of large volumes of mantle.

If the postulated mantle materials, with large magnitude, small-scale heterogeneities, are ubiquitous in the upper mantle, chemical variations in basalts ranging from MOR tholeiites to island alkali basalts may reflect sampling differences rather than changes in bulk mantle chemistry.  相似文献   


3.
We report new helium isotope results for 49 basalt glass samples from the Mid-Atlantic Ridge between 1°N and 47°S.3He/4He in South Atlantic mid-ocean ridge basalts (MORB) varies between 6.5 and 9.0 RA (RA is the atmospheric ratio of1.39 × 10−6), encompassing the range of previously reported values for MORB erupted away from high3He/4He hotspots such as Iceland. He, Sr and Pb isotopes show systematic relationships along the ridge axis. The ridge axis is segmented with respect to geochemical variations, and local spike-like anomalies in3He/4He, Pb and Sr isotopes, and trace element ratios such as(La/Sm)N are prevalent at the latitudes of the islands of St. Helena, Tristan da Cunha and Gough to the east of the ridge. The isotope systematics are consistent with injection beneath the ridge of mantle “blobs” enriched in radiogenic He, Pb and Sr, derived from off-axis hotspot sources. The variability in3He/4He along the ridge can be used to refine the hotspot source-migrating-ridge sink model.

MORB from the 2–7°S segment are systematically the least radiogenic samples found along the mid-ocean ridge system to date. Here the depleted mantle source is characterized by87Sr/86Sr of 0.7022, Pb isotopes close to the geochron and with206Pb/204Pb of 17.7, and3He/4He of 8.6–8.9 RA. The “background contamination” of the subridge mantle, by radiogenic helium derived from off-ridge hotspots, displays a maximum between 20 and 24°S. The HePb and HeSr isotope relations along the ridge indicate that the3He/4He ratios are lower for the hotspot sources of St. Helena, Tristan da Cunha and Gough than for the MORB source, consistent with direct measurements of3He/4He ratios in the island lavas. Details of the HeSrPb isotope systematics between 12 and 22°S are consistent with early, widespread dispersion of the St. Helena plume into the asthenosphere, probably during flattening of the plume head beneath the thick lithosphere prior to continental breakup. The geographical variation in theHe/Pbratio deduced from the isotope systematics suggests only minor degassing of the plume during this stage. Subsequently, it appears that the plume component reaching the mid-Atlantic ridge was partially outgassed of He during off-ridge hotspot volcanism and related melting activity.

Overall, the similar behavior of He and Pb isotopes along the ridge indicates that the respective mantle sources have evolved under conditions which produced related He and Pb isotope variations.  相似文献   


4.
The segmentation of the Mid-Atlantic Ridge between 29°N and 31°30′ N during the last 10 Ma was studied. Within our survey area the spreading center is segmented at a scale of 25–100 km by non-transform discontinuities and by the 70 km offset Atlantis Transform. The morphology of the spreading center differs north and south of the Atlantis Transform. The spreading axis between 30°30′N and 31°30′N consists of enéchelon volcanic ridges, located within a rift valley with a regional trend of 040°. South of the transform, the spreading center is associated with a well-defined rift valley trending 015°. Magnetic anomalies and the bathymetric traces left by non-transform discontinuities on the flanks of the Mid-Atlantic Ridge provide a record of the evolution of this slow-spreading center over the last 10 Ma. Migration of non-transform offsets was predominantly to the south, except perhaps in the last 2 Ma. The discontinuity traces and the pattern of crustal thickness variations calculated from gravity data suggest that focused mantle upwelling has been maintained for at least 10 Ma south of 30°30′ N. In contrast, north of 30°30′N, the present segmentation configuration and the mantle upwelling centers inferred from gravity data appear to have been established more recently. The orientation of the bathymetric traces suggests that the migration of non-transform offsets is not controlled by the motion of the ridge axis with respect to the mantle. The evolution of the spreading center and the pattern of segmentation is influenced by relative plate motion changes, and by local processes, perhaps related to the amount of melt delivered to spreading segments. Relative plate motion changes over the last 10 Ma in our survey area have included a decrease in spreading rate from 32 mm a−1 to 24 mm a−1, as well as a clockwise change in spreading direction of 13° between anomalies 5 and 4, followed by a counterclockwise change of 4° between anomaly 4 and the present. Interpretation of magnetic anomalies indicates that there are significant variations in spreading asymmetry and rate within and between segments for a given anomaly time. These differences, as well as variations in crustal thickness inferred from gravity data on the flanks of spreading segments, indicate that magmatic and tectonic activity are, in general, not coordinated between adjacent spreading segments.  相似文献   

5.
The first comprehensive chemical and Sr–Nd–Pb isotopic data set of Plio–Pleistocene tholeiitic and alkaline volcanic rocks cropping out in Sardinia (Italy) is presented here. These rocks are alkali basalts, hawaiites, basanites, tholeiitic basalts and basaltic andesites, and were divided into two groups with distinct isotopic compositions. The vast majority of lavas have relatively high 87Sr/86Sr (0.7043–0.7051), low 143Nd/144Nd (0.5124–0.5126), and are characterised by the least radiogenic Pb isotopic composition so far recorded in Italian (and European) Neogene-to-Recent mafic volcanic rocks (206Pb/204Pb=17.55–18.01) (unradiogenic Pb volcanic rocks, UPV); these rocks crop out in central and northern Sardinia. Lavas of more limited areal extent have chemical and Sr–Nd–Pb isotopic ratios indicative of a markedly different source (87Sr/86Sr=0.7031–0.7040; 143Nd/144Nd=0.5127–0.5129; 206Pb/204Pb=18.8–19.4) (radiogenic Pb volcanic rocks, RPV), and crop out only in the southern part of the island. The isotopic ratios of these latter rocks match the values found in the roughly coeval anorogenic (i.e. not related to recent subduction events in space and time) mafic volcanic rocks of Italy (i.e. Mt. Etna, Hyblean Mts., Pantelleria, Linosa), and Cenozoic European volcanic rocks. The mafic rocks of the two Sardinian rock groups also show distinct trace element contents and ratios (e.g. Ba/Nb>14, Ce/Pb=8–25 and Nb/U=29–38 for the UPV; Ba/Nb<9, Ce/Pb=24–28 and Nb/U=46–54 for the RPV). The sources of the UPV could have been stabilised in the Precambrian after low amounts of lower crustal input (about 3%), or later, during the Hercynian Orogeny, after input of Precambrian lower crust in the source region, whereas the sources of the RPV could be related to processes that occurred in the late Palaeozoic–early Mesozoic, possibly via recycling of proto-Tethys oceanic lithosphere by subduction.  相似文献   

6.
Temperature measurements of hydrothermal vent fluids provide an important indicator of the physical and chemical state of mid-ocean ridge crest hydrothermal and magmatic systems. Changes in vent fluid temperature and chemistry can have dramatic effects on biological communities that inhabit these unique ecosystems. In an attempt to understand temporal variability of ridge crest hydrothermal activity as it relates to geological processes at the ridge axis, six high-temperature hydrothermal vents on the East Pacific Rise crest between 9°49′N and 9°51′N were instrumented and sampled repeatedly during five years following a submarine volcanic eruption in 1991. Bio9 vent, located on the floor of the axial trough near 9°50.2′N, has the most complete record of fluid temperatures from 1991 to 1997, including a continuous temperature record of nearly three years (1994–1997). Bio9 vent fluids were 368°C in 1991, increased to an estimated temperature ≥388°C after a second volcanic event in 1992, and thereafter declined over the next 2 years reaching a temperature of 365°C in December 1993. Continuous temperature records and point measurements made by Alvin's thermocouple probe show Bio9 vent fluids were stable for 15 months at 365±1°C, until March 26, 1995. On March 26, an abrupt 7°C increase occurred over a period of eight days at this vent, and a maximum temperature of 372±1°C persisted for 14 days. The vent fluid cooled gradually over 3.5 months to 366±1°C, and for several months at the end of the recording period the temperature increased a few degrees. A continuous record of fluid temperature at this vent between November 1995 and November 1997 shows a 5±1°C increase for the two-year period. The abrupt temperature increase at Bio9 vent, and coincident changes in faunal community structure, and geochemistry of vent fluids from this area suggest that a crustal event occurred, either in the form of a cracking front in the crust or intrusion of a small dike. Based on the results of a microseismicity experiment conducted around the Bio9 vent in 1995 [Sohn et al., Trans. Am. Geophys. Union 78 (1997) F647; Sohn et al., Nature (in press)], and the identification of a small earthquake swarm which occurred on March 22, 1995 we conclude that the temperature anomaly measured at Bio9 four days following the swarm was caused by a cracking front penetrating into hot crustal rocks beneath the vent.  相似文献   

7.
New Hf isotope and trace element data on mid-ocean ridge basalts (MORB) from the Pacific Ocean basin are remarkably uniform (176Hf/177Hf≈0.28313–0.28326) and comparable to previously published data [Salters, Earth Planet. Sci. Lett. 141 (1996) 109–123; Patchett, Lithos 16 (1983) 47–51]. Atlantic MORB have 176Hf/177Hf ranging from 0.28302 to 0.28335 confirming the wide range originally identified by Patchett and Tatsumoto [Geophys. Res. Lett. 7 (1980) 1077–1080]. Indian MORB define an even wider range, from 0.28277 to 0.28337, but three exotic samples have very unradiogenic Hf isotope compositions. Their very low 176Hf/177Hf ratios, together with their trace element characteristics, require the presence of unusual plume-type material beneath the Indian ridge. All other Indian MORB have uniform Hf isotope compositions at about 0.2832, and define a small field displaced to the right of other MORB in Hf–Nd isotope space. The distinct nature of Indian MORB is best explained by the presence in Indian depleted mantle of old recycled oceanic crust and pelagic sediments. Sm/Hf ratios calculated from new high-precision rare earth element and Hf trace element data do not vary in MORB in the same way as in ocean island basalts (OIB): ratios are constant in OIB, but decrease with increasing Sm contents in MORB. The constancy of Sm/Hf in OIB is probably due to an overwhelming influence of residual garnet during melting. By contrast, the decrease of Sm/Hf in MORB is due to the effect of clinopyroxene in the residue of melting beneath ridges, an interpretation confirmed by quantitative modeling of melting. The relationship between Sm/Nd and Lu/Hf ratios in MORB does not require the presence of garnet in the residual mineralogy. The decoupling of Lu/Hf ratios and Hf isotope compositions – the so-called Hf paradox [Salters and Hart, EOS Trans. Am. Geophys. Union 70 (1989) 510] – can be explained by melting dominantly in the spinel field at shallow depths beneath mid-ocean ridges.  相似文献   

8.
Fine-scale sampling with alvin and by dredging of the axial ridge in the Mariana Trough between 17°40′N and 18°30°N recovered basalts with isotopic compositions that span the range between N-type MORB and Mariana island arc basalts. There is a local tectonic-morphological control on basalt compositions; MORB-like basalts are found on the deeper ridge segment bounded by the Pagan transform and the ridge offset at 17°56′N, while basalts from the shallower ridge to the north are typical Mariana Trough basalts (MTB) having compositions intermediate between the two endmember rock types. Arc-like basalts were recovered from one site on the axial ridge.The discovery of basalts with such diverse isotopic characteristics from a short (100 km) section of this backarc spreading center constrains the chemical characteristics and distribution of mantle source variability in the Mariana Trough. SrNdPb isotopic variability suggests that the MTB source is heterogeneous on the scale of individual melt batches. The principal component in the MTB mantle source region is depleted peridotite similar to the source of MORB. The enriched component, most evident in the arc-like basalts and intimately mixed in MTB, has isotopic characteristics similar to those observed in the Mariana arc basalts. The isotopic data suggest that source variability for Mariana axial ridge basalts can be explained by mixed arc-like and MORB-like mantle. We hypothesize that there are fragments of old oceanic lithosphere in the backarc source region. This lithospheric component may reflect remnants of subducted seafloor or forearc-volcanic arc mantle that predate rifting in the backarc basin.  相似文献   

9.
The hygromagmatophile element composition of basic lavas from several tectonic environments are compared with the estimated composition of the primordial mantle. The observed variations are used to subdivide mid-ocean ridge basalts (MORB) into two main types according to the tectonic character of the ridge segment from which they were erupted. Ridge segments with positive residual gravity, depth and heat flow anomalies erupt E-type MORB which are predominantly enriched in the more hygromagmatophile elements, but also include magma types which are depleted in most of these elements. Both enriched and depleted E-type MORB can be distinguished from the basalts erupted at normal ridge segments (N-type MORB) by their La/Ta ratios (in E-type MORB La/Ta ~10, in N-type MORB La/Ta is ~15) and by Hf/Ta ratios (in E-type MORB Hf/Ta> 7, in N-type MORB Hf/Ta> 7). E-type MORB can be distinguished from the basalts erupted at ocean islands by their higher Hf/Ta ratios (>2). A Th-Hf-Ta triangular diagram is used to discriminate between the different ocean floor basalts as well as those erupted at destructive plate margins, which are depleted in Ta and Nb. This diagram can also distinguish between silicic lavas from the different tectonic environments as well as identifying lavas that have been contaminated with continental crust.  相似文献   

10.
Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge [13, 14]. The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and consistent with formation at the paleo mid-ocean ridge [14]. The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other.The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 208Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan de Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing od depleted and enriched end member melts or partial melting of an inhomogenous, variably enriched mantle source. However, observe ZrBaNbY interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.  相似文献   

11.
The geochemistry of mid-oceanic ridge basalts from 86°N (Arctic Ocean) provides, for the first time, an insight into the composition of the mantle around the North Pole. Our data show the source region of the Arctic basalts to possess traces of an enrichment similar to the DUPAL signature. This is remarkable since up to now the DUPAL signature has been believed to be present only in Indian but not in Atlantic or Pacific MORB. These results also argue against a model of whole-mantle convection, in which upwelling of enriched material at the equator is balanced by downwelling of depleted material at the poles.  相似文献   

12.
Fresh basalt glasses from the North Chile Ridge (NCR) in the southeastern Pacific have Ne isotopic compositions distinctly different from typical mid-ocean ridge basalts (MORB). In a three-isotope plot of 20Ne/22Ne vs. 21Ne/22Ne, the NCR data define a correlation line with a slope smaller than that of the MORB correlation line, i.e. their Ne composition is more nucleogenic than that of MORB. 3He/4He ratios are slightly lower than the MORB average, whereas in a few stepwise heating fractions very high 40Ar/36Ar ratios up to 28,000 are found. One model to explain the data assumes contamination of the NCR mantle source by material from the continental or oceanic crust, but in addition to difficulties with quantitatively reconciling the noble gas patterns with such a model it seems unable to account for some geochemical characteristics of NCR basalts reported earlier [Bach et al., Earth Planet. Sci. Lett. 142 (1996) 223–240], such as depletions in highly incompatible elements and unradiogenic Sr isotope compositions. Therefore we favor the scenario of a mantle source which was depleted and degassed previously, possibly as a residue from mantle melting beneath the southern East Pacific Rise that was transported to the NCR and melted again. The time during which such a depleted reservoir would have to be separated from the MORB mantle is estimated at 10–100 Ma based on U/Th–Ne systematics, in reasonable agreement with the time scale deduced from the formation history of the NCR and the temporal evolution of the southeast Pacific.  相似文献   

13.
Neon isotopic ratios measured in olivine and basaltic glass from Iceland are the most primitive observed so far in terrestrial mantle-derived samples. Ratios were measured in gas released from olivine and basaltic glass from a total of 10 samples from the Reykjanes Peninsula, Iceland, and one sample from central Iceland. The neon isotopic ratios include solar-like, mid-ocean ridge basalt (MORB)-like and atmospheric compositions. Neon isotopic ratios near the air–solar mixing line were obtained from the total gas released from glass separates from five samples. MORB-like neon isotopic compositions were measured in the total gas released from olivine and glass separates from four samples. Although there is clear evidence for a solar neon component in some of the Icelandic samples, there is no corresponding evidence for a solar helium ratio (320Ra>3He/4He>100Ra). Instead, 3He/4He ratios are mainly between 12±2(Ra) and 29±3(Ra), similar to the range observed in ocean island basalts, indicating that the He–Ne isotopic systematics are decoupled. The mantle source of Icelandic basalts is interpreted to be highly heterogeneous on a local scale to explain the range in observed helium and neon isotopic ratios. The identification of solar-like neon isotopic ratios in some Icelandic samples implies that solar neon trapped within the Earth has remained virtually unchanged over the past 4.5 Ga. Such preservation requires a source with a high [Nesolar]/[U+Th] ratio so that the concentration of solar neon overwhelms the nucleogenic 21Ne* produced from the decay of U and Th in the mantle over time. High [Nesolar]/[U+Th] ratios are unlikely to be preserved in the mantle if it has experienced substantial melting. An essentially undegassed primitive mantle component is postulated to be the host of the solar neon in the Icelandic plume source. Relatively small amounts of this primitive mantle component are likely to mix with more depleted and degassed mantle such that the primitive mantle composition is not evident in other isotopic systems (e.g. strontium and neodymium). The lower mantle plume source is inferred to be relatively heterogeneous owing to being more viscous and less well stirred than the upper mantle. This discovery of near-solar neon isotopic ratios suggests that relatively primitive mantle may be preserved in the Icelandic plume source.  相似文献   

14.
Primitive basaltic single eruptions in the Big Pine Volcanic Field (BPVF) of Owens Valley, California show systematic temporal–compositional variation that cannot be described by simple models of fractional crystallization, partial melting of a single source, or crustal contamination. We targeted five monogenetic eruption sequences in the BPVF for detailed chemical and isotopic measurements and 40Ar/39Ar dating, focusing primarily on the Papoose Canyon sequence. The vent of the primitive (Mg# = 69) Papoose Canyon sequence (760.8 ± 22.8 ka) produced magmas with systematically decreasing (up to a factor of two) incompatible element concentrations, at roughly constant MgO (9.8 ± 0.3 (1σ) wt.%) and Na2O. SiO2 and compatible elements (Cr and Ni) show systematic increases, while 87Sr/86Sr systematically decreases (0.7063–0.7055) and εNd increases (− 3.4 to − 1.1). 187Os/188Os is highly radiogenic (0.20–0.31), but variations among four samples do not correlate with other chemical or isotopic indices, are not systematic with respect to eruption order, and thus the Os system appears to be decoupled from the dominant trends. The single eruption trends likely result from coupled melting and mixing of two isotopically distinct sources, either through melt-rock interaction or melting of a lithologically heterogeneous source. The other four sequences, Jalopy Cone (469.4 ± 9.2 ka), Quarry Cone (90.5 ±17.6 ka), Volcanic Bomb Cone (61.6 ± 23.4 ka), and Goodale Bee Cone (31.8 ± 12.1 ka) show similar systematic temporal decreases in incompatible elements. Monogenetic volcanic fields are often used to decipher tectonic changes on the order of 105–106 yr through long-term changes in lava chemistry. However, the systematic variation found in Papoose Canyon (100–102 yr) nearly spans that of the entire volcanic field, and straddles cutoffs for models of changing tectonic regime over much longer time-scales. Moreover, ten new 40Ar/39Ar ages combined with chemistry from all BPVF single eruption sequences show the long-term trend of BPVF evolution comprises the overlapping, temporal–compositional trends of the monogenetic vents. This suggests that the single eruption sequences contain the bulk of the systematic chemical variation, whereas their aggregate compositions define the long-term trend of volcanic field evolution.  相似文献   

15.
Alkali basalts and nephelinites from the southern end of the East African Rift (EAR) in northern Tanzania have incompatible trace element compositions that are similar to those of ocean island basalts (OIB). They define a considerable range of Sr, Nd and Pb isotopic compositions (87Sr/86Sr= 0.7035−0.7058,εNd = −5to+3, and206Pb/204Pb= 17.5−21.3), each of which partially overlaps the range found in OIB. However, they occupy a unique position in combined Nd, Sr and Pb isotopic compositional space. Nearly all of the lavas have radiogenic Pb, similar to HIMU with high time-integrated238U/204Pb coupled with unradiogenic Nd (+2 to −5) and radiogenic Sr (>0.704), similar to EMI. This combination has not been observed in OIB and provides evidence that these magmas predominantly acquired their Sr, Nd and Pb in the subcontinental lithospheric mantle rather than in the convecting asthenosphere. These data contrast with compositions for lavas from farther north in the EAR. The Pb isotopic compositions of basalts along the EAR are increasingly radiogenic from north to south, indicating a fundamental change to sources with higher time-integratedU/Pb, closer to the older cratons in the south. An ancient underplated OIB melt component, isolated for about 2 Ga as enriched lithospheric mantle and then remelted, could generate both the trace element and isotopic data measured in the Tanzanian samples. Whereas the radiogenic Pb in Tanzanian lavas requires a source with high time-integratedU/Pb, most continental basalts that are thought to have interacted with the continental lithospheric mantle have unradiogenic Pb, requiring a source with a history of lowU/Pb. Such lowU/Pb is readily accomplished with the addition of subduction-derived components, since the lower averageU/Pb of arc basalts (0.15) relative to OIB (0.36) probably reflects addition of Pb from subducted oceanic crust. If the subcontinental lithosphere is normally characterized by low time-integratedU/Pb it would appear that subduction magmatism is more important than OIB additions in supplying the Pb inventory of the lithospheric mantle. However,U/Pb ratios of xenoliths derived from the continental lithospheric mantle suggest that both processes may be important. This apparent discrepancy could be because xenoliths are not volumetrically representative of the subcontinental lithospheric mantle, or, more likely, that continental lithospheric mantle components in basalts are normally only identified as such when the isotopic ratios are dissimilar from MORB or OIB. Lithospheric enrichment from subaccreted OIB components appears to be more significant than generally recognized.  相似文献   

16.
We present the results of a detailed petrological study of a sparsely phyric basalt (MAPCO CH98-DR11) dredged along the Mid-Atlantic Ridge (30°41′N). The sample contains microphenocrysts of olivine that display four different rapid-growth morphologies. Comparison of these morphologies with those obtained in dynamic crystallization experiments allows us to constrain the thermal history of the sample. The dendritic morphology (swallowtail, chain and lattice olivine) is directly related to the final quenching during magma–seawater interaction. In contrast, the three other morphologies, namely the complex polyhedral crystal, the closed hopper and the complex swallowtail morphology result from several cycles of cooling–heating (corresponding to a maximum degree of undercooling of 20–25°C) during crystal growth. These thermal variations occurred before eruption and are interpreted to be the result of turbulent convection in a small magmatic body beneath the ridge. The results suggest that the Mid-Atlantic Ridge is underlain by a mush zone that releases batches of liquid during tectonic segregation. Aphyric basalts are emitted during eruptions controlled by the tectonic activity, whereas phyric basalts correspond to small fractions of magma from the mush zone mobilized by reinjections of primitive magmas.  相似文献   

17.
Uranium and thorium diffusion in diopside   总被引:2,自引:0,他引:2  
This paper presents new experimental data on the tracer diffusion rates of U and Th in diopside at 1 atm and 1150–1300°C. Diffusion couples were prepared by depositing a thin layer of U–Th oxide onto the polished surface of a natural diopside single crystal, and diffusion profiles were measured by ion microprobe depth profiling. For diffusion parallel to [001] the following Arrhenius relations were obtained: log10DU=(−5.75±0.98)−(418±28 kJ/mol)/2.303RT log10DTh=(−7.77±0.92)−(356±26 kJ/mol)/2.303RT. The diffusion data are used to assess the extent to which equilibrium is obtained during near fractional melting of a high-Ca pyroxene bearing mantle peridotite. We find that the diffusion rates for both elements are slow and that disequilibrium between solid and melt will occur under certain melting conditions. For near-fractional adiabatic decompression melting at ascent rates >3 cm/yr, high-Ca pyroxene will exhibit disequilibrium effects. High-Ca pyroxene will become zoned in U and Th and the melts extracted will be depleted in these incompatible elements relative to melts produced by equilibrium fractional melting. U and Th diffusivities in high-Ca pyroxene are similar, and diffusive fractionation of these elements will be limited. Numerical solutions to a dynamic melting model with diffusion-controlled chemical equilibration indicate that the activity ratio [230Th/238U] in a partial melt of spinel peridotite will be slightly less than 1 for a broad range of melting parameters. This result reinforces the already widely accepted conclusion that melting of spinel peridotite cannot account for 230Th excesses in mid-ocean ridge and ocean island basalts, and that garnet must therefore be present over part of the melting column.  相似文献   

18.
Geochemical variations in mid-ocean ridge basalts have been attributed to differing proportions of compositionally distinct mantle components in their sources, some of which may be recycled crust. Oxygen isotopes are strongly fractionated by near-surface interactions of rocks with the hydrosphere, and thus provide a tracer of near-surface materials that have been recycled into the mantle. We present here oxygen isotope analyses of basaltic glasses from the mid-Atlantic ridge south of and across the Azores platform. Variations in δ18O in these samples are subtle (range of 0.47‰) and may partly reflect shallow fractional crystallization; we present a method to correct for these effects. Relatively high fractionation-corrected δ18O in these samples is associated with geochemical indices of enrichment, including high La/Sm, Ce/Pb, and 87Sr/86Sr and low 143Nd/144Nd. Our results suggest two first-order conclusions about these enriched materials: (1) they are derived (directly or indirectly) from recycled upper oceanic crustal rocks and/or sediments; and (2) these materials are present in the north Atlantic MORB sources in abundances of less than 10% (average 2–5%). Modeling of variations of δ18O with other geochemical variables further indicates that the enriched component is not derived from incorporation of sediment or bulk altered oceanic crust, from metasomatism of the mantle by hydrous or carbonate-rich fluids, or from partial melting of subducted sediment. Instead, the data appear to require a model in which the enriched component is depleted mantle that has been metasomatized by small-degree partial melts of subducted, dehydrated, altered oceanic crust. The age of this partial melting is broadly constrained to 250 Ma. Reconstructed plate motions suggest that the enriched component in the north Atlantic mantle may have originated by subduction along the western margin of Pangea.  相似文献   

19.
Fresh basaltic glasses have been analyzed for U&z.sbnd;Th disequilibrium systematics as part of an extensive study on the East Pacific Rise (EPR) at 12°45′N. These samples are well described in terms of major and trace elements as well as in Nd, Pb and Sr isotopes. Our results show significant heterogeneities in the mantle source at a small scale, and show heterogeneities at larger scales also when compared to other EPR data.U and Th concentration and isotopic data rule out fractional crystallization as a main process and support a mixing model in agreement with the marble cake model developed by Alle`gre and Turcotte and constrained by trace elements and Nd, Sr and Pb isotopes on the same samples by Prinzhofer et al.Based on the high ( 230Th/232Th ) isotopic ratios on recent tholeiites especially the Th/U values inferred for their sources clearly show that the upper mantle Th/U has decreased with time.  相似文献   

20.
We have developed techniques to determine238U,234U and232Th concentrations in seawater by isotope dilution mass spectrometry. U measurements are made using a233U236U double spike to correct for instrumental fractionation. Measurements on uranium standards demonstrate that234U/238U ratios can be measured accurately and reproducibly.234U/238U can be measured routinely to ± 5‰ (2σ) for a sample of 5 × 109 atoms of234U (3 × 10−8 g of total U, 10 ml of seawater). Data acquisition time is 1 hour. The small sample size, high precision and short data acquisition time are superior to-counting techniques.238U is measured to ± 2‰ (2σ) for a sample of 8 × 1012 atoms of238U ( 3 × 10−9 g of U, 1 ml of seawater).232Th is measured to ± 20‰ with 3 × 1011232Th atoms (10−10 g232Th, 1 1 of seawater). This small sample size will greatly facilitate investigation of the232Th concentration in the oceans. Using these techniques, we have measured238U,234U and232Th in vertical profiles of unfiltered, acidified seawater from the Atlantic and238U and234U in vertical profiles from the Pacific. Determinations of234U/238U at depths ranging from 0 to 4900 m in the Atlantic (7°44′N, 40°43′W) and the Pacific (14°41′N, 160°01′W) Oceans are the same within experimental error (± 5‰,2σ). The average of these234U/238U measurements is 144 ± 2‰ (2σ) higher than the equilibrium ratio of 5.472 × 10−5. U concentrations, normalized to 35‰ salinity, range from 3.162 to 3.281 ng/g, a range of 3.8%. The average concentration of the Pacific samples (31°4′N, 159°1′W) is 1% higher than that of the Atlantic (7°44′N, 40°43′W and 31°49′N, 64°6′W).232Th concentrations from an Atlantic profile range from 0.092 to 0.145 pg/g. The observed constancy of the234U/238U ratio is consistent with the predicted range of234U/238U using a simple two-☐ model and the residence time of deep water in the ocean determined from14C. The variation in salinity-normalized U concentrations suggests that U may be much more reactive in the marine environment than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号