首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In hydrogeology there is a variety of empirical formulae available for determination of hydraulic conductivity of porous media, all based on the analysis of grain size distributions of aquifer materials. Sensitivity of NMR measurements to pore sizes makes it a good indicator of hydraulic conductivity. Analogous to laboratory NMR, Magnetic Resonance Sounding (MRS) relaxation data are of a multi-exponential (ME) nature due to the distribution of different pore sizes in an investigated rock layer. ME relaxation behaviour will also arise due to the superposition of NMR signals which originate from different layers. It has been shown, that both kinds of ME behaviour coexist in MRS and can principally be separated by ME inversion of the field data. Only a few publications exist that have proposed approaches to qualitatively and quantitatively estimate petrophysical parameters such as the hydraulic conductivity from MRS measurements, i.e. MRS porosity and decay times. The so far used relations for the estimation of hydraulic conductivity in hydrogeology and NMR experiments are compared and discussed with respect to their applicability in MRS. Taking into account results from a variety of laboratory NMR and MRS experiments mean rock specific calibration factors are introduced for a data-base-calibrated estimation of hydraulic conductivity when no on-site calibration of MRS is available. Field data have been analysed using conventional and ME inversion using such mean calibration values. The results for conventional and ME inversion agree with estimates obtained from well core analysis for shallow depths but are significantly improved using a ME inversion approach for greater depths.  相似文献   

2.
In hydrogeology there is a variety of empirical formulae available for determination of hydraulic conductivity of porous media, all based on the analysis of grain size distributions of aquifer materials. Sensitivity of NMR measurements to pore sizes makes it a good indicator of hydraulic conductivity. Analogous to laboratory NMR, Magnetic Resonance Sounding (MRS) relaxation data are of a multi-exponential (ME) nature due to the distribution of different pore sizes in an investigated rock layer. ME relaxation behaviour will also arise due to the superposition of NMR signals which originate from different layers. It has been shown, that both kinds of ME behaviour coexist in MRS and can principally be separated by ME inversion of the field data. Only a few publications exist that have proposed approaches to qualitatively and quantitatively estimate petrophysical parameters such as the hydraulic conductivity from MRS measurements, i.e. MRS porosity and decay times. The so far used relations for the estimation of hydraulic conductivity in hydrogeology and NMR experiments are compared and discussed with respect to their applicability in MRS. Taking into account results from a variety of laboratory NMR and MRS experiments mean rock specific calibration factors are introduced for a data-base-calibrated estimation of hydraulic conductivity when no on-site calibration of MRS is available. Field data have been analysed using conventional and ME inversion using such mean calibration values. The results for conventional and ME inversion agree with estimates obtained from well core analysis for shallow depths but are significantly improved using a ME inversion approach for greater depths.  相似文献   

3.
Magnetic resonance sounding: new method for ground water assessment   总被引:1,自引:0,他引:1  
Lubczynski M  Roy J 《Ground water》2004,42(2):291-309
  相似文献   

4.
The aim of this study is to define and characterize water bearing geological formation and to test the possibility of using geophysical techniques to determine the hydrogeological parameters in three areas in the Vientiane basin, Laos. The investigated areas are part of the Khorat Plateau where halite is naturally occurring at depths as shallow as 50 m in the Thangon Formation. Magnetic Resonance Sounding (MRS) has been used in combination with Vertical Electrical Sounding (VES) in different geological environments. In total, 46 sites have been investigated and the MRS and VES recognized the stratigraphic unit N2Q1–3, consisting of alluvial unconsolidated sediments, as the main water bearing unit. The aquifer thickness varies usually between 10 and 40 m and the depth to the main aquifer range from 5 to 15 m. The free water content is here up to 30%, and the decay times vary between 100 and 400 ms, suggesting a mean pore size equivalent to fine sand to gravel. The resistivity is highly variable, but usually around 10–1500 Ω-m, except for some sites in areas 1 and 2, where the aquifer is of low resistivity, probably related to salt water. Hydraulic and storage-related parameters such as transmissivity, hydraulic column, have been estimated from the MRS. The MRS together with VES has been shown to be a useful and important tool for identifying and distinguishing freshwater from possible salt-affected water as well as the salt-related clay layer of the Thangon Formation. This clay layer is characterized by very low free water content and a resistivity lower than 5 Ω-m and can be found in all 3 areas at depths from 15 to 50 m.  相似文献   

5.
大地电阻率分布信息是影响磁共振地下水探测反演结果准确性的重要因素.在众多电磁法勘探技术中,瞬变电磁法具有高分辨率、高效率和大探测深度等优势,能准确探测地下几百米范围内的电阻率分布信息.因此磁共振与瞬变电磁联合解释方法具有重要意义.然而,利用单一测点拼接的磁共振与瞬变电磁联合解释方法进行模拟二维反演时存在解释结果不唯一,容易出现错误异常体等问题,尤其在复杂地质情况下,同一测线上相邻测点探测结果连续性差,解释结果偏离实际.基于此,本文提出磁共振与瞬变电磁横向约束联合反演方法(Laterally Constrained Inversion,简称LCI),重点引入外推积分法(quadrature with extrapolation,简称QWE),解决了传统正演过程中基于直接数值积分方法引起的求解效率低的问题,保证了联合反演方法的顺利实施,进而以相邻测点地下结构应具备连续性为依据,引入横向约束反演思想,通过在联合反演目标函数中加入相邻测点间各模型参数约束矩阵,提高磁共振解释结果准确性,加强探测剖面地质结构和含水模型连续性.经过理论模型证实,本文提出的LCI方法能有效提高传统一维反演结果的稳定性和唯一性.最后,对安徽黄山野外实际探测数据进行横向约束联合反演,验证了磁共振与瞬变电磁LCI联合反演方法的实用性.本文的研究成果将为磁共振与瞬变电磁空间约束联合反演奠定基础.  相似文献   

6.
In Switzerland, deep geological storage in clay rich host rocks is the preferred option for low- and intermediate-level radioactive waste. For these waste types cementitious materials are used for tunnel support and backfill, waste containers and waste matrixes. The different geochemical characteristics of clay and cementitious materials may induce mineralogical and pore water changes which might affect the barrier functionality of host rocks and concretes.We present numerical reactive transport calculations that systematically compare the geochemical evolution at cement/clay interfaces for the proposed host rocks in Switzerland for different transport scenarios. We developed a consistent set of thermodynamic data, simultaneously valid for cementitious (concrete) and clay materials. With our setup we successfully reproduced mineralogies, water contents and pore water compositions of the proposed host rocks and of a reference concrete.Our calculations show that the effects of geochemical gradients between concrete and clay materials are very similar for all investigated host rocks. The mineralogical changes at material interfaces are restricted to narrow zones for all host rocks. The extent of strong pH increase in the host rocks is limited, although a slight increase of pH over greater distances seems possible in advective transport scenarios. Our diffusive and partially also the advective calculations show massive porosity changes due to precipitation/dissolution of mineral phases near the interface, in line with many other reported transport calculations on cement/clay interactions. For all investigated transport scenarios the degradation of concrete materials in emplacement caverns due to diffusive and advective transport of clay pore water into the caverns is limited to narrow zones.A specific effort has been made to improve the geochemical setup and the extensive use of solid solution phases demonstrated the successful application of a thermodynamically consistent union of very different materials like hydrated cement and clay phases. A reactive system utilizing a novel solid-solution approach is used, where cation exchange is an intrinsic property of the mineral phase definition. Although such features were not the primary aim of the study, they offer a large potential for studies where ion exchange and changing sorption properties are of interest.  相似文献   

7.
核磁共振找水技术的研究现状与发展趋势   总被引:12,自引:1,他引:11       下载免费PDF全文
近20多年来,用核磁共振(Nuclear Magnetic Resonance,NMR)方法形成的一种直接非侵害性的探测地下水的地球物理新技术,与传统的地球物理探测地下水的方法相比具有高分辨力、高效率、信息量丰富和解的唯一性等优点,是一种很有发展前景的找水方法技术.我国的水资源短缺,对地下水资源的勘探、开发与利用十分重视,已将核磁共振找水技术研究列入国家十一五科技支撑计划.本文在广泛收集迄今为止的国内外大量资料的基础上,并根据作者近年来有关核磁共振找水技术的研究经历,综述了核磁共振找水技术的发展历史、现状和发展趋势,以推进我国核磁共振找水技术的发展.  相似文献   

8.
基于自适应遗传算法的MRS-TEM联合反演方法研究   总被引:2,自引:2,他引:0       下载免费PDF全文
地面磁共振法(MRS)因具有定性、定量分析地下水能力,而备受关注.传统磁共振地层含水量反演多采用均匀半空间模型,忽略电阻率分布信息对结果的影响.针对这一问题,本文基于多层电介质中磁共振响应理论,提出MRS与瞬变电磁(TEM)联合反演方法,通过电阻率分布信息对含水量反演过程的实时修正,提高了解释结果的准确度.反演算法采用自适应遗传算法(AGA)进行,基于繁殖规则,动态调整交叉概率和变异概率,解决了标准遗传算法易未成熟收敛而难以得到全局最优解问题.模型数据表明,含噪10%情况下,联合反演仍能较准确地反映地下含水单元模型结构,对比MRS单独反演优势明显.同时,内蒙古白旗野外观测数据联合反演结果与钻井资料基本一致,充分验证了AGA反演算法的实用性及MRS-TEM联合反演的实际意义.  相似文献   

9.
The productivity and the water quality of coastal aquifers can be highly heterogeneous in a complex environment. The characterization of these aquifers can be improved by hydrogeological and complementary geophysical surveys. Such an integrated approach is developed in a non-consolidated coastal aquifer in Myanmar (previously named Burma).A preliminary hydrogeological survey is conducted to know better the targeted aquifers. Then, 25 sites are selected to characterize aquifers through borehole drillings and pumping tests implementation. In the same sites, magnetic resonance soundings (MRS) and vertical electrical soundings (VES) are carried out. Geophysical results are compared to hydrogeological data, and geophysical parameters are used to characterize aquifers using conversion equations. Finally, combining the analysis of technical and economical impacts of geophysics, a methodology is proposed to characterize non-consolidated coastal aquifers.Depth and thickness of saturated zone is determined by means of MRS in 68% of the sites (evaluated with 34 soundings). The average accuracy of confined storativity estimated with MRS is ± 6% (evaluated over 7 pumping tests) whereas the average accuracy of transmissivity estimation with MRS is ± 45% (evaluated using 15 pumping tests). To reduce uncertainty in VES interpretation, the aquifer geometry estimated with MRS is used as a fixed parameter in VES inversion. The accuracy of groundwater electrical conductivity evaluation from 15 VES is enough to estimate the risk of water salinity. In addition, the maximum depth of penetration of the MRS depends on the rocks' electrical resistivity and is between 20 and 80 m at the study area.  相似文献   

10.
地面磁共振测深分布式探测方法与关键技术   总被引:3,自引:3,他引:0       下载免费PDF全文
地面核磁共振方法(MRS)因具有对地下水探测定性、定量的特点而备受地球物理工作者关注.传统研究中,人们局限于一维探测方法,假设层状含水构造,导致复杂地质环境下难以确定井位、不均匀含水层小水体难以分辨的反演解释瓶颈.针对现有测量中的不足,本文提出了MRS二维分布式探测模式,依据激发场不均匀特性,定义了实际测量中的测线方位角α,推导了分布式接收线圈MRS响应核函数表达式,实现了二维正演计算,探索了α角与探测灵敏度之间的关系.在此基础上,首次将Occam方法用于MRS二维反演解释中,实现了磁共振断层成像MRT(magnetic resonance tomography).模型试算中,根据含水层位置以及环境噪声变化的磁共振响应,客观评价了分布式MRS探测适用范围.理论先行可推动仪器完善,本文通过分布式接收单元设计、接收线圈数量和匝数增加与调整、放大器参数自适应设置与矫正,成功研制了地面分布式磁共振探测系统,并进行了野外验证.本文的研究成果将为基岩裂隙水定位、堤坝渗漏灾害水源评价,喀斯特溶洞含水构造精确探测提供有力的科学支撑.  相似文献   

11.
In many coastal areas of North America and Scandinavia, post-glacial clay sediments have emerged above sea level due to iso-static uplift. These clays are often destabilised by fresh water leaching and transformed to so-called quick clays as at the investigated area at Smørgrav, Norway. Slight mechanical disturbances of these materials may trigger landslides. Since the leaching increases the electrical resistivity of quick clay as compared to normal marine clay, the application of electromagnetic (EM) methods is of particular interest in the study of quick clay structures.For the first time, single and joint inversions of direct-current resistivity (DCR), radiomagnetotelluric (RMT) and controlled-source audiomagnetotelluric (CSAMT) data were applied to delineate a zone of quick clay. The resulting 2-D models of electrical resistivity correlate excellently with previously published data from a ground conductivity metre and resistivity logs from two resistivity cone penetration tests (RCPT) into marine clay and quick clay. The RCPT log into the central part of the quick clay identifies the electrical resistivity of the quick clay structure to lie between 10 and 80 Ω m. In combination with the 2-D inversion models, it becomes possible to delineate the vertical and horizontal extent of the quick clay zone. As compared to the inversions of single data sets, the joint inversion model exhibits sharper resistivity contrasts and its resistivity values are more characteristic of the expected geology. In our preferred joint inversion model, there is a clear demarcation between dry soil, marine clay, quick clay and bedrock, which consists of alum shale and limestone.  相似文献   

12.
Isotopic ratios and trace element abundances were measured on samples of Ir-enriched clay at the Cretaceous-Tertiary boundary, and in carbonate and marl from 5 cm below and 3 cm above the boundary. Samples were leached with acetic acid to remove carbonate, and with hydrochloric acid. Leachates and residues were measured. The Sr, Nd, O and H isotopic compositions of the boundary clay residues are distinct from those of the stratigraphically neighboring materials. The data indicate that most of the clay material was derived from a terrestrial source with relatively low87Sr/86Sr and high143Nd/144Nd ratios. The δ18O data suggest that the detritus has been modified by submarine weathering. K-Ca and Rb-Sr systematics, as well as O isotope ratios of K-feldspar spherules within the boundary clay, suggest that they are predominantly authigenic and may have formed after the time of deposition. However, Sm-Nd and Rb-Sr isotopic data indicate that the spherules contain relict material that provides information on the nature of the original detritus. The isotopic evidence for foreign terrestrial detritus in the boundary clay, the low rare earth element concentrations and high Ni concentration, support the hypothesis of a terminal Cretaceous asteroidal impact that produced a global layer of fallout. The data are most easily explained if the impact site was on oceanic crust rather than continental crust, and if a substantial fraction of the fallout was derived from relatively deep within the lithosphere (>3 km). This would probably require a single large impactor.  相似文献   

13.
Computer simulations are used to calculate the elastic properties of model cemented sandstones composed of two or more mineral phases. Two idealized models are considered – a grain‐overlap clay/quartz mix and a pore‐lining clay/quartz mix. Unlike experimental data, the numerical data exhibit little noise yet cover a wide range of quartz/cement ratios and porosities. The results of the computations are in good agreement with experimental data for clay‐bearing consolidated sandstones. The effective modulus of solid mineral mixtures is found to be relatively insensitive to microstructural detail. It is shown that the Hashin–Shtrikman average is a good estimate for the modulus of the solid mineral mixtures. The distribution of the cement phase is found to have little effect on the computed modulus–porosity relationships. Numerical data for dry and saturated states confirm that Gassmann's equations remain valid for porous materials composed of multiple solid constituents. As noted previously, the Krief relationship successfully describes the porosity dependence of the dry shear modulus, and a recent empirical relationship provides a good estimate for the dry‐rock Poisson's ratio. From the numerical computations, a new empirical model, which requires only a knowledge of system mineralogy, is proposed for the modulus–porosity relationship of isotropic dry or fluid‐saturated porous materials composed of multiple solid constituents. Comparisons with experimental data for clean and shaly sandstones and computations for more complex, three‐mineral (quartz/dolomite/clay) systems show good agreement with the proposed model over a very wide range of porosities.  相似文献   

14.
The magnitudes of the initial amplitude of the magnetic resonance sounding (MRS) signals from an aquifer located in a layered electrically conductive earth, are nonlinear functions of water content distribution. Occam's inversion method is adapted to the nonlinear inversion problem. In the case of an electrically conductive medium, the Jacobian matrix is analytically evaluated at the beginning of the inversion. And the uniqueness of the inversion can be partially solved by imposing the flattest and smoothest model constraints on the optimization problem. Synthetic MRS signals from resistive and conductive earth, as well as field data, have been inverted by Occam's method. The results indicate that with the help of Occam's inversion, a true model can be obtained from an initial model of homogeneous water content. Furthermore, for noise-free MRS signals, both the flattest and smoothest models reveal correct water content distributions. When signals are contaminated by noises, the case is different; and the smoothest model might have a lower water content distributing in a larger range than that of the true model, while which might be obtained by utilizing the flattest model Occam's inversion.  相似文献   

15.
When performing forward modelling and inversion of Magnetic Resonance Sounding (MRS) data, the water-content distribution is typically assumed to be horizontal (1D case). This assumption is fully justified because MRS is often used for characterizing continuous aquifers in a nearly flat environment. However, MRS can also be used in areas with sharp topographical variations. Following a review of the standard MRS equations when using a coincident transmitter/receiver loop, the mathematical terms potentially affected by tilting of the loop are discussed. We present the results of a numerical modelling exercise, studying a case where the surface is not horizontal and the loop cannot be considered to be parallel to the top of the aquifer. This shows that maximum variations in the MRS-signal amplitude are caused mainly by north- or south-dipping slopes. Slope effects depend on the loop size (a larger loop produces a larger error) especially in the presence of shallow water. With a geomagnetic-field inclination of 65° and a slope angle ≤ 10°, the topography causes a maximum variation in amplitude of less than 10%. Near magnetic poles and equator, the slope effect is lower and undetectable in most cases. It was found that within a 10% range of variation in the amplitude, errors introduced into inversions are within the typical uncertainty for MRS inversion and hence no topographic corrections are necessary. Thus, a significant effect from non-horizontal topography might be expected only when data uncertainty is lower than the slope effect (the slope effect is lower than equivalence when data quality is poor). Today, most field data sets are inverted using the modulus of the MRS signal, but some new developments consider the complex signal (both modulus and phase). However, inversion of complex MRS signals, which would provide a higher sensitivity to groundwater distribution, may be affected by slope effect. Thus, the slope orientation and dip angle should be accurately measured in the field when the phase of MRS signals is inverted too.  相似文献   

16.
In the last five years, magnetic resonance sounding (MRS), as a non-invasive geophysical method, has emerged as a new technique for ground water investigation in Vietnam. In this paper, we present the general theoretical basis of this method together with acquisition, processing, and interpretation of the MRS data. We show a case study of MRS surveys in sand dunes area in order to characterize aquifers situated in the southern part of Vietnam. From the interpretation of MRS soundings we delimited an aquifer layer in the subsurface with strong lateral variations for which we determined the depth at 44 m and water content between 3% and 9.5%. The longitudinal relaxation constant T*1 is about 250 m s, while the transverse relaxation T*2 is between 150–200 m s. That indicates fine to medium grain size and thus low to medium hydraulic permeability. These results are confirmed by the observations from the well LK1 between 45 to 70 m. The results of other MRS measurements showed the presence of a low water bearing aquifer and were confirmed by the observations in two other wells.  相似文献   

17.
A groundwater recharge process of heterogeneous hard rock aquifer in the Moole Hole experimental watershed, south India, is being studied to understand the groundwater flow behaviour. Significant seasonal variations in groundwater level are observed in boreholes located at the outlet area indicating that the recharge process is probably taking place below intermittent streams. In order to localize groundwater recharge zones and to optimize implementation of boreholes, a geophysical survey was carried out during and after the 2004 monsoon across the outlet zone. Magnetic resonance soundings (MRS) have been performed to characterize the aquifer and measure groundwater level depletion. The results of MRS are consistent with the observation in boreholes, but it suffers from degraded lateral resolution. A better resolution of the regolith/bedrock interface is achieved using electrical resistivity tomography (ERT). ERT results are confirmed by resistivity logging in the boreholes. ERT surveys have been carried out twice—before and during the monsoon—across the stream area. The major feature of recharge is revealed below the stream with a decrease by 80% of the calculated resistivity. The time‐lapse ERT also shows unexpected variations at a depth of 20 m below the slopes that could have been interpreted as a consequence of a deep seasonal water flow. However, in this area time‐lapse ERT does not match with borehole data. Numerical modelling shows that in the presence of a shallow water infiltration, an inversion artefact may take place thus limiting the reliability of time‐lapse ERT. A combination of ERT with MRS provides valuable information on structure and aquifer properties respectively, giving a clue for a conceptual model of the recharge process: infiltration takes place in the conductive fractured‐fissured part of the bedrock underlying the stream and clayey material present on both sides slows down its lateral dissipation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Magnetic resonance sounding (MRS) is an electromagnetic method designed for groundwater investigations. MRS can be applied not only for studying fresh-water aquifers, but also in areas where intrusion of saline water is rendering the subsurface electrically conductive. In the presence of rocks with a high electrical-conductivity attenuation and a phase shift of the MRS signal may influence the efficiency of the MRS method. We investigated the performance of MRS for allowing us to propose a procedure for interpreting MRS data under these conditions. For numerical modeling, we considered a subsurface with a resistivity between 0.5 and 10 Ω m. The results show that the depth of investigation with MRS depends upon the electrical conductivity of groundwater and surrounding rocks, on the depth of the saline water layer, and on the amount of fresh water above the saline water. For interpreting MRS measurements, the electrical conductivity of the subsurface is routinely measured with an electrical or electromagnetic method. However, due to the equivalence problem, the result obtained with these methods may be not unique. Hence, we investigated the influence of the uncertainty in conductivity distribution provided by transient electromagnetic measurements (TEM) on MRS results. It was found that the uncertainty in TEM results has an insignificant effect on MRS.  相似文献   

19.
When performing forward modelling and inversion of Magnetic Resonance Sounding (MRS) data, the water-content distribution is typically assumed to be horizontal (1D case). This assumption is fully justified because MRS is often used for characterizing continuous aquifers in a nearly flat environment. However, MRS can also be used in areas with sharp topographical variations. Following a review of the standard MRS equations when using a coincident transmitter/receiver loop, the mathematical terms potentially affected by tilting of the loop are discussed. We present the results of a numerical modelling exercise, studying a case where the surface is not horizontal and the loop cannot be considered to be parallel to the top of the aquifer. This shows that maximum variations in the MRS-signal amplitude are caused mainly by north- or south-dipping slopes. Slope effects depend on the loop size (a larger loop produces a larger error) especially in the presence of shallow water. With a geomagnetic-field inclination of 65° and a slope angle ≤ 10°, the topography causes a maximum variation in amplitude of less than 10%. Near magnetic poles and equator, the slope effect is lower and undetectable in most cases. It was found that within a 10% range of variation in the amplitude, errors introduced into inversions are within the typical uncertainty for MRS inversion and hence no topographic corrections are necessary. Thus, a significant effect from non-horizontal topography might be expected only when data uncertainty is lower than the slope effect (the slope effect is lower than equivalence when data quality is poor). Today, most field data sets are inverted using the modulus of the MRS signal, but some new developments consider the complex signal (both modulus and phase). However, inversion of complex MRS signals, which would provide a higher sensitivity to groundwater distribution, may be affected by slope effect. Thus, the slope orientation and dip angle should be accurately measured in the field when the phase of MRS signals is inverted too.  相似文献   

20.
The paper looks at the process of lateral translocation in a small valley basin from the Northaw Great Wood, Hertfordshire. The valley basin comprises four lithostratigraphic units (London Clay and Pebble Gravel, and the others a mixture of these two), which were initially established in the field by a rough assessment of texture. Particle size analysis validated the lithostratigraphic units as delineated in the field; it was found unnecessary to alter the boundaries of the units. Patterns of lateral translocation of silt and clay (measured by the hydrometer method) and the amorphous colloidal hydrous oxides and hydroxides of Al, Fe, Mn and Si (measured in oxalate solution by atomic absorption spectrophotometry) are inferred from balance sheets of the relative gains and losses of the materials. Materials from horizons formed in lithostratigraphic units derived from London Clay are balanced against a clay dilution factor; those from the lithostratigraphic unit of Pebble Gravel against the dilution of sand on a clay-free basis. The results lead to the following conclusions about the process of lateral translocation: it has been a significant contributor to soil development; larger amounts of material have moved down-slope towards the hollow than over the nose because there has, theoretically, been more throughflow in the hollow; for some materials there has been less down-slope transport in lower horizons owing to less throughflow in them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号