首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
Palynological investigation of the Cretaceous Abu Roash, Bahariya, Kharita, Alamein, Alam El Bueib and Betty formations, encountered in the Gebel Rissu-1 well, north Western Desert, Egypt yielded 27 species of pteridophytic spores, 24 of gymnosperm pollen, 25 of angiosperm pollen and 11 of dinoflagellate cysts in addition to some acritarchs, foraminiferal test linings and freshwater algae. This enabled us to recognize five miospore biozones arranged from youngest to oldest as: Classopollis brasiliensisAfropollis cf. kahramanensisDichastopollenites ghazalataensis Assemblage Zone (Late Cenomanian); Elaterosporites klasziiSofrepites legouxaeAfropollis jardinus Assemblage Zone (Middle/Late Albian–Early Cenomanian); Pennipollis peroreticulatusDuplexisporites generalis-Tricolpates Assemblage Zone (Early Aptian–Early Albian); Tucanopollis crisopolensisAfropollis sp. Assemblage Zone (Barremian) and Appendicisporites cf. tricornitatusEphedripites spp. Assemblage Zone (Late Neocomian).The Early Cretaceous Kharita, Alam El Bueib and the Betty formations encountered in the Gebel Rissu-1 well are interpreted to indicate oxic proximal and distal shelf deposits, characterized by type III/IV, V kerogen, which is gas prone but having little potential to produce hydrocarbons. The Upper Cretaceous Abu Roash and Bahariya formations are characterized by a distal suboxic–anoxic and marginal dysoxic–anoxic environment, and their kerogen type III/II indicates gas/oil prone nature. The Bahariya and Kharita Albian–Cenomanian sediments in the present study witnessed the onset of a semi-arid to arid climate, with local or seasonal humid conditions, based on the continuous high abundance of the elaterates pollen and Afropollis-producing plants that inhabited the paleotropical humid coastal plains.  相似文献   

2.
Palynological and palynofacies analyses were carried out on some middle–upper Cretaceous samples from the El-Noor-1X borehole, northern Western Desert, Egypt. Palynological age has lead to a refinement of the original ages suggested by the drilling company. Upper Albian–Lower Cenomanian, Upper Cenomanian, and Turonian–Coniacian were recognized. The palaeoenvironment was interpreted on the basis of the ecological preferences of the palynomorphs. It was fluctuating between marginal to inner-middle shelf environment. Distribution of araucaroid pollen and xerophytes suggests that arid or semi-arid paleclimate prevailed during the deposition of the studied sediments. A warm tropical palaeoclimate is suggested on the basis of abundance of hygrophilous plants. Based on the recovered palynological organic matter, two palynofacies were recognized: palynofacies A for the Bahariya Formation, which suggests kerogen type III, and palynofacies B for the upper Bahariya and Abu Roash Formations, which suggests kerogen type IX. Data gathered from the theoretically estimated vitrinite reflectances, which are based on spore/pollen coloration, and visual pterographic kerogen analysis are used to define the source rock potentialities of the studied sediments.  相似文献   

3.
Quantitative analyses of palynomorph assemblages, particulate organic matter (kerogen), and total organic carbon (TOC) have been made on samples of the Albian–Cenomanian Kharita and Bahariya formations encountered in the Abu Gharadig-5 well, Western Desert, Egypt. Two assemblage palynozones are defined: Assemblage Zone A (Kharita Formation) of late Albian–early Cenomanian age and Assemblage Zone B (Bahariya Formation) of early–middle Cenomanian age. Palynofacies of the Kharita Formation suggest that sedimentation of these strata took place in a warm, shallow, nearshore-marine environment. The deposition of the lower Bahariya Formation took place initially in similar conditions but subsequently further offshore in somewhat deeper water of the inner shelf. The relatively high percentage of Ephedripites, Afropollis and elaterate pollen in both formations indicates an arid climate. The Kharita Formation yields kerogen types III and IV whereas the assemblages recovered from the Bahariya Formation contain types II and III. The TOC is generally between 0.42 and 0.65% in the Kharita Formation, while it ranges between 0.42 and 0.80% in samples of the Bahariya Formation. The spores and pollen grains are pale in colour; hence little source potential for hydrocarbons is indicated.  相似文献   

4.
江苏白垩纪孢粉组合序列   总被引:9,自引:5,他引:4  
根据近年来获得的孢粉化石材料和前人资料 ,建立了江苏白垩纪的孢粉组合序列 ,它们是 :  1)贝里阿斯期至凡兰吟期 (Berriasian— Valanginian)的 Schizaeoisporites- Classopollis annulatus- Ginkgocycadophytus nitidus组合 (云合山组 ) ;  2 )阿普特期至阿尔必期 (Aptian— Albian )的 Cicatricosisporites- Classopollis annulatus-Psilatricolpites组合 (葛村组 ) ;  3)土伦期 (Turonian )的 Schizaeoisporites- Polycingulatisporites- Cycadopites-Cranwellia组合 (浦口组 ) ;  4)科尼亚克期至桑顿期 (Coniacian— Santonian)的 Schizaeoisporites- Classopolisannulatus- Lytharites组合 (赤山组 ) ;  5 )坎潘期 (Campanian )的 Schizaeoisporites- Tricolporopollenitesmicrocirculatus- Betpakdalina组合 (泰州组下部 ) ;  6 )马斯特里赫特期 (Maastrichtian)的 Pterisisporites-Exesipollenites- K urtzipites组合 (泰州组上部 ) ; 欧特里沃期至巴列姆期 (Hauterivian— Barremian)和塞诺曼期(Cenom ainan)的暂缺。  相似文献   

5.
对西藏岗巴上白垩统的新认识   总被引:25,自引:1,他引:24  
在前人研究的基础上对岗巴地区上白垩统的划分做了厘定 ,进一步建立了晚白垩世的 1 2个浮游有孔虫化石带。根据岩性特征及化石带的研究 ,上白垩统被划分为赛诺曼期至土仑早期的冷青热组 ;土仑中期至三冬期的岗巴村口组和康潘期至马斯特里赫特期的宗山组。该区赛诺曼期与土仑期的界线位于冷青热组上部 ,以 H elvetoglobotruncana praehelvetica的初现为标志。  相似文献   

6.
Mapping based on the interpreted seismic data covering the Abu Gharadig Basin in the northern Western Desert has revealed that the deposition of the Upper Cretaceous succession was controlled by dextral wrench tectonics. This dextral shear accompanied NW movement of the African Plate relative to Laurasian Plate. Structural depth maps of the Cenomanian Bahariya Formation and the Turonian-Coniacian D and A members of Abu Roash Formation display a clear NE-SW anticline dissected by NW-SE normal faults. This anticline represents one of the en echelon folds characterizing the wrench compressional component. The interpreted normal faults reflect the extensional T-fractures associated with the wrenching tectonics. The interaction between the aforementioned NE-SW anticline with the NW-SE extensional faults further confirms the effect of the Upper Cretaceous dextral wrench tectonic. However, the influence of this wrench tectonics was gradually diminishing from the Cenomanian up to the Coniacian times. The NW-SE compressional stress of the dextral wrench compressional component during the Cenomanian up to Coniacian age was greater in NW direction than the SE direction. Three mapped structural closures which are predicted to be potential hydrocarbon traps belonging to the Bahariya Formation and Abu Roash D Member, and are recommended to be drilled in the study area, with potential reservoirs. The regularity of the en echelon array of both anticlines and normal faults within the wrench zones suggests additional closures may be located elsewhere beside the study area.  相似文献   

7.
The North American fossil record of dinosaur eggshells for the Cretaceous is primarily restricted to formations of the middle (Albian–Cenomanian) and uppermost (Campanian–Maastrichtian) stages, with a large gap in the record for intermediate stages. Here we describe a dinosaur eggshell assemblage from a formation that represents an intermediate and poorly fossiliferous stage of the Upper Cretaceous, the Santonian Milk River Formation of southern Alberta, Canada. The Milk River eggshell assemblage contains five eggshell taxa: Continuoolithus, Porituberoolithus, Prismatoolithus, Spheroolithus, and Triprismatoolithus. These ootaxa are most similar to those reported from younger Campanian–Maastrichtian formations of the northern Western Interior than they are to ootaxa reported from older middle Cretaceous formations (i.e., predominantly Macroelongatoolithus). Characteristics of the Milk River ootaxa indicate that they are ascribable to at least one ornithopod and four small theropod species. The taxonomic affinity of the eggshell assemblage is consistent with the dinosaur fauna known based on isolated teeth and fragmentary skeletal remains from the formation, although most ornithischians and large theropods are not represented by eggshell. Relative to the Milk River Formation eggshell, similar oospecies occurring in younger Cretaceous deposits tend to be somewhat thicker, which may reflect an increase in body size of various dinosaur lineages during the Late Cretaceous.  相似文献   

8.
The mainly continental deposits of northwest Sudan and south-west Egypt have been correlated with coeval shallow marine and marine deposits in northern Egypt along a north-south running cross-section, based on surface and subsurface data. The palaeodepth curve of northern Egypt illustrates the gradual seal-level rise, reaching its maximum during the Late Cretaceous with conspicuous advances during the Aptian and late Cenomanian. A general highstand is also recorded during the Campanian-Maastrichtian in north-west Sudan. A detailed facies correlation is given for the Aptian and late Cenomanian highstand in western Egypt. The correlation of the Cenomanian Bahariya and Maghrabi formations displays short-term relative sealevel fluctuations. The interpretation illustrates the extensiveness of related erosional processes in the hinterland, partly intensified by temporarily uplift of the Uweinat-Aswan High in the south. Regional uplift and constant erosion took place in south-west Egypt during Coniacian and Santonian times. The regional stratigraphic gaps and uncertain interpretation of the Bahariya Uplift are induced by the influence of the Trans-African Lineament, especially during the Late Cretaceous. Low-stand fluvial sheet sandstones characterized by non-cyclic sequence development and high facies stability occur, especially in the Neocomian and early Turonian. During the Barremian and Albian, fluvial architecture changes to more cyclic fluvial sequences and increasing soil formation, due to increasing subsidence, more humid climatic conditions and the generally rising sea level, culminating in the extensive shallow marine Abu Ballas and Maghrabi formations.  相似文献   

9.
The exposed Cretaceous shelf succession of the Cauvery Basin, southeastern India, has provided a world-class record of mid and Late Cretaceous invertebrates, documented in a substantial literature. However, the lithostratigraphy of the succession has been little studied and previously subject to a range of nomenclature. It is revised here, on the basis of intensive regional mapping, to stabilize the definition and nomenclature of lithostratigraphic units. The Uttattur Group is restricted in outcrop to the Ariyalur district and divided into the Arogypapurum Formation (new; Albian), Dalmiapuram Formation (late Albian), and Karai Formation (late Albian–early Turonian) for which the Odiyam and Kunnam Members are recognized. The Trichinopoly Group follows unconformably and is also restricted in outcrop to the Ariyalur district. It is divided into the Kulakkalnattam Formation (Turonian) and Anaipadi Formation (late Turonian–Coniacian). The Ariyalur Group is more widely distributed. In the Ariyalur district, the Sillikkudi Formation (Santonian–Campanian) and its Kilpaluvari Member, the Kallakurichchi Formation (early Maastrichtian), the Kallamedu Formation (mid and Late Maastrichtian) and the Niniyur Formation (Danian) are recognized. The sequence in the Vriddhachalam area consists of the Parur and Patti formations (Campanian), Mattur Formation (late Campanian–earliest Maastrichtian) and Aladi Formation (Maastrichtian). For the Pondicherry district, the Valudavur and Mettuveli formations (Maastrichtian) and Kasur and Manaveli formations (Paleocene) comprise the succession. The interpreted depositional environments for the succession in the Ariyalur district indicate four eustatic cycles in the mid and Late Cretaceous and earliest Tertiary: late Albian–early Turonian, late Turonian–Santonian, Campanian, Maastrichtian, and Paleocene. Overall the Cauvery Basin sequence is arenaceous and relatively labile in terms of framework grain composition, and contrasts with the pelitic assemblage developed on the west Australian margin from which eastern India separated in the Early Cretaceous (Valanginian). The difference is ascribed to palaeoclimate as controlled by palaeolatitude. For the Late Cretaceous, the Cauvery Basin drifted north on the Indian plate from 40 to 30°S. This zone is inferred to constitute Southern Hemisphere horse latitudes for Late Cretaceous time, characterized by an arid climate, physical weathering and the production of labile sands. By contrast, the west Australian margin of matching tectonic history remained in a high palaeolatitude (>40°S) throughout the Late Cretaceous, experiencing a pluvial climate, the dominance of chemical weathering and the production of clays.  相似文献   

10.
11.
Detailed petrographic investigations of the Upper Cretaceous-Eocene succession exposed at Bahariya Oasis resulted in the recognition of different litho- and biofacies associations, mostly of the carbonate rock type.The litho- and biofacies characters of the Eocene strata reveal comparatively shallow, quiet marine conditions, interrupted by agitated, high energy intervals.During the Maastrichtian age, deeper quiet marine conditions prevailed. The Upper and Lower members of the Campanian strata were deposited under deep quiet marine conditions, relative to shallower agitated conditions that prevailed during the deposition of the middle member.The Lower Cenomanian sediments were deposited under an alternating high and low energy fresh water environment, interrupted with saline (fluviomarine) periods, relative to the comparatively deeper marine conditions that prevailed during the Upper Cenomanian age.The main diagenetic processes recorded are: cementation, aggrading neomorphism, silicification and dolomitization.  相似文献   

12.
Land-derived pollen and spores and marine dinoflagellate cysts were extracted from the Jurassic and Cretaceous sediments of the West Tiba-1 borehole, northern Western Desert, Egypt, On the basis of the recovered palynomorphs, of known stratigraphical significance, the following stages were assessed: Bathonian-Oxfordian (Middle-Late Jurassic) and Hauterivian, Aptian-Early Albian, Late Albian-Early Cenomanian, Early Cenomanian and Late Cenomanian (Early-Middle Cretaceous). No palynomorphs diagnostic for the Berriasian, Valanginian and Barremian stages (Early Cretaceous) were depicted. Based on the nature and composition of the identified palynomorph content, five informal palynomorph assemblage zones were recognised. These are: the Gonyaulacysta jurassica-Korystocysta kettonensis Assemblage Zone (PI, Bathonian-Oxfordian), Ephedripites-Aequitriradites verrucosus Assemblage Zone (PII, Hauterivian), Afropollis jardinus-Duplexisporites generalis-Tricolpites Assemblage Zone (PIIl, Aptian-Early Albian), Nyssapollenites-Elaterosporites Assemblage Zone (PIV, Late Albian-Early Cenomanian) and Assemblage Zone PV (Early-Late Cenomanian). The latter zone was differentiated into two subzones, namely the Classopollis brasiliensis-Elaterosporites klaszii Assemblage Subzone (PVa, Early Cenomanian) and Afropollis kahramanensis-Triporates Assemblage Subzone (PVb, Late Cenomanian). The time stratigraphy of the studied interval was revised. The occurrences and types of the dinoflagellate cysts, extracted from the studied succession, reflect a general shallow (shelf) marine pal˦oenvironment.  相似文献   

13.
Subsurface Late Cretaceous succession has been recovered from 16/G-1, an offshore exploratory well that located in the Qamar Basin, eastern Republic of Yemen. This paper deals with the study of source rocks, maturation, hydrocarbon evaluation, and palynofacies of the Late Cretaceous Mukalla and Dabut Formations of the Mahra Group. These two formations consist of an intercalation of argillaceous, carbonates, siltstones, sandstones and coal layers. The sedimentary organic matter as amorphous organic matter, phytoclasts and palynomorphs are investigated and identified under transmitted light microscope. Spores, pollen, dinoflagellates, algae, fungi, and acritarchs in addition to foraminiferal lining test have been also identified. The optical and organic geochemical studies were used to evaluate the source rock, maturation and its hydrocarbons potentiality. The thermal alteration index, vitrinite reflectance, rock-eval pyrolysis, and palynofacies were also used. The upward increase in the relative abundance of marine versus terrestrial input reflects a major marine transgression and retregration cycles from Campanian to Maastrichtian stages. The Mukalla and Dabut Formations are late immature to mature stages with kerogen types II and III. The hydrocarbons generation potentiality of two formations is oil and wet gas prone indicators.  相似文献   

14.
A priori, the recorded relative sea-level changes during the Cretaceous must be the combined effect of tectono-eustasy, geoidal-eustasy and various crustal level changes. To this we must add the human factor of differences and errors in interpretations.A posteriori, it is claimed that geoidal-eustasy dominated during the Hauterivian, Barremian, Turonian, Santonian and Maastrichtian, that tectono-eustasy dominated during the Albian, Cenomanian, Campanian and at the Maastrichtian/Danian boundary, and that local influences of sea-floor spreading are identified from the Albian/Cenomanian boundary onwards. To this we must add the local differential crustal movements modulating the global and regional ocean level changes. Geoidal-eustasy is mainly expressed as a latitudinal differentiation of the sea-level with out-of-phase changes between the hemispheres or the both high latitude regions. Furthermore, sedimentological records seem to record short-period geoidal-eustatic cycles.  相似文献   

15.
《Cretaceous Research》1995,16(5):539-558
The Cretaceous sedimentary successions of the Ionian Zone, Hellenides, western Greece, are composed of pelagic limestones intercalated with cherty layers. The micritic and biomicritic beds with abundant chert nodules and cherty horizons, which were deposited during late Tithonian to early Santonian times, belong to the Vigla Limestone Formation, while the sediments deposited during the late Santonian to Maastrichtian, formed clastic limestone beds in which chert nodules also occur sparsely.In the Cretaceous beds calpionellids, planktonic and benthonic foraminifera characteristics of the Tethyan realm, and radiolaria have been recorded. The calpionellids, together with radiolaria, colonized the entire basin during the Berriasian to early Valanginian, the latter becoming dominant during the Hauterivian to early Albian as a result of anoxia. Planktonic foraminifera first appeared in the basin during the late Albian and persisted until the Maastrichtian. The numbers decreased, however, during the Cenomanian-early Turonian interval, when radiolaria increased owing to anoxic conditions, and during the Campanian-Maastrichtian interval because the basin became shallow. During this interval larger benthonic foraminifera colonized the basin. Zonal markers have been recognized in calpionellid and planktonic foraminiferal assemblages on the basis of which two calpionellid zones are distinguished, viz. the Calpionella alpina and Calpionellopsis Zones (Berriasian-early Valanginian) along with seven planktonic foraminiferal zones, viz. the Rotalipora ticinensis, Rotalipora appenninica (late Albian), Rotalipora brotzeni (early Cenomanian), Helvetoglobotruncana helvetica (early to middle Turonian), Marginotruncana sigali(late Turonian to early Coniacian), Dicarinella concavata (late Coniacian to early Santonian) and Dicarinella asymetrica (late early-late Santonian) Zones.The anoxic conditions that prevailed in the Ionian basin during the Barremian-early Albian, Cenomanian-early Turonian and Coniacian-Santonian intervals probably arose as a result of (a) the accumulation of large amounts of organic matter because the palaeotopography of the basin periodically hindered the circulation of water from the ocean and (b) the oxygen content of the intruding oceanic waters was low.  相似文献   

16.
Five radiolitid rudist species are described from the Turonian sequence of Abu Roash area. They are recognized in three rudist biostromes that occur in two informal members of Abu Roash Formation; the Rudist- and the Actaeonella-bearing limestone–marl members. The three biostromes show autochthonous and parautochthonous fabrics and moderate to high packing potential. The first rudist biostrome at the base of the Rudist-bearing limestone–marl member (Middle Turonian) contains Durania gaensis, Praeradiolites ponsianus and Bournonia fourtaui. The second biostrome in the same member consists of Bournonia roashensis. The third biostrome that recognized in the Actaeonella-bearing limestone–marl member (Late Turonian) consists of Durania arnaudi. Rudist biostromes in the Rudist-bearing limestone–marl member were deposited on subtidal rudist shoals with moderate to high energy versus that of the Actaeonella-bearing limestone–marl member that deposited in low to moderate energy on deeper part of subtidal rudist shoals. The exposed Turonian succession at Abu Roash area could be divided into three depositional sequences bounded by three sequence boundaries (paleosols and angular unconformity).The first rudist biostrome in the Rudist-bearing limestone–marl member represents the lower part of the transgressive systems tract of the first depositional sequence. The deepening upward trend of the transgressive systems tract is due to increase of accommodation space in transgressive context during relative sea-level rise episode. On the other hand, the second rudist biostrome in the Rudist-bearing limestone–marl member and the third rudist biostrome in the Actaeonella-bearing limestone–marl member are in shallowing-upward set sequence forming the highstand systems tract of the first and third depositional sequences. This indicates that, the accommodation space was being filled more rapidly than was being created during the highstand stage.  相似文献   

17.
The sedimentary record of the Arabian Shelf offers a unique opportunity to study the Cretaceous (Albian–Turonian) greenhouse climate from a palaeoequatorial perspective. In particular, hemipelagic to pelagic carbonate successions from the extensive Shilaif intra‐shelf basin have the potential to produce an excellent record of carbon cycle perturbations during this interval. This study presents a 269 m thick chemostratigraphic (carbonate δ13C and δ18O) record from the Middle Albian to Early Turonian of central Abu Dhabi (United Arab Emirates), representing over 14 Myr of uninterrupted carbonate sedimentation. The Mauddud to Shilaif formations represent outer ramp to basinal intra‐shelf carbonates with variations from laminated organic‐rich to clean bioturbated intervals. Isotopic evidence of the latest Albian Anoxic Event (Oceanic Anoxic Event 1d), Middle Cenomanian Event I and the Cenomanian–Turonian Anoxic Event (Oceanic Anoxic Event 2) are confirmed and biostratigraphically calibrated by means of calcareous nannofossils. The carbon isotope record allows correlation with other regional records and well‐calibrated records across the Tethyan Ocean and represents a significant improvement of the chronostratigraphic framework of the United Arab Emirates (Shilaif) and Oman (Natih) intra‐shelf basins. The study further confirms that low carbon isotope values corresponding to the two source rock intervals in the Shilaif Formation clearly precede the isotopic expressions of Oceanic Anoxic Event 1d and Oceanic Anoxic Event 2.  相似文献   

18.
The Late Cretaceous (Cenomanian to Coniacian) marine sediments of central India prevalently known as ‘Bagh Beds,’ have been deposited in the E-W extending Narmada Basin. The stratigraphy of these Cenomanian — Coniacian sediments has been reviewed and summarized. The Bagh Beds have been found to consist of three formations: Nimar Sandstone, Nodular Limestone and Corallian Limestone in ascending order. Main emphasis has been given to Nodular Limestone Formation (Turonian), which is the most fossiliferous horizon of the Bagh Beds. Nodular Limestone Formation has more or less alternating bands of varying thickness of nodular limestone and marl. It yielded numerous ammonoid specimens, which have been found to belong to a morphologically highly variable ammoniod taxon Placenticeras mintoi Vredenburg.  相似文献   

19.
Twenty-eight samples from the Bahariya Formation of the Salam-17 Well in the north Western Desert were palynologically investigated. These samples are of Cenomanian age. Fair diversity and fair to moderately preserved palynomorph assemblage has been recovered. Among them, the dinoflagellate cysts showed very poor diversity and abundance. Four miospore zones have been informally identified in the lower Cenomanian. Various palynofacies criteria, adopted from previous publications (e.g. relative particle abundance data, brown to black wood ratio, equi-dimensional to lath-shaped black wood ratio, average size of phytoclasts and spores/pollen ratio) are applied as alternative indicators to monitor the proximal–distal trends instead of the marine palynomorphs-based parameters. The method can be applied in the Egyptian Western Desert to overcome the rarity and absence of dinoflagellate cysts in the recovered organic residues. The palynofacies study of the section demonstrates a predominantly regressive phase, characterized by deltaic, distributary or tidal channels, interrupted by short-lived marine incursions. The palynofacies trends within the studied succession indicate six genetic sequences informally described as Genetic Stratigraphic Sequences A through F.  相似文献   

20.
The research area concentrates in a part of the main Zagros fold and thrust belt in the Kurdistan region (Northern Iraq). From study tectono-stratigraphy we constrain the story of the basin evolution of Kurdistan during Cretaceous. However we mainly investigated the evolution of the pre-Subduction and Pre-collision periods, focusing on the relationship between tectonics and sedimentation. For this purposes we developed (1) a biostratigraphic approach using nannofossil analysis, (2) a fault tectonic analysis, and (3) a stratigraphic study. The Zagros fold belt in Kurdistan exhibits many lateral and vertical environmental and facies changes, especially during the Cretaceous times. During the Jurassic period the Kurdistan is occupied by the restricted Gotnia Basin. This basin disappeared and the Kurdistan area changed to open marine of a southwest Kermanshah Basin during the Cretaceous. During the Berriasian to Barremian the Kurdistan was covered by the carbonates of the Balambo and Sarmord formations. In the east and southeast the neritic Sarmord Formation gradationally and laterally passes to the basinal facies of the Balambo Formation. In the Aptian to Cenomanian period shallow massive reefal limestone of the Qamchuqa Formation deposited. The normal faulting that initiates during the Aptian is associated with an abrupt lateral change of the reefal Qamchuqa Formation to the Aptian-Cenomanian part of the Balambo Formation. During the Cenomanian-Early Turonian periods the graben formed in the Dokan Lake in eastern Kurdistan, where developed a deeper restricted environment (Dokan and Gulneri formations) surrounded by a shallow marine platform. During the Turonian the marine pelagic micritic cherty limestones of Kometan Formation covered northeast of Kurdistan, whereas in the Safeen, Shakrok and Harir anticlines the formation was totally, or partially, weathered during the Coniacian-Early Campanian period. The deposition during the Late Cretaceous is very heterogeneous with a gap in the Coniacian-Santonian times probably related to a non-deposition. Associated with extensive tectonics a basin developed during the Campanian with the deposition of shales, marls and marly limestones of the Shiranish Formation. The first appearance is the Kurdistan of the flysch facies of the Tanjero Formation was precisely dated of the Upper Campanian in northeastern Kurdistan. The Tanjero Formation conformably overlaying the Shiranish Formation and was deposited in the foredeep basin associated with the obduction of Tethyan ophiolites onto the Arabian Platform. The Early to Late Campanian period is a time of non-deposition in Central Kurdistan (Safeen, Shakrok and Harir anticlines). During the Late Campanian the Bekhme carbonate platform in the north disappeared when the marly limestones of the Shiranish Formation transgressed over the Bekmeh Platform. In the Aqra area the Maastrichtian Tanjero Formation laterally changed to the thick reefal sequence of the Aqra Formation that unconformably overlies by the Late Paleocene-Early Eocene lagoonal carbonate of the Khurmala Formation. The Campanian sedimentation is mainly controlled by NE- oriented normal faults forming Grabens in Dokan, Spilk and Soran areas. During the Maastrichtian in the extreme northeastern Kurdistan the NE-SW and NNW-SSE normal faults developed in the foredeep basin and originated horsts and grabens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号