首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
陈育民  陈润泽  霍正格 《岩土力学》2019,40(10):3709-3716
为了分析剪切条件下零有效应力状态砂土的流动变形规律,对传统环剪仪进行了试样可视化改造,研制了透明环形剪切盒,通过对剪切盒膨胀性能分析及与标准砂的剪切试验对比,验证了环剪装置改造的合理性。通过分析不排水条件下饱和悬浮塑料砂的剪应力-应变曲线,发现其剪切强度具有应变软化的特性。通过分析环剪仪中饱和悬浮塑料砂试样的有效应力,证实了可视环剪试验中的土体基本处于零有效应力状态。开展了饱和悬浮塑料砂的流动变形可视环剪试验研究,结果表明:饱和悬浮塑料砂在固结不排水条件下剪切变形不连续,直接在剪切面发生断裂;在不固结不排水的条件下饱和悬浮塑料砂的剪切变形表现出流动形态,且与剪切速率有关:在低剪切速率下,剪切变形仅在剪切面处形成具有曲线轨迹的流动变形而在其他区域不发生变形;而在高剪切速率下剪切变形为整体的倾斜变形,符合黏性流体的流动变形特征。  相似文献   

2.
Strain localization within shear zones may partially erase the rock fabric and the metamorphic assemblage(s) that had developed before the mylonitic event. In poly‐deformed basements, the loss of information on pre‐kinematic phases of mylonites hinders large‐scale correlations based on tectono‐metamorphic data. In this study, devoted to a relict unit of Variscan basement reworked within the nappe stack of the Northern Apennines (Italy), we investigate the possibility to reconstruct a complete pressure (P)temperature (T)–deformation (D) path of mylonitic micaschist and amphibolite by integrating microstructural analysis, mineral chemistry and thermodynamic modelling. The micaschist is characterized by a mylonitic fabric with fine‐grained K‐white mica and chlorite enveloping mica‐fishes, quartz, and garnet pseudomorphs. Potassic white mica shows Mg‐rich cores and Mg‐poor rims. The amphibolite contains green amphibole+plagioclase+garnet+quartz+ilmenite defining S1 with a superposed mylonitic fabric localized in decimetre‐ to centimetre‐scale shear zones. Garnet is surrounded by an amphibole+plagioclase corona. Phase diagram calculations provide P–T constraints that are linked to the reconstructed metamorphic‐deformational stages. For the first time an early high‐P stage at >11 kbar and 510°C was constrained, followed by a temperature peak at 550–590°C and 9–10 kbar and a retrograde stage (<475°C, <7 kbar), during which ductile shear zones developed. The inferred clockwise P–T–D path was most likely related to crustal thickening by continent‐continent collision during the Variscan orogeny. A comparison of this P–T–D path with those of other Variscan basement occurrences in the Northern Apennines revealed significant differences. Conversely, a correlation between the tectono‐metamorphic evolution of the Variscan basement at Cerreto pass, NE Sardinia and Ligurian Alps was established.  相似文献   

3.
对石英云母片岩进行三轴压缩蠕变试验,研究丹巴水电站石英云母片岩的三轴蠕变特性及其各向异性特性。按轴向荷载与层理面关系加工成平行组和垂直组2组试件,开展分级加载方式进行不同围压条件下的蠕变试验。试验研究表明,石英云母片岩具有蠕变特性,包括瞬时变形、衰减蠕变、稳定蠕变和加速蠕变阶段;采用带Kachanov蠕变损伤律的蠕变模型来描述石英云母片岩的蠕变特性,并进行蠕变参数辨识,拟合结果显示此模型能很好地描述石英云母片岩的蠕变特性;根据试验结果获得2组试件的长期屈服强度、破坏形态、瞬时变形参数和稳定蠕变速率,分析表明石英云母片岩的蠕变力学特性具有明显的各向异性特性。层理面与轴向荷载垂直的试件较层理面与轴向荷载平行的试件的强度、弹性剪切模量、体积模量和黏性系数相对较大,表现出较高的抗变形和抗破坏能力;平行组以剪切破坏为主,垂直组破坏时出现侧向鼓胀现象,显示出延性破坏的特点;2组石英云母片岩试件的瞬时应变量和稳定蠕变速率都随着应力水平的提高而增大。  相似文献   

4.
The Sierra Ballena Shear Zone (SBSZ) is part of a high-strain transcurrent system that divides the Neoproterozoic Dom Feliciano Belt of South America into two different domains. The basement on both sides of the SBSZ shows a deformation stage preceding that of the transcurrent deformation recognized as a high temperature mylonitic foliation associated with migmatization. Grain boundary migration and fluid-assisted grain boundary diffusion enhanced by partial melting were the main deformation mechanisms associated with this foliation. Age estimate of this episode is >658 Ma. The second stage corresponds to the start of transpressional deformation and the nucleation and development of the SBSZ. During this stage, pure shear dominates the deformation, and is characterized by the development of conjugate dextral and sinistral shear zones and the emplacement of syntectonic granites. This event dates to 658–600 Ma based on the age of these intrusions. The third stage was a second transpressional event at about 586 to <560 Ma that was associated with the emplacement of porphyry dikes and granites that show evidence of flattening. Deformation in the SBSZ took place, during the late stages, under regional low-grade conditions, as indicated by the metamorphic paragenesis in the supracrustals of the country rocks. Granitic mylonites show plastic deformation of quartz and brittle behavior of feldspar. A transition from magmatic to solid-state microstructures is also frequently observed in syntectonic granites. Mylonitic porphyries and quartz mylonites resulted from the deformation of alkaline porphyries and quartz veins emplaced in the shear zone. Quartz veins reflect the release of silica associated with the breakdown of feldspar to white mica during the evolution of the granitic mylonites to phyllonites, which resulted in shear zone weakening. Quartz microstructures characteristic of the transition between regime 2 and regime 3, grain boundary migration and incipient recrystallization in feldspar indicate deformation under lower amphibolite to upper greenschist conditions (550–400°C). On the other hand, the mylonitic porphyries display evidence of feldspar recrystallization suggesting magmatic or high-T solid-state deformation during cooling of the dikes.  相似文献   

5.
Detailed 3‐D analysis of inclusion trails in garnet porphyroblasts and matrix foliations preserved around a hand‐sample scale, tight, upright fold has revealed a complex deformation history. The fold, dominated by interlayered quartz–mica schist and quartz‐rich veins, preserves a crenulation cleavage that has a synthetic bulk shear sense to that of the macroscopic fold and transects the axis in mica‐rich layers. Garnet porphyroblasts with asymmetric inclusion trails occur on both limbs of the fold and display two stages of growth shown by textural discontinuities. Garnet porphyroblast cores and rims pre‐date the macroscopic fold and preserve successive foliation inflection/intersection axes (FIAs), which have the same trend but opposing plunges on each limb of the fold, and trend NNE–SSW and NE–SW, respectively. The FIAs are oblique to the main fold, which plunges gently to the WSW. Inclusion trail surfaces in the cores of idioblastic porphyroblasts within mica‐rich layers define an apparent fold with an axis oblique to the macroscopic fold axis by 32°, whereas equivalent surfaces in tabular garnet adjacent to quartz‐rich layers define a tighter apparent fold with an axis oblique to the main fold axis by 17°. This potentially could be explained by garnet porphyroblasts that grew over a pre‐existing gentle fold and did not rotate during fold formation, but is more easily explained by rotation of the porphyroblasts during folding. Tabular porphyroblasts adjacent to quartz‐rich layers rotated more relative to the fold axis than those within mica‐rich layers due to less effective deformation partitioning around the porphyroblasts and through quartz‐rich layers. This work highlights the importance of 3‐D geometry and relative timing relationships in studies of inclusion trails in porphyroblasts and microstructures in the matrix.  相似文献   

6.
Microstructural analysis and microthermometry are useful methods for determining the deformation evolution. To address this issue, rheological behavior of quartz, feldspar and calcite in veins and host rocks during deformation, are presented in the mylonite zone of the dextral reverse Zamanabad Shear Zone (ZSZ), in northern part of Sistan Suture Zone (SSZ), in east of Iran. Microstructure evidences revealed two evolution stages of high and low temperature deformation. Quartz microstructures in the ZSZ show abundant evidences for early high-temperature plastic deformation (e.g. Bulging recrystallization (BLG)) which are as microstructures with SW directed ductile shearing in the central parts of the ZSZ. This shear zone shows progressively decreasing strain away from the central of shear zone toward the wall. High-temperature microstructures are overprinted partly or completely during shearing by the later low-temperature deformation (e.g. Pressure solution, fractures, veinlets). Microstructural observations of veins (quartz and calcite) confirms the results of microstructures in the host rock, as quartz veins occurred from peak metamorphic conditions (<400°C) and then in lower P–T conditions have been formed calcite veins (~250°C). According to microthermometric studies, two primary fluid groups are observed in quartz veins: (1) fluids trapped during peak deformation conditions, with higher-salinity, They were initially trapped at ~300–400°C, (2) smaller fluids by trapping of low-salinity inclusions at ~240–180°C that related to subsequent phases of shear zone exhumation in lower deep. Microthermometry results and microstructural analysis indicate deformation under lower greenschist facies conditions for the ZSZ, and then exhumation of the early of high-temperature rocks within regime of ductile-brittle transition to brittle.  相似文献   

7.
Microstructures indicating incongruent dissolution precipitation creep of garnet in eclogite-facies graphitic micaschist (Tauern window, Eastern Alps) are investigated. Garnet dissolution is observed where garnet poikiloblasts grown at eclogite facies metamorphism approached each other as a consequence of progressive deformation during exhumation, with estimated P-T-conditions between 570 °C, 1.7 GPa and 470 °C, 0.9 GPa. The poikiloblasts are separated by a dissolution seam and flanked by strain shadows filled with quartz, white mica, and chlorite; there is no evidence for crystal plastic deformation of garnet. Two cases are investigated: (A) stylolitic contact zone, (B) smooth contact zone. In both cases, internal fabrics of the poikiloblasts and concentric chemical zoning are truncated. Material previously forming inclusions in the garnet poikiloblasts is now passively enriched in a dissolution seam, the original microstructure of fine-grained mica–graphite aggregates remaining preserved. Though microstructures suggest that garnet dissolution was driven by local stress concentration, the level of differential stress remained too low for plastic deformation of the fine-grained white mica-graphite aggregates set free from the stress supporting garnet. Incongruent dissolution precipitation creep appears to be a particularly effective deformation mechanism at low stress in a subduction channel.  相似文献   

8.
The finite element program ELFEN is used to study the effect of basement fault dip on the evolution of shear band patterns in unconsolidated sand. The material properties and boundary conditions of the model were chosen to correspond to generic sandbox experiments.Model results reproduce the range of structural styles found in corresponding sandbox experiments. With a basement fault dip of 60° and lower, a graben structure is formed, composed of a synthetic shear band followed by one or more antithetic shear bands. With a basement fault dip of 70° and steeper, a reverse (precursor) shear band forms first, followed by a synthetic, normal shear band that accommodates all further displacement. The dip of the synthetic shear band is close to the basement fault dip. For basement fault dips between 60° and 70°, we observe a transition in localization patterns. An analysis of the stress fields and velocity vectors in the model explains the first-order aspects of the relationships observed.We consider the observed ‘precursor-dominated’ and ‘graben-dominated’ structural domains to be important components of normal fault systems in which the first order structural style and deformation patterns are only weakly dependent on the details of the rheology of the model materials and explore the interesting problem of the change in structural style from ‘precursor-dominated’ to ‘graben-dominated’ structural domains above a normal fault in basement. We find similar structural domains in sandbox experiments for the same set of boundary conditions but with slightly different material properties, suggesting that the modeled patterns are robust within these two structural domains, (i.e. will occur over a range of similar material properties and boundary conditions).The results of this study contribute to our ability to validate numerical models against experiments in order to finally better simulate natural systems.  相似文献   

9.
Seismic sections across the NW part of the Polish Basin show that thrust faults developed in the sedimentary units above the Zechstein evaporite layer during basin inversion. These cover thrust faults have formed above the basement footwall. Based on the evolution of the basin, a series of scaled analogue models was carried out to study interaction between a basement fault and cover sediments during basin extension and inversion. During model extension, a set of normal faults originated in the sand cover above the basement fault area. The distribution and geometry of these faults were dependent on the thickness of a ductile layer and pre-extension sand layer, synkinematic deposition, the amount of model extension, as well as on the presence of a ductile layer between the cover and basement. Footwall cover was faulted away from the basement only in cases where a large amount of model extension and hanging-wall subsidence were not balanced by synkinematic deposition. Model inversion reactivated major cover faults located above the basement fault tip as reverse faults, whereas other extensional faults were either rotated or activated only in their upper segments, evolving into sub-horizontal thrusts. New normal or reverse faults originated in the footwall cover in models which contained a very thin pre-extension sand layer above the ductile layer. This was also the case in the highly extended and shortened model in which synkinematic hanging-wall subsidence was not balanced by sand deposition during model extension. Model results show that inversion along the basement fault results in shortening of the cover units and formation of thrust faults. This scenario happens only when the cover units are decoupled from the basement by a ductile layer. Given this, we argue that the thrusts in the sedimentary infill of the Polish Basin, which are decoupled from the basement tectonics by Zechstein evaporites, developed due to the inversion of the basement faults during the Late Cretaceous-Early Tertiary.  相似文献   

10.
In the Sambagawa schist, southwest Japan, while ductile deformation pervasively occurred at D1 phase during exhumation, low-angle normal faulting was locally intensive at D2 phase under the conditions of frictional–viscous transition of quartz (c. 300 °C) during further exhumation into the upper crustal level. Accordingly, the formation of D2 shear bands was overprinted on type I crossed girdle quartz c-axis fabrics and microstructures formed by intracrystalline plasticity at D1 phase in some quartz schists. The quartz c-axis fabrics became weak and finally random with increasing shear, accompanied by the decreasing degree of undulation of recrystallized quartz grain boundaries, which resulted from the increasing portion of straight grain boundaries coinciding with the interfaces between newly precipitated quartz and mica. We interpreted these facts as caused by increasing activity of pressure solution: the quartz grains were dissolved mostly at platy quartz–mica interface, and precipitated with random orientation and pinned by mica, thus having led to the obliteration of existing quartz c-axis fabrics. In the sheared quartz schist, the strength became reduced by the enhanced pressure solution creep not only due to the reduction of diffusion path length caused by increasing number of shear bands, but also to enhanced dissolution at the interphase boundaries.  相似文献   

11.
The NE to ENE trending Mesozoic Xingcheng-Taili ductile shear zone of the northeastern North China Craton was shaped by three phases of deformation. Deformation phase D1 is characterized by a steep, generally E–W striking gneissosity. It was then overprinted by deformation phase D2 with NE-sinistral shear with K-feldspar porphyroclasts forming a subhorizontal low-angle stretching lineation on a steep foliation. During deformation phase D3, lateral motion accommodated by ENE sinistral strike-slip shear zones dominated. Associated fabrics developed at upper greenschist metamorphic facies conditions and show the deformation characteristics of middle- to shallow crustal levels. In some parts, the older structures have been in turn overprinted by late-stage sinistral D3 shearing. Finite strain and kinematic vorticity in all deformed granitic rocks indicate a prolate ellipsoid (L-S tectonites) near plane strain. Simple shear-dominated general shear during D3 deformation is probably of general significance. The quartz c-axis textures indicate prism-gliding with a dominant rhomb <a> slip and basal <a> slip system formed mainly at low-middle temperatures. Mineral deformation behavior, quartz c-axis textures, quartz grain size and the Kruhl thermometer demonstrate that the ductile shear zone developed under greenschist facies metamorphic conditions at deformation temperatures ranging from 400 to 500 °C. Dislocation creep is the main deformation mechanism at a shallow crustal level. Fractal analysis showed that the boundaries of recrystallized quartz grains had statistically self-similarities. Differential stresses deduced from dynamically recrystallized quartz grain size are at around 20–39 MPa, and strain rates in the order of 10−12 to 10−14 s−1. This indicates deformation of granitic rocks in the Xingcheng-Taili ductile shear zone at low strain rates, which is consistent with most other ductile shear zones. Hornblende-plagioclase thermometer and white mica barometer indicate metamorphic conditions of medium pressures at around ca. 3–5 kbar and temperatures of 400–500 °C within greenschist facies conditions. The main D3 deformation of the ENE-trending sinistral strike-slip ductile shearing is related to the roll-back of the subducting Pacific plate beneath the North China Craton.  相似文献   

12.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   

13.
The microfabrics of folded quartz veins in fine‐grained high pressure–low temperature metamorphic greywackes of the Franciscan Subduction Complex at Pacheco Pass, California, were investigated by optical microscopy, scanning electron microscopy including electron backscatter diffraction, and transmission electron microscopy. The foliated host metagreywacke is deformed by dissolution–precipitation creep, as indicated by the shape preferred orientation of mica and clastic quartz without any signs of crystal‐plastic deformation. The absence of crystal‐plastic deformation of clastic quartz suggests that the flow stress in the host metagreywacke remained below a few tens of MPa at temperatures of 250–300 °C. In contrast, the microfabric of the folded quartz veins indicates deformation by dislocation creep accompanied by subgrain rotation recrystallization. For the small recrystallized grain size of ~8 ± 6 μm, paleopiezometers indicate differential stresses of a few hundred MPa. The stress concentration in the single phase quartz vein is interpreted to be due to its higher effective viscosity compared to the fine‐grained host metagreywacke deforming by dissolution–precipitation creep. The fold shape suggests a viscosity contrast of one to two orders of magnitude. Deformation by dissolution–precipitation creep is expected to be a continuous process. The same must hold for folding of the vein and deformation of the vein quartz by dislocation creep. The microfabric suggests dynamic recrystallization predominantly by subgrain rotation and only minor strain‐induced grain boundary migration, which requires low contrasts in dislocation density across high‐angle grain boundaries to be maintained during climb‐controlled creep at high differential stress. The record of quartz in these continuously deformed veins is characteristic and different from the record in metamorphic rocks exhumed in seismically active regions, where high‐stress deformation at similar temperatures is episodic and related to the seismic cycle.  相似文献   

14.
Late Cretaceous structures within the eastern Graz Paleozoic Nappe Complex define an extruding wedge with north-eastward directed thrusting in eastern portions and strike-slip shear along the margins. Stacking structures are overprinted by south-westward directed extension with low-grade metamorphic rocks in the hangingwall and high-grade basement rocks in the footwall. Pressure–temperature and structural data are obtained from successively opening quartz veins that record various stages of progressive deformation and metamorphism. Fluid inclusion data and related structures show that during extension isothermal decompression from ca. 550°C and 8 kbar down to ca. 450°C and 2 kbar was related to exhumation of rocks from deep crustal levels. The data point to a high geothermal gradient and explain condensed paleo-isotherms due to ductile normal faulting in the eastern areas of the Graz Paleozoic Nappe Complex. The investigated Late Cretaceous structural elements suggest that the Graz Paleozoic Nappe Complex decoupled from the surrounding basement units and operated as a large-scale extension–extrusion corridor that evolved prior to Miocene extrusion tectonics in the Eastern Alps.  相似文献   

15.
江绍断裂两侧早元古代变质基底特征及形成的构造环境   总被引:3,自引:0,他引:3  
江绍断裂东侧出露的早元古代变质基底以一套遭受中压型角闪岩相区域热流变质作用改造的黑云斜长变粒岩、云母石英片岩为主,夹少量斜长角闪岩和大理岩,已遭受4期构造变形作用改造,从原岩建造和主要岩类地球化学特点推测它可能形成于大陆或大陆边缘类似于内硅铝盆地环境。江绍断裂西侧早元古代变质基底则以星子杂岩为代表,由变粒岩、浅粒岩、(十字一石榴)云母片岩和少量斜长角闪岩组成,已遭受中压型高绿片岩相一低角闪岩相区域热流变质作用改造,推测其形成于活动性较强大陆一大陆边缘环境。江绍断裂两侧早元古代变质基底在原岩建造、变质一变形作用等特征上存在明显差异,因此华夏地块和扬子地块在早元古代可能是两个地块。  相似文献   

16.
Abstract

This paper describes the tectono-metamorphic evolution of a segment of the Precambrian deep crust, in the southern Madagascar island. This crust corresponds to an Archaean basement reworked by a widespread, late panAfrican event (550–580 Ma) during the formation of the Mozambican belt. The finite geometry and associated metamorphism are depicted by satellite imaging, field mapping and P-T estimations using both conventional thermobarometric methods and TWEEQ software program with internally consistent thermodynamic data and uniform set of solution models. The structural pattern developed during high-grade metamorphism shows the juxtaposition of domains with complex fold geometries separated by a 15 km wide ductile shear zone. Within the folded domains, kilometre scale interference patterns associated with strongly dipping metamorphic stretching lineations can be described as superposed folding (F1 and F2 folds). The tight and upright F2 folds result from East-West horizontal shortening. The shear zone is defined by homogeneous orientations of steep foliations, sub-horizontal stretching lineations, and kilometre scale strain gradient. Within the shear zone, we observe dominant non-coaxial criteria at various scales that are consistent with a sinistral strike-slip system during D2 deformation stage. Nevertheless, we have also found in the shear zone, geometries typical of a horizontal shortening. Such a strain pattern is characteristic of transpression tectonics.

The synkinematic metamorphic conditions are estimated on mafic garnetiferous metabasites. Results show that regional transpression tectonics has developed under very high and constant thermal regime (about 800°C). A pressure gap, of about 3 kbar between the domains separated by the shear zone is identified. This implies tectonic coupling of two different structural levels during tranpressive tectonic.  相似文献   

17.
The lattice-preferred orientation (LPOs) of two late-Variscan granitoids, the Meissen monzonite and the Podlesí dyke granite, were determined from high-resolution time-of-flight neutron diffraction patterns gained at the diffractometer SKAT in Dubna, Russia. The results demonstrate that the method is suitable for the LPO analysis of polyphase, relatively coarse-grained (0.1–6 mm) rocks. The Meissen monzonite has a prominent shape-preferred orientation (SPO) of the non-equidimensional minerals feldspar, mica and amphibole, whereas SPO of the Podlesí granite is unapparent at the hand-specimen scale. The neutron diffraction data revealed distinct LPOs in both granitoids. The LPO of the non-equidimensional minerals feldspar, mica and amphibole developed mainly during magmatic flow. In the case of the Meissen monzonite, the magmatic flow was superimposed by regional shear tectonics, which, however, had no significant effect on the LPOs. In both samples, quartz shows a weak but distinct LPO, which is atypical for plastic deformation and different in the syn-kinematic Meissen monzonite and the post-kinematic Podlesí granite. We suggest that, first of all, the quartz LPO of the Meissen monzonite is the result of oriented growth in an anisotropic stress field. The quartz LPO of the Podlesí granite, which more or less resembles a deformational LPO in the flattening field of the local strain field, developed during magmatic flow, whereby the rhombohedral faces of the quartz crystals adhered to the (010) faces of aligned albite and to the (001) faces of zinnwaldite. Due to shape anisotropy of their attachments, the quartz crystals were passively aligned by magmatic flow. Thus, magmatic flow and oriented crystal growth are the major LPO-forming processes in both granitoids. For the Meissen monzonite, the solid-state flow was too weak to cause significant crystallographic re-orientation of the minerals aligned by magmatic flow. Finally, the significance of our results for the evaluation of the regional tectonic environment during magma emplacement is discussed. The discussion on the regional implications of the more methodologically oriented results provides the basis for future, more regionally aimed studies in view of the fabric characteristics of such plutons and their developing mechanisms.  相似文献   

18.
粗粒料大三轴试验研究进展   总被引:14,自引:4,他引:14  
目前,粗粒料的抗剪强度与变形特性表达式是在砂土特性研究基础上修改而得到的。实质上,粗粒料具有粒径大、沉陷变形小及颗粒破碎明显等特性而砂土相区别。因此,研究粗粒料工程特性与本构关系时应充分考虑这些固有特性。此外,粗粒料在高压、复杂应力状态及动荷载作用下的工程性质研究也有待加强。文中概括和总结了静力条件下粗粒料大三轴试验研究进展情况,包括抗剪强度、变形特性、本构模型及试验技术方面,并就其中的一些问题进行了讨论。  相似文献   

19.
In the Bear Creek area of the Sierra Nevada batholith, California, the high temperature postmagmatic deformation structures of the Lake Edison granodiorite include steeply-dipping orthogneiss foliations, joints, and ductile shear zones that nucleated on joints and leucocratic dykes. Exploitation of segmented joints resulted in sharply bounded, thin shear zones and in large slip gradients near the shear zone tips causing the deformation of the host rock at contractional domains. The orthogneiss foliation intensifies towards the contact with the younger Mono Creek granite and locally defines the dextral Rosy Finch Shear Zone (RFSZ), a major kilometre-wide zone crosscutting the pluton contacts. Joints predominantly strike at N70–90°E over most of the Lake Edison pluton and are exploited as sinistral shear zones, both within and outside the RFSZ. In a narrow (∼250 m thick) zone at the contact with the younger Mono Creek granite, within the RFSZ, the Lake Edison granodiorite includes different sets of dextral and sinistral shear zones/joints (the latter corresponding to the set that dominates over the rest of the Lake Edison pluton). These shear zones/joints potentially fit with a composite Y–R–R′ shear fracture pattern associated with the RFSZ, or with a pattern consisting of Y–R-shear fractures and rotated T′ mode I extensional fractures. The mineral assemblage of shear zones, and the microstructure and texture of quartz mylonites indicate that ductile deformation occurred above 500 °C. Joints and ductile shearing alternated and developed coevally. The existing kinematic models do not fully capture the structural complexity of the area or the spatial distribution of the deformation and magmatic structures. Future models should account more completely for the character of ductile and brittle deformation as these plutons were emplaced and cooled.  相似文献   

20.
The high mobility of rapid landslides is one of the most important subjects of both theoretical and practical interest to engineers and scientists. The idea that ultralow resistance could explain the high mobility inspires researchers to examine the shear behavior of granular materials under a wide range of conditions, but the response of granular materials to fast loading rates is largely unknown. The motivation for this study was to examine several fundamental issues of particle properties and mechanical conditions on the fast shear behavior of granular materials. Two granular materials were studied in the oven-dried state and were sheared by employing a ring-shear apparatus. Results indicated that angular particles (silica sand) had higher shear strength parameters than spherical particles (glass beads). In addition, the dilative process was observed during shearing, which depended on normal stress and particle shape. A slightly negative shear-rate effect on shear strength was observed for both granular materials under a certain range of shear rates. Furthermore, cumulative shear displacement had a significant effect on the degree of particle crushing. Fast ring-shear tests also revealed that shear rate had a slightly negative effect on particle crushing. Based on these experimental results, the possible applications of dynamic grain fragmentation theory to assess the high mobility of rapid landsliding phenomena were discussed. It was indicated that the magnitude and release rate of elastic strain energy generated by grain fragmentation played important roles on the dynamic process of landslide mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号