首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the spectroscopic sample of the Sloan Digital Sky Survey Data Release 1 (SDSS DR1), we measure how gas was transformed into stars as a function of time and stellar mass: the baryonic conversion tree (BCT). There is a clear correlation between early star formation activity and present-day stellar mass: the more massive galaxies have formed approximately 80 per cent of their stars at   z > 1  , while for the less massive ones the value is only approximately 20 per cent. By comparing the BCT with the dark matter merger tree, we find indications that star formation efficiency at   z > 1  had to be approximately a factor of two higher than today (∼10 per cent) in galaxies with present-day stellar mass larger than  2 × 1011 M  , if this early star formation occurred in the main progenitor. Therefore, the λ cold dark matter (LCDM) paradigm can accommodate a large number of red objects. On the other hand, in galaxies with present-day stellar mass less than  1011 M  , efficient star formation seems to have been triggered at   z ∼ 0.2  . We show that there is a characteristic mass  ( M *∼ 1010 M)  for feedback efficiency (or lack of star formation). For galaxies with masses lower than this, feedback (or star formation suppression) is very efficient while for higher masses it is not. The BCT, determined here for the first time, should be an important observable with which to confront theoretical models of galaxy formation.  相似文献   

2.
Motivated by recent observational studies of the environment of   z ∼ 6  QSOs, we have used the Millennium Run (MR) simulations to construct a very large  (∼4°× 4°)  mock redshift survey of star-forming galaxies at   z ∼ 6  . We use this simulated survey to study the relation between density enhancements in the distribution of i 775-dropouts and Lyα emitters, and their relation to the most massive haloes and protocluster regions at   z ∼ 6  . Our simulation predicts significant variations in surface density across the sky with some voids and filaments extending over scales of 1°, much larger than probed by current surveys. Approximately one-third of all   z ∼ 6  haloes hosting i -dropouts brighter than   z = 26.5  mag  (≈ M *UV, z =6)  become part of   z = 0  galaxy clusters. i -dropouts associated with protocluster regions are found in regions where the surface density is enhanced on scales ranging from a few to several tens of arcminutes on the sky. We analyse two structures of i -dropouts and Lyα emitters observed with the Subaru Telescope and show that these structures must be the seeds of massive clusters in formation. In striking contrast, six   z ∼ 6  QSO fields observed with Hubble Space Telescope show no significant enhancements in their i 775-dropout number counts. With the present data, we cannot rule out the QSOs being hosted by the most massive haloes. However, neither can we confirm this widely used assumption. We conclude by giving detailed recommendations for the interpretation and planning of observations by current and future ground- and space-based instruments that will shed new light on questions related to the large-scale structure at   z ∼ 6  .  相似文献   

3.
We analyse the evolutionary history of galaxies formed in a hierarchical scenario consistent with the concordance Lambda cold dark matter (ΛCDM) model focusing on the study of the relation between their chemical and dynamical properties. Our simulations consistently describe the formation of the structure and its chemical enrichment within a cosmological context. Our results indicate that the luminosity–metallicity and the stellar mass–metallicity (LZR and MZR) relations are naturally generated in a hierarchical scenario. Both relations are found to evolve with redshift. In the case of the MZR, the estimated evolution is weaker than that deduced from observational works by approximately 0.10 dex. We also determine a characteristic stellar mass, M c≈ 3 × 1010 M, which segregates the simulated galaxy population into two distinctive groups and which remains unchanged since z ∼ 3, with a very weak evolution of its metallicity content. The value and role played by M c is consistent with the characteristic mass estimated from the SDSS galaxy survey by Kauffmann et al. Our findings suggest that systems with stellar masses smaller than M c are responsible for the evolution of this relation at least from z ≈ 3. Larger systems are stellar dominated and have formed more than 50 per cent of their stars at   z ≥ 2  , showing very weak evolution since this epoch. We also found bimodal metallicity and age distributions from z ∼ 3, which reflects the existence of two different galaxy populations. Although SN feedback may affect the properties of galaxies and help to shape the MZR, it is unlikely that it will significantly modify M c since, from   z = 3  this stellar mass is found in systems with circular velocities larger than 100 km s−1.  相似文献   

4.
We consider the effect of reionization on the clustering properties of galaxy samples at intermediate redshifts ( z ∼ 0.3–5.5). Current models for the reionization of intergalactic hydrogen predict that overdense regions will be reionized early, thus delaying the build-up of stellar mass in the progenitors of massive lower redshift galaxies. As a result, the stellar populations observed in intermediate-redshift galaxies are somewhat younger and hence brighter in overdense regions of the Universe. Galaxy surveys would therefore be sensitive to galaxies with a somewhat lower dark matter mass in overdense regions. The corresponding increase in the observed number density of galaxies can be parametrized as a galaxy bias due to reionization. We model this process using merger trees combined with a stellar synthesis code. Our model demonstrates that reionization has a significant effect on the clustering properties of galaxy samples that are selected based on their star formation properties. The bias correction in Lyman-break galaxies (including those in proposed baryonic oscillation surveys at z < 1) is at the level of 10–20 per cent for a halo mass of  1012 M  , leading to corrections factors of 1.5–2 in the halo mass inferred from measurements of clustering length. The reionization of helium could also lead to a sharp increase in the amplitude of the galaxy correlation function at z ∼ 3. We find that the reionization bias is approximately independent of scale and halo mass. However, since the traditional galaxy bias is mass dependent, the reionization bias becomes relatively more important for lower mass systems. The correction to the bias due to reionization is very small in surveys of luminous red galaxies at z < 1.  相似文献   

5.
We present optical and near-infrared spectroscopic observations of the optical Einstein ring 0047 – 2808. We detect both [O III ] lines λλ4959, 5007 near ∼ 2.3 μm, confirming the redshift of the lensed source as z  = 3.595. The Lyα line is redshifted relative to the [O III ] line by 140 ± 20 km s−1. Similar velocity shifts have been seen in nearby starburst galaxies. The [O III ] line is very narrow, 130 km s−1 FWHM. If the ring is the image of the centre of a galaxy, the one-dimensional stellar velocity dispersion σ = 55 km s−1 is considerably smaller than the value predicted by Baugh et al. for the somewhat brighter Lyman-break galaxies. The Lyα line is significantly broader than the [O III ] line, probably due to resonant scattering. The stellar central velocity dispersion of the early-type deflector galaxy at z  = 0.485 is 250 ± 30 km s−1. This value is in good agreement both with the value predicted from the radius of the Einstein ring (and a singular isothermal sphere model for the deflector), and with the value estimated from the D n −σ relation.  相似文献   

6.
A comparison between published field galaxy stellar mass functions (GSMFs) shows that the cosmic stellar mass density is in the range 4–8 per cent of the baryon density (assuming  Ωb= 0.045  ). There remain significant sources of uncertainty for the dust correction and underlying stellar mass-to-light ratio even assuming a reasonable universal stellar initial mass function. We determine the   z < 0.05  GSMF using the New York University Value-Added Galaxy Catalog sample of 49 968 galaxies derived from the Sloan Digital Sky Survey and various estimates of stellar mass. The GSMF shows clear evidence for a low-mass upturn and is fitted with a double Schechter function that has  α2≃−1.6  . At masses below  ∼108.5 M  , the GSMF may be significantly incomplete because of missing low-surface-brightness galaxies. One interpretation of the stellar mass–metallicity relation is that it is primarily caused by a lower fraction of available baryons converted to stars in low-mass galaxies. Using this principle, we determine a simple relationship between baryonic mass and stellar mass and present an 'implied baryonic mass function'. This function has a faint-end slope,  α2≃−1.9  . Thus, we find evidence that the slope of the low-mass end of the galaxy mass function could plausibly be as steep as the halo mass function. We illustrate the relationship between halo baryonic mass function → galaxy baryonic mass function → GSMF. This demonstrates the requirement for peak galaxy formation efficiency at baryonic masses  ∼1011 M  corresponding to a minimum in feedback effects. The baryonic-infall efficiency may have levelled off at lower masses.  相似文献   

7.
The global star formation rate has decreased significantly since   z ∼ 1  , for reasons that are not well understood. Red-sequence galaxies, dominating in galaxy clusters, represent the population that have had their star formation shut off, and may therefore be the key to this problem. In this work, we select 127 rich galaxy clusters at  0.17 ≤ z ≤ 0.36  , from 119 deg2 of the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) optical imaging data, and construct the r '-band red-sequence luminosity functions (LFs). We show that the faint end of the LF is very sensitive to how red-sequence galaxies are selected, and an optimal way to minimize the contamination from the blue cloud is to mirror galaxies on the redder side of the colour–magnitude relation. The LFs of our sample have a significant inflexion centred at     , suggesting a mixture of two populations. Combining our survey with low-redshift samples constructed from the Sloan Digital Sky Survey, we show that there is no strong evolution of the faint end of the LF (or the red-sequence dwarf-to-giant ratio) over the redshift range  0.2 ≲ z ≲ 0.4  , but from   z ∼ 0.2  to ∼0 the relative number of red-sequence dwarf galaxies has increased by a factor of ∼3, implying a significant build-up of the faint end of the cluster red sequence over the last 2.5 Gyr.  相似文献   

8.
We have selected and analysed the properties of a sample of  2905 Ks < 21.5  galaxies in  ∼131 arcmin2  of the Great Observatories Origins Deep Survey (GOODS) Chandra Deep Field South (CDFS), to obtain further constraints on the evolution of Ks -selected galaxies with respect to the results already obtained in previous studies. We made use of the public deep multiwavelength imaging from the optical B through the infrared (IR) 4.5-μm bands, in conjunction with available spectroscopic and COMBO17 data in the CDFS, to construct an optimized redshift catalogue for our galaxy sample. We computed the Ks -band luminosity function and determined that its characteristic magnitude has a substantial brightening and a decreasing total density from   z = 0  to  〈 z 〉= 2.5  . We also analysed the colours and number density evolution of galaxies with different stellar masses. Within our sample, and in contrast to what is observed for less massive systems, the vast majority (∼85–90 per cent) of the most massive  ( M > 2.5 × 1011 M)  local galaxies appear to be in place before redshift   z ∼ 1  . Around 65–70 per cent of the total assemble between redshifts   z = 1  and 3 and most of them display extremely red colours, suggesting that plausible star formation in these very massive systems should mainly proceed in obscured, short-time-scale bursts. The remaining fraction (up to ∼20 per cent) could be in place at even higher redshifts   z = 3–4  , pushing the first epoch of formation of massive galaxies beyond the limits of current near-IR surveys.  相似文献   

9.
We combine Lyman-break colour selection with ultradeep (≳200 ks) Chandra X-ray imaging over a survey area of ∼0.35 deg2 to select high-redshift active galactic nuclei (AGN). Applying careful corrections for both the optical and X-ray selection functions, the data allow us to make the most accurate determination to date of the faint end of the X-ray luminosity function (XLF) at   z ∼ 3  . Our methodology recovers a number density of X-ray sources at this redshift which is at least as high as previous surveys, demonstrating that it is an effective way of selecting high z AGN. Comparing to results at   z = 1  , we find no evidence that the faint slope of the XLF flattens at high z , but we do find significant (factor ∼3.6) negative evolution of the space density of low luminosity AGN. Combining with bright end data from very wide surveys we also see marginal evidence for continued positive evolution of the characteristic break luminosity   L *  . Our data therefore support models of luminosity-dependent density evolution between   z = 1  and   z = 3  . A sharp upturn in the the XLF is seen at the very lowest luminosities  ( L X≲ 1042.5 erg s−1)  , most likely due to the contribution of pure X-ray starburst galaxies at very faint fluxes.  相似文献   

10.
The excess number of blue galaxies at faint magnitudes is a subject of much controversy. Recent Hubble Space Telescope results have revealed a plethora of galaxies with peculiar morphologies tentatively identified as the evolving population. We report the results of optical spectroscopy and near-infrared photometry of a sample of faint HST galaxies from the Medium Deep Survey to ascertain the physical properties of the faint morphological populations. We find four principal results. First, the population of objects classified as 'peculiar' are intrinsically luminous in the optical ( M B  ∼ −19). Secondly these systems tend to be strong sources of [O  II ] line luminosity. Thirdly the optical–infrared colours of the faint population (a) confirm the presence of a population of compact   blue galaxies and (b) show the stellar populations of irregular/peculiar galaxies encompass a wide range in age. Finally a surface-brightness comparison with the local galaxy sample of Frei et al. shows that these objects are not of anomalously low surface brightness, rather we find that all morphological classes have evolved to a higher surface brightness at higher redshifts ( z  > 0.3).  相似文献   

11.
We report the result of a search for Lyα emission from the host galaxies of the gamma-ray bursts  (GRBs) 030226 ( z = 1.986), 021004 ( z = 2.335)  and  020124 ( z = 3.198)  . We find that the host galaxy of GRB 021004 is an extended (around 8 kpc) strong Lyα emitter with a rest-frame equivalent width (EW) of 68+12−11Å, and a star formation rate of  10.6 ± 2.0 M yr−1  . We do not detect the hosts of GRB 030226 and GRB 020124, but the upper limits on their Lyα fluxes do not rule out large rest-frame EWs. In the fields of GRB 021004 and GRB 030226 we find seven and five other galaxies, respectively, with excess emission in the narrow-band filter. These galaxies are candidate Lyα-emitting galaxies in the environment of the host galaxies. We have also compiled a list of all   z ≳ 2  GRB hosts, and demonstrate that a scenario where they trace star formation in an unbiased way is compatible with current observational constraints. Fitting the   z = 3  luminosity function (LF) under this assumption results in a characteristic luminosity of   R *= 24.6  and a faint-end slope of  α=−1.55  , consistent with the LF measured for Lyman-break galaxies.  相似文献   

12.
Using high-resolution SPH simulations in a fully cosmological Λ cold dark matter context, we study the formation of a bright disc-dominated galaxy that originates from a 'wet' major merger at   z = 0.8  . The progenitors of the disc galaxy are themselves disc galaxies that formed from early major mergers between galaxies with blue colours. A substantial thin stellar disc grows rapidly following the last major merger and the present-day properties of the final remnant are typical of early-type spiral galaxies, with an i -band bulge-to-disc ratio ∼0.65, a disc scalelength of 7.2 kpc,   g − r = 0.5 mag  , an H  i linewidth ( W 20/2) of 238 km s−1 and total magnitude   i =−22.4  . The key ingredients for the formation of a dominant stellar disc component after a major merger are (i) substantial and rapid accretion of gas through cold flows followed at late times by cooling of gas from the hot phase, (ii) supernova feedback that is able to partially suppress star formation during mergers and (iii) relative fading of the spheroidal component. The gas fraction of the progenitors' discs does not exceed 25 per cent at   z < 3  , emphasizing that the continuous supply of gas from the local environment plays a major role in the regrowth of discs and in keeping the galaxies blue. The results of this simulation alleviate the problem posed for the existence of disc galaxies by the high likelihood of interactions and mergers for galaxy-sized haloes at relatively low z .  相似文献   

13.
We present measurements of the angular correlation function of galaxies selected from a B J ∼23.5 multicolour survey of two 5°×5° fields located at high galactic latitudes. The galaxy catalogue of ∼4×105 galaxies is comparable in size to catalogues used to determine the galaxy correlation function at low redshift. Measurements of the z ∼0.4 correlation function at large angular scales show no evidence for a break from a power law, although our results are not inconsistent with a break at ≳15 h−1 Mpc. Despite the large fields-of-view, there are large discrepancies between the measurements of the correlation function in each field, possibly caused by dwarf galaxies within z ∼0.11 clusters near the South Galactic Pole.
Colour selection is used to study the clustering of galaxies from z ∼0 to z ∼0.4. The galaxy correlation function is found to depend strongly on colour, with red galaxies more strongly clustered than blue galaxies by a factor of ≳5 at small scales. The slope of the correlation function is also found to vary with colour, with γ∼1.8 for red galaxies and γ∼1.5 for blue galaxies. The clustering of red galaxies is consistently strong over the entire magnitude range studied, although there are large variations between the two fields. The clustering of blue galaxies is extremely weak over the observed magnitude range, with clustering consistent with r 0∼2 h−1 Mpc. This is weaker than the clustering of late-type galaxies in the local Universe, and suggests that galaxy clustering is more strongly correlated with colour than morphology. This may also be the first detection of a substantial low-redshift galaxy population with clustering properties similar to faint blue galaxies.  相似文献   

14.
We investigate the angular correlation function, ο(θ), of the galaxies detected in the 2.1-μm K ' band in 17 fields (101.5 arcmin2 in total), each containing a z ∼1.1 radio galaxy. There is a significant detection of galaxy clustering at a limit of K ∼20, with a ο(θ) amplitude similar to that estimated by Carlberg et al. at K =21.5. The ο(θ) amplitudes of these K -limited samples are higher than expected from the faint galaxy clustering in the blue and red passbands, but consistent with a pure luminosity evolution model if clustering is stable (ε=0) and the correlation function of early-type galaxies is steeper than that of spirals.
We do not detect a significant cross-correlation between the radio galaxies and the other galaxies in these fields. The upper limits on the cross-correlation are consistent with a mean clustering environment of Abell class 0 for z ∼1.1 radio galaxies, similar to that observed for radio galaxies at z ∼0.5, but would argue against an Abell class 1 or richer environment. As Abell 0 clustering around the radio galaxies would not significantly increase the ο(θ) amplitude of galaxies in these fields, stable clustering with a steep ξ( r ) for E/S0 galaxies appears to remain the most likely interpretation of the ο(θ) amplitude.
At K ≤20, the number of galaxy–galaxy pairs of 2–3 arcsec separation exceeds the random expectation by a factor of 2.15±0.26. The excess of close pairs is comparable to that previously reported for R -band data, and consistent with a ∼(1+ z )2 evolution of the galaxy merger rate.  相似文献   

15.
We compare deep Magellan spectroscopy of 26 groups at  0.3 ≤ z ≤ 0.55  , selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O  ii ]λ3727 emission (≥5 Å) increases strongly with redshift, from ∼29 per cent in 2dFGRS to ∼58 per cent in CNOC2, for all galaxies brighter than  ∼ M *+ 1.75  . This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from ∼53 to ∼75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation ( P trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers  ( P trunc≳ 0.3 Gyr−1)  . However, without assuming significant density evolution, P trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts   z ≳ 0.45  .  相似文献   

16.
We confirm and extend the recent finding that the central surface density  μ0D≡ r 0ρ0  of galaxy dark matter haloes, where r 0 and  ρ0  are the halo core radius and central density, is nearly constant and independent of galaxy luminosity. Based on the co-added rotation curves (RCs) of ∼1000 spiral galaxies, the mass models of individual dwarf irregular and spiral galaxies of late and early types with high-quality RCs, and the galaxy–galaxy weak-lensing signals from a sample of spiral and elliptical galaxies, we find that  log μ0D= 2.15 ± 0.2  in units of  log(M pc−2)  . We also show that the observed kinematics of Local Group dwarf spheroidal galaxies are consistent with this value. Our results are obtained for galactic systems spanning over 14 mag, belonging to different Hubble types and whose mass profiles have been determined by several independent methods. In the same objects, the approximate constancy of  μ0D  is in sharp contrast to the systematical variations, by several orders of magnitude, of galaxy properties, including  ρ0  and central stellar surface density.  相似文献   

17.
18.
We use the Hubble Ultra Deep Field to study the galaxy luminosity–size  ( M – R e )  distribution. With a careful analysis of selection effects due to both detection completeness and measurement reliability, we identify bias-free regions in the   M – R e   plane for a series of volume-limited samples. By comparison to a nearby survey also having well-defined selection limits, namely the Millennium Galaxy Catalogue, we present clear evidence for evolution in surface brightness since   z ∼ 0.7  . Specifically, we demonstrate that the mean, rest-frame B -band  〈μ〉 e   for galaxies in a sample spanning 8 mag in luminosity between   M B =−22  and −14 mag increases by ∼1.0 mag arcsec−2 from   z ∼ 0.1  to 0.7. We also highlight the importance of considering surface brightness-dependent measurement biases in addition to incompleteness biases. In particular, the increasing, systematic underestimation of Kron fluxes towards low surface brightnesses may cause diffuse, yet luminous, systems to be mistaken for faint, compact objects.  相似文献   

19.
We present a comparison between the SCUBA (Submillimetre Common User Bolometer Array) Half Degree Extragalactic Survey (SHADES) at 450 and  850 μm  in the Lockman Hole East with a deep Spitzer Space Telescope survey at  3.6–24 μm  conducted in guaranteed time. Using stacking analyses we demonstrate a striking correspondence between the galaxies contributing the submm extragalactic background light, with those likely to dominate the backgrounds at Spitzer wavelengths. Using a combination BRIzK plus Spitzer photometric redshifts, we show that at least a third of the Spitzer -identified submm galaxies at  1 < z < 1.5  appear to reside in overdensities when the density field is smoothed at 0.5–2 Mpc comoving diameters, supporting the high-redshift reversal of the local star formation–galaxy density relation. We derive the dust-shrouded cosmic star formation history of galaxies as a function of assembled stellar masses. For model stellar masses  <1011 M  , this peaks at lower redshifts than the ostensible   z ∼ 2.2  maximum for submm point sources, adding to the growing consensus for 'downsizing' in star formation. Our surveys are also consistent with 'downsizing' in mass assembly. Both the mean star formation rates  〈d M */d t 〉  and specific star formation rates  〈(1/ M *) d M */d t 〉  are in striking disagreement with some semi-analytic predictions from the Millenium Simulation. The discrepancy could either be resolved with a top-heavy initial mass function, or a significant component of the submm flux heated by the interstellar radiation field.  相似文献   

20.
We present the results of a continuing survey to detect Lyα emitting galaxies at redshifts   z ∼ 9  : the ' z equals nine' (ZEN) survey. We have obtained deep VLT Infrared Spectrometer and Array Camera observations in the narrow J -band filter NB119 directed towards three massive lensing clusters: Abell clusters 1689, 1835 and 114. The foreground clusters provide a magnified view of the distant Universe and permit a sensitive test for the presence of very high redshift galaxies. We search for   z ∼ 9 Lyα  emitting galaxies displaying a significant narrow-band excess relative to accompanying J -band observations that remain undetected in Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) optical images of each field. No sources consistent with this criterion are detected above the unlensed 90 per cent point-source flux limit of the narrow-band image,   F NB= 3.7 × 10−18 erg s−1 cm−2  . To date, the total coverage of the ZEN survey has sampled a volume at   z ∼ 9  of approximately 1700 comoving Mpc3 to a Lyα emission luminosity of  1043 erg s−1  . We conclude by considering the prospects for detecting   z ∼ 9 Lyα  emitting galaxies in light of both observed galaxy properties at   z < 7  and simulated populations at   z > 7  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号