首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A semi-analytical model for the evaluation of dynamic impedance of rigid surface footing bonded to multi-layered subsoil is proposed. The technique is based on the dual vector form of wave motion equation and Green's influence function of subdisk for horizontally layered half-space. The multi-layered half-space is divided into a quite large number of mini-layers and the precise integration method (PIM) is introduced for the numerical implementation. The PIM is highly accurate for solving sets of first-order ordinary differential equations with specified two-end boundary conditions. It can produce numerical results of Green's influence functions up to the precision of computer used. The dual vector form of wave motion equation makes the combination of two adjacent mini-layers/layers very easy. As a result, the computational effort for the evaluation of Green's influence function of the multi-layered half-space is reduced to a great extent. In order to satisfy the mixed boundary condition at the surface, the footing–soil interface is discretized into a number of uniformly spaced subdisk-elements. Comparisons illustrating the efficiency and accuracy of the proposed approach are made with a number of solutions available in the literature.  相似文献   

2.
Baranov proposed an approach for the treatment of the subgrade in the dynamic response analysis of a rigid foundation which is partially embedded. The approach is based on a Winkler approximation together with wave equation solutions developed for simplified conditions. The paper extends and modifies Baranov's approach so as to be applicable to surface foundation problems, by introducing an internal coupling mechanism. Closed form expressions are presented for the steady state harmonic responses of a massless rigid footing and an elastic beam on the surface of the presented subgrade model. These expressions can accommodate the inhomogeneity of the subgrade in a straightforward manner. The model is found to perform well in reproducing the continuous subgrade medium behaviour. The dynamic responses of structures are often highly dependent on the subgrade modelling and therefore great caution is needed in modelling the subgrade.  相似文献   

3.
This study presents the dynamic behaviour of a rigid block which rests on a footing supported by a spring and a dashpot on a rigid base. The response of the rigid body is examined carefully when the base is excited by a harmonic force. It is found that a periodic motion appears in three different modes: stick-stick, stick-slip and slip-slip. The conditions that initiate the stick-stick and slip-slip modes are derived in explicit forms and the maximum sliding displacement is also obtained analytically. Useful dimensionless parameters are proposed for the presentation of the dynamic behaviour. The accuracy of results is confirmed by the response history computed by the Nigam-Jennings method.  相似文献   

4.
A fluid-saturated one-layer continuum underlain by a rigid half-space is considered. An exact solution is developed in frequency domain for analyzing disturbance induced by a strip footing located at the surface with vertical harmonic excitation. Since the analytical solution can be used only for very simple conditions, a finite element model has been developed also and compared with the exact solution. It is shown that finite element results are in close agreement with the results which have been obtained by a transformation technique. The proposed finite element scheme can take into account the complex geometry and inhomogeneity for practical problems. Besides this, the analytical results exhibit the overall characteristic of wave propagation in porous media and will provide a representative test problem which can be used for a quantitative evaluation of the accuracy of various numerical solution methods.  相似文献   

5.
A number of investigations in the recent decades have shown that footing uplift can reduce the seismic loading on a structure. Guidelines to design a structure with seismic uplift capability have been proposed. However, these studies mainly focus on the structural response and neglect the impact forces on the footing from re‐contact between the footing and the supporting medium. A small number of computational studies of the induced forces on the footing have been performed. This paper presents the results of free vibrations and shake table tests on a single degree‐of‐freedom model of a bridge pier with footing uplift on a rigid base. Two support conditions are considered, that is, footing fixed to the base and footing free to uplift on a rigid base. Load cells were placed at the interface of the footing and rigid base to measure the contact forces during structural vibration. The footing responses of both flexible and rigid structures due to free vibration are compared. The results show that the flexibility of the structure has significant effects on footing uplift duration and amplitude and reduces the contact force, in some cases very significantly. The flexible structure was also subjected to harmonic base excitations. It is found that varying the characteristics of the excitation changes the uplift amplitude but does not affect the contact force significantly. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as element-free Galerkin method (EFGM), the point interpolation method (PIM), and the radial point interpolation method (RPIM). Taking two dimensional Poisson equation as an example, we discuss the support-domain dimensionless size, the field nodes, and background element settings with respect to their effect on calculation accuracy of the meshfree method. RPIM and EFGM are applied to controlled-source two-dimensional electromagnetic modeling with fixed shape parameters. The accuracy of boundary conditions imposed directly and by a penalty function are discussed in the case of forward modeling of two-dimensional magnetotellurics in a homogeneous medium model. The coupling algorithm of EFG–PIM and EFG–RPIM are generated by integrating the PIM or RPIM and EFGM. The results of the numerical modeling suggest the following. First, the proposed meshfree method and corresponding coupled methods are well-suited for electromagnetic numerical modeling. The accuracy of the algorithm is the highest when the support-domain dimensionless size is 1.0 and the distribution of field nodes is consistent with the nodes of background elements. Second, the accuracy of PIM and RPIM are lower than that of EFGM for the Poisson equation but higher than EFGM for the homogeneous medium MT response. Third, RPIM overcomes the matrix inversion problem of PIM and has a wider selection of support-domain dimensionless sizes as compared to RPIM.  相似文献   

7.
This paper shows an effective implementation of the half-plane Green function for surface strip impulses (Lamb's problem), which was previously developed in a closed form by the authors, into the time-domain boundary element method for the analysis of related initial boundary value problems. The time-stepping algorithm utilizing Heaviside step function makes the solution process free from the Rayleigh wave front singularity. Illustrative analyses performed include that: First, the response due to an impulsive uniform strip loading is dealt with in order to check the accuracy of the present solution and to interpret the associated wave motion in the medium. Second, a rigid massless strip surface foundation is analysed when subjected to various impulsive loadings in vertical, horizontal and rotational directions to observe which wave is most concerned with the respective foundation motion. The field response is also of interest with respect to distance attenuation. Third, the dynamic cross-interaction between active and passive foundations through soil is investigated when multiple strip foundations are placed separately on a half-space with a certain distance.  相似文献   

8.
A continuum theory for an improved characterization of dynamic soil–structure interaction in the framework of three‐dimensional elastodynamics is presented. Effective in demonstrating the importance of integrating free‐field and near‐field effects under general soil and foundation conditions, a compact two‐zone delineation of the soil medium is proposed as a quintessential mechanics perspective for this class of problems. Sufficient to deliver a practical resolution of some perennial analytical and experimental conflicts, a fundamental formulation commensurate to a gradated unification of the homogenization approach and any sole free‐field inhomogeneous representation is developed and implemented computationally. Specialized to the problem of a rigid circular footing on sand, a nominal set of dynamic contact stress distributions and related impedance functions by the dual‐zone theory is included for theoretical and engineering evaluation. Through its comparison with benchmark analytical solutions and relevant physical measurements, the usage of the underlying conceptual platform as an advanced yet practical foundation for general dynamic soil–structure interaction is illustrated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This study is concerned with the dynamic response of an arbitrary shaped rigid strip foundation embedded in an orthotropic elastic soil. The foundation is subjected to time-harmonic vertical, horizontal and moment loadings. The boundary-value problem related to an embedded foundation is analysed by using the indirect boundary integral equation method. The kernel functions of the integral equations are displacement and traction Green's functions of an anisotropic elastic half plane. Exact analytical solutions are used for the Green's functions. The boundary integral equation is solved by using numerical techniques. Selected numerical results are presented for the impedances of rectangular and semi-circular rigid strip foundations embedded in four types of anisotropic soils. A discussion on the influence of soil anisotropy and frequency of excitation on the impedances is presented. The versatility of the analysis is demonstrated by considering the through soil interaction between two semi-circular strip foundations.  相似文献   

10.
A combined boundary and finite element method is developed and applied to study the dynamic behaviour of a system of flexible surface footings of arbitrary shape bearing on an elastic half-space. The proposed method employs the frequency domain Green's function for the surface of the elastic half-space while a layered plate model is used for the flexible footing. Both the footing and the surface of the half-space are discretized by 8-noded quadratical isoparametric elements, and the meshes are identical. Thus, the compatibility of displacements and equilibrium of forces between the footing and the half-space are fully satisfied. This model provides a better approximation of the stress concentration at edges of relatively rigid footings. Numerical examples demonstrating the effects due to the excitation frequency, the relative rigidity and the distance between footings on the interaction between two square footings are presented. The external forces can be either harmonic or transient.  相似文献   

11.
A general formulation and solution procedure are proposed for harmonic response of rigid foundation on multilayered half-space. It is suitable for isotropic as well as anisotropic soil medium. The wave motion equation is formulated in frequency wave-number domain in the state space. A hybrid approach is proposed for its solution, where the precise integration algorithm (PIA) is employed to carry out the integration. Very high accuracy can be achieved. The mixed variable form of wave motion equation enables the assembly of layers simple and convenient. The surface Green׳s function is regarded as rigorous, because it is free from approximations and discretization errors. The algorithm is unconditionally stable. The numerical implementation is based on algebraic matrix operation. Numerical examples of vibration of rigid foundation validate the efficiency and accuracy of the proposed approach.  相似文献   

12.
By virtue of the precise integration method (PIM) and the technique of mixed variable formulations, solutions for the dynamic response of the multi-layered transversely isotropic medium subjected to the axisymmetric time-harmonic forces are presented. The planes of cross anisotropy are assumed to be parallel to the horizontal surface of the stratified media. Four kinds of vertically acting axisymmetric loads are prescribed either at the external surface or in the interior of the soil system. Thicknesses and number of the medium strata are not limited. Employing the Hankel integral transform in cylindrical coordinate, the axisymmetric governing equations in terms of displacements of the multi-layered media are uncoupled. Applying mixed variable formulations, more concise first-order ordinary differential matrix equations from the uncoupled motion equations can be obtained. Solutions of the ordinary differential matrix equations in the transformed domain are acquired by utilizing the approach of PIM. Since PIM is highly accurate to solve the sets of first-order ordinary differential equations, any desired accuracy of the solutions can be achieved. All calculations are based on the corresponding algebraic operations and computational efforts can be reduced to a great extent. Comparisons with the existing numerical solutions are made to confirm the accuracy of the present solutions proposed by this procedure. Several examples are illustrated to explore the influences of the type and degree of material anisotropy, the frequency of excitation and loading positions on the dynamic response of the stratified medium.  相似文献   

13.
An efficient method, based on the Ritz concept, for dynamic analysis of response of multistorey buildings including foundation interaction to earthquake ground motion is presented. The system considered is a shear building on a rigid circular disc footing attached to the surface of a linearly elastic halfspace. In this method, the structural displacements are transformed to normal modes of vibration of the building on a rigid foundation. The analysis procedure is developed and numerical results are presented to demonstrate that excellent results can be obtained by considering only the first few modes of vibration. As the number of unknowns are reduced by transforming to generalized co-ordinates, the method presented is much more efficient than direct methods.  相似文献   

14.
This paper analytically examines the horizontal vibration of a rigid disk on a saturated poroelastic half-space. The pressure-solid displacement form of the harmonic equations of motion for asymmetric dynamic problem are developed from the form of the equations originally presented by Biot. Making use of a new method the solution of the above equations is obtained. According to the mixed boundary -value conditions, the dual integral equations of the horizontal vibration of a rigid disk on a saturated poroelastic half-space are established. By appropriate transforms, it is shown that the dual integral equations can be reduced to a pair of Fredholm integral equations of the second kind, whose solutions are then computed. Numerical results for the horizontal dynamic compliance coefficient are given at the end of this paper.  相似文献   

15.
This work presents a simplified, yet accurate model of rigid foundation-soil systems for the dynamic analysis of structures including SSI effects. The simplified model is based on closed form solutions that reproduce the characteristic B-spline impulse response functions (BIRF) of 3D continuous soil-foundation systems, as obtained from rigorous boundary element method (BEM) analysis. The proposed simplified model is used within the framework of B-spline impulse response techniques and can be coupled directly to other solution techniques, such as the finite element method (FEM). Validation and application studies demonstrate the accuracy and versatility of the simplified model for the direct time domain solution of dynamic SSI problems involving rigid square surface foundations of any size. The proposed model, although simplified, demonstrates similar high accuracy to that of more rigorous solutions based on domain discretizations.  相似文献   

16.
An analytical approach is used to study the torsional vibrations of a rigid circular foundation resting on saturated soil to obliquely incident SH waves. Biot’s poroelastic dynamic theory is considered to characterize the saturated soil below the foundation, which is solved by Hankel transform later. In order to consider the scattering phenomena caused by the existence of the foundation, the total wave field in soil is classified into free-field, rigid-body scattering field and radiation scattering field. According to the classification of wave field and the mixed boundary-value conditions between the soil and the foundation, torsional vibrations of the foundation are formulated in two sets of dual integral equations. Then, the dual integral equations are reduced to Fredholm integral equation of the second kind to be solved. Combining with the dynamic equilibrium equations of the foundation, the expressions for the torsional vibrations of the foundation are obtained. Numerical results are presented to demonstrate the influence of excitation frequency, incident angle, the torsional inertia moment of the foundation and permeability of the saturated half-space on the torsional vibrations of the foundation.  相似文献   

17.
This paper presents a variation on the component mode technique for the dynamic substructuring of large‐scale structural analysis of building and bridge frames. The principal innovation of the proposed method of dynamic reduction is that the resulting mass matrix of the reduced substructures remains diagonal. As in the component mode technique, the reduction is accomplished by transforming the degrees of freedom in the substructure using boundary shapes and internal shapes. The diagonal mass matrix is achieved by orthogonalization of the boundary shapes to the internal shapes, and a selective row‐by‐row summation of the mass matrix into the diagonal entry (where off‐diagonal terms are unavoidable). To aid in recovering the accuracy of the rigid‐body inertias that is lost in the diagonalization process, additional pseudo‐rigid‐body‐mode shapes are proposed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
An exact stiffness matrix method is presented to evaluate the dynamic response of a multi-layered poroelastic medium due to time-harmonic loads and fluid sources applied in the interior of the layered medium. The system under consideration consists of N layers of different properties and thickness overlying a homogeneous half-plane or a rigid base. Fourier integral transform is used with respect to the x-co-ordinate and the formulation is presented in the frequency domain. Fourier transforms of average displacements of the solid matrix and pore pressure at layer interfaces are considered as the basic unknowns. Exact stiffness (impedance) matrices describing the relationship between generalized displacement and force vectors of a layer of finite thickness and a half-plane are derived explicitly in the Fourier-frequency space by using rigorous analytical solutions for Biot's elastodynamic theory for porous media. The global stiffness matrix and the force vector of a layered system is assembled by considering the continuity of tractions and fluid flow at layer interfaces. The numerical solution of the global equation system for discrete values of Fourier transform parameter together with the application of numerical quadrature to evaluate inverse Fourier transform integrals yield the solutions for poroelastic fields. Numerical results for displacements and stresses of a few layered systems and vertical impedance of a rigid strip bonded to layered poroelastic media are presented. The advantages of the present method when compared to existing approximate stiffness methods and other methods based on the determination of layer arbitrary coefficients are discussed.  相似文献   

19.
This paper is concerned with the dynamic response of rigid strip foundations of arbitrary geometry embedded in a homogeneous elastic half-space. The embedded rigid foundation is modelled by an equivalent domain in a uniform half-space which is subjected to an appropriate body force field. The components of the impedance matrix are determined through the solution of a linear simultaneous equation system which is established by invoking rigid body displacements of discrete locations within the equivalent domain and appropriate equilibrium consideration. It is found that high numerical efficiency and flexibility can be achieved using the body force model when compared to boundary integral formulations through the selection of appropriate displacement influence functions and a ‘parent domain’ in the analysis. Numerical results are presented to illustrate the influence of the embedment ratio, frequency of excitation, foundation geometry and Poisson's ratio on the vertical, horizontal, rocking and coupled impedances of a single embedded foundation. The effect on the impedance due to the presence of an adjacent embedment is investigated for various distances between foundations and embedment ratios.  相似文献   

20.
The finite strip method is extended to the free vibration of rectangular plates continuous in one or two directions. A subroutine has been written for the computation of beam functions for continuous beams over any number of intermediate rigid supports and with simply supported or clamped end conditions. The standard finite strip method can thus be applied to plates continuous in both directions using the computed beam functions. The frequencies of 2 × 2 and 3 × 3 continuous panels with many different end conditions have been computed. The computations are also checked against published solutions and the accuracy is shown to be excellent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号