首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
It is suggested that the kinematic framework controls the orientation of crystallographic fabrics developed in plastically deformed quartzites. Important directions in this framework are those of the instantaneous stretching axes, and the flow plane and flow direction if these can be uniquely defined. Rotation of the crystal axes takes place at any instant of time dependent on the orientation of the grain relative to the stretching axes. Because of this dependence the skeletal outline* of a pattern of preferred orientation is sensitive to the closing stages of deformation. Thus fabrics measured in major movement zones cannot be related to early thrust or shear displacements without considering the effects of the geological history subsequent to those events.Nevertheless, asymmetric fabrics in movement zones may allow determination of the shear direction and sense of shear. Asymmetry in the intensity distribution is less susceptible to modification than asymmetry in the fabric skeleton, and may remain as a persistent measure of the sense of shear in mylonites subjected to coaxial deformation after non-coaxial events. However, fabric asymmetry need not always be related to the deformation history, and effects related to the population of initial grain-orientations must be considered, as well as the influence of recrystallization and grain growth.A problem of scale is involved in extrapolating the movement picture inferred from the behaviour of a few hundred crystal grains to larger dimensions. This question is also encountered when trying to specify deformation paths in mesoscopic shear zones. It is difficult to obtain simple shear experimentally because of the role discontinuities play in deformation. In certain cases in natural shear zones the quartz grains may be subjected to a coaxial deformation path while the bulk deformation is progressive simple shear. Caution must therefore be exercised when attempting to use quartz fabrics to infer characteristics of the bulk kinematics or movement picture applicable during deformation.  相似文献   

2.
The progressive deformation of the Singhbhum Shear Zone (SSZ) involved the initiation of a mylonitic foliation, its deformation by three generations of reclined folds and superposition of two later groups of folds, i.e., a group of asymmetric folds with subhorizontal or gently plunging axes and a group of gentle and open, transverse and more or less upright folds. The occurrence of sheath folds and U-shaped deformed lineations indicate that the reclined folds were produced by rotation of fold hinges through large angles. The total displacement along the SSZ was compounded of displacements along numerous mesoscopic shear zones. The cleavages in the shear lenses and the mesoscopic shear zones cannot be distinguished as C and S surfaces. They have the same kinematic significance and were produced by ductile deformation, although there were localized discontinuous displacements along both sets,-of cleavages. A mylonitic foliation had formed before the development of the earliest recognizable folds. Its time of formation and folding could be synchronous, diachronous or partly overlapping in time in the different domains of the SSZ.  相似文献   

3.
The MCT Zone of Bhagirathi valley of Garhwal Himalaya is characterized by numerous mesoscopic ductile shear zones. These shear zones are developed in response to nearly NNE-SSW maximum horizontal compression and provide an opportunity to study the variation in strain and crystallographic fabrics within the ductile shear zones.The grain shape and orientation of quartz under microscope reflect that strain is higher in the center and it progressively decreases towards the shear zone boundary. The preferred orientation of quartz c-axes across the shear zone suggests that the single girdle of the quartz c-axes are probably first developed at the shear zone boundary and become prominent in the center of shear zone with increase in the intensity of deformation. The strong crystallographic preferred orientation normal to foliation suggests that the internal deformation of the quartz might have taken place by dislocation creep mechanism exhibiting a non-coaxial deformation history.  相似文献   

4.
丹东韧性剪切带的实例表明:韧性剪切带的持续变形包含了共轴与非共轴两种应变线路或状态,由于分布的不均匀性,导致变形分域现象,形成平面的变形岩石分区。持续变形过程中,又存在应变线路的转换和叠加。微构造是确定变形体制的主要依据。野外观测与应变分析证实,变形分域存在于不同尺度,在总体剪切(非共轴)变形条件下,初始糜棱岩往往表现以共轴变形占优势,而糜棱岩和超糜棱岩则以非共轴变形为主。持续变形导致从共轴向非共轴转变,最后形成后者的主体地位。  相似文献   

5.
S-C Mylonites   总被引:2,自引:0,他引:2  
Two types of foliations are commonly developed in mylonites and mylonitic rocks: (a) S-surfaces related to the accumulation of finite strain and (b) C-surfaces related to displacement discontinuities or zones of relatively high shear strain. There are two types of S-C mylonites. Type I S-C mylonites, described by Berthé et al., typically occur in deformed granitoids. They involve narrow zones of intense shear strain which cut across (mylonitic) foliation.Type II S-C mylonites (described here) have widespread occurrence in quartz-mica rocks involved in zones of intense non-coaxial laminar flow. The C-surfaces are defined by trails of mica ‘fish’ formed as the result of microscopic displacement discontinuities or zones of very high shear strain. The S-surfaces are defined by oblique foliations in the adjacent quartz aggregates, formed as the result of dynamic recrystallization which periodically resets the ‘finite-strain clock’. These oblique foliations are characterized by grain elongations, alignments of segments of the grain boundary enveloping surfaces, and by trails of grains with similar c-axis orientations.Examples of this aspect of foliation development in mylonitic rocks are so widespread that we suggest the creation of a broad class of S-C tectonites, and a deviation from the general tradition of purely geometric analysis of foliation and time relationships. Kinematic indicators such as those discussed here allow the recognition of kilometre-scale zones of intense non-coaxial laminar flow in crustal rocks, and unambiguous determination of the sense of shear.  相似文献   

6.
Structural investigations in the Precambrian Singhbhum Shear Zone of eastern India document an intimate relationship between micro- to meso-scale structures and the deformation history. Shear zone rocks are characterized by composite foliation, a well-developed stretching lineation, folds, shear planes, and quartz veins. These structures reflect thrusting of the Proterozoic north Singhbhum hanging wall block over the Archaean south Singhbhum footwall block. Microstructural analysis of multiple foliation and mylonitic rocks within the shear zone helps to define its progressive evolution. During progressive deformation, overprinting of microstructures resulted in incomplete transposition or complete erasing of previously formed structures and mineral assemblages, allowing room for new dynamic equilibrium structures to form. The dominant deformation mechanism was dissolution–recrystallization, with locally important fluid circulation responsible for transformation of the quartzo-feldspathic mass into phyllonite, and quartzites and schists into mylonite. Textural features suggest that the bulk deformation was non-coaxial, evolving from dominant pure shear in the early stage followed by simple shear in a single progressive strain history of the Singhbhum Shear Zone.  相似文献   

7.
Commonly, basal glide is the predominant deformation mechanism of quartz in tectonites. Therefore, local deformation is probably mostly progressive simple shear rotating the sheared domains as well as deforming them. If a tectonite body is constrained to be deformed irrotationally and approximately homogeneously throughout, it is necessarily traversed by closely spaced material surfaces that are approximately plane and orthogonal originally, and stay so through time. These surfaces act as internal boundaries and enforce cancellation of the rigid-body rotations of, in the general case, four distinct families of domains, with slip planes and directions mutually mirror-symmetric. The overall symmetry of the fabric is orthorhombic, with the mirror planes coinciding with the principal planes of strain. Certain grains with basal planes in favorable orientation for one of the four ideal simple shears could initiate the deformation, and because of the need for compatibility, entrain neighboring grains into a similar strain, making the surroundings of an initiating grain a shear zone. Compatibility also requires thec-axes of grains in a domain to be rotated progressively toward the direction of maximum shortening. If the original orientation of crystallographic axes was random, domains of one family thus acquire a fabric with a single maximum, and the four resulting fabrics with single maxima combine to form crossed-girdle patterns. Depending on the orientation of the average shear planes and slip directions in the four families, the crossed girdles can be of different types; most fabric types that have been observed in quartz tectonites can be obtained by superposition. Crossed-girdle fabrics with low symmetry result from non-coaxial strain histories.  相似文献   

8.
The natural deformation of stibnite in relation to the kinematic history of a regional fault is resolved using microstructural analysis of massive stibnite along the Biards Fault in the Massif Central (France). Stibnite underwent intra-crystalline deformation associated with a strong linear and planar anisotropy. Lepidoblastic textures, undulatory extinction of oriented grains, growth of antimony between these grains, and a colour change of stibnite from white to black, result from dynamic recrystallisation. A range of asymmetric microstructures indicate non-coaxial deformation and a left-lateral sense of shear, related to the movement of the fault zone. The computed displacement corresponds to the geological offsets measured along the fault. We conclude that stibnite has microstructurally recorded the bulk kinematics of its host fault zone.Editorial Handling: F. Tornos  相似文献   

9.
天山东段推覆构造研究   总被引:16,自引:1,他引:16       下载免费PDF全文
舒良树  孙家齐 《地质科学》1997,32(3):337-350
本文概括性总结了天山东段大型推覆构造的基本特征。根据地质证据和同位素年龄,东天山存在早古生代末,晚古生代晚期和新生代三期推覆构造;根据推覆构造分布规律及构造背景,在平面上划分为五大推覆带、9个大型韧剪带;根据出露岩石的矿物变形相将东天山推覆构造划分为深、中深和浅三个深度层次;通过韧剪变形组构的观察分析,确定了多期韧性变形性质与运动方向。糜棱岩中超微构造、古应力及小构造变形缩短率测量统计,证明东天山推覆变形具有显著的地壳缩短增厚作用。新生代板块碰撞导致本区中新生代盆地基底向造山带A型俯冲,造山带向盆地推覆,其结果就构成了今日看到的镶嵌状盆地-山脉构造地貌景观。  相似文献   

10.
Abstract Microstructural and chemical analysis of plagioclase in 20 superficially similar amphibolite facies ductile shear zones in metagabbors and amphibolites of the Ivrea Zone in Italy reveals significant differences in An and Ba contents. Plagioclase, which was deformed at P-T conditions lower than those of the wall rocks, occurs in the following four different microstructural situations with different chemical compositions: (i) relatively undeformed porphyroclasts, (ii) dynamically recrystallized grains and subgrains rimming the porphyroclasts, (iii) infill of microcracks cross-cutting the porphyroclasts and (iv) fine-grained recrystallized grains in the matrix of the shear zones. The differences in the An and Ba contents are caused by partial chemical equilibration of plagioclase in the shear zones during and partly after deformation. Changes in An and Ba contents were caused by fluid-assisted grain-boundary migration recrystallization, as well as by solid-state diffusion, while fluid activity was high. The relation between the composition and microstructures of the plagioclase in the shear zones indicates that in the different shear zones, fluids ceased to be active during different stages in the late shear zone deformation history.
The interpretation of the variations in composition and microstructures reveals that only grains that developed by grain-boundary migration recrystallization and that are not adjacent to porphyroclasts reflect P-T conditions during the dominant shear-zone deformation.  相似文献   

11.
关于太古宙早期地壳演化构造机制的争论已经持续了数十年,其焦点主要集中于水平构造还是垂向构造两大经典构造模式的探讨.对于早期地壳构造演化方面的研究,将会有助于我们更好地理解早前寒武纪的地球动力学机制.本文对华北克拉通东北部鞍山地区花岗-绿岩带内齐大山韧性剪切带的构造变形特征进行了详细的解析,揭示了该区新太古代垂向构造作用样式.研究结果表明,齐大山韧性剪切带内花岗质岩石长英质矿物塑性拉长特征明显,条带状构造发育,面理向NWW方向陡倾,不对称组构特征和矿物拉伸线理产状指示向NWW的陡倾正滑移剪切作用.变形岩石中的长英质矿物均发育中低温显微变形特征,石英C轴电子背散射衍射(EBSD)组构分析揭示石英以菱面<a>和底面<a>滑移系为主,岩石经历了中低温非共轴变形.根据矿物的变形行为以及石英的结晶优选方位推测变形温度约为400~500℃,岩石变形特征以位错蠕变为主.有限应变分析结果表明,靠近铁矿带方向,构造岩类型由L=S构造岩过渡为LS构造岩,岩石应变强度呈明显增强趋势.运动学涡度测量结果显示齐大山韧性剪切带内大多数岩石样品的Wk值大于0.75,岩石形成于以简单剪切作用为主的一般剪切作用.对比花岗-绿岩带西侧的白家坟韧性剪切带,显示二者均具有相向的陡倾正滑移运动学特征,表明新太古代时期鞍山地区地壳构造演化模式以垂向构造作用为主.   相似文献   

12.
中澳洲Florence剪切带中角闪石晶体优选定向   总被引:1,自引:0,他引:1  
中澳洲Florence剪切带糜棱岩中的角闪石经晶内滑移变形而显示出良好的晶体优选定向,通过对角闪岩石组图的综合分析,并结合前人的实验资料,认识到在高温变形条件下角闪石的滑移系为(100)(001)。该剪切带中角闪石岩组图具不对称型是与角闪石的单一滑移系和该滑移系的初始定向状态有关,是非共轴简单剪切变形的结果,这些不对称的岩组图可用于判断剪切带的运动方向。  相似文献   

13.
长乐-南澳断裂带晚中生代岩浆活动 与变质-变形关系   总被引:32,自引:2,他引:30  
长乐-南澳断裂带是东南沿海地区陆内强烈变质-变形带。带内沉积岩、火山岩和早白垩世的钙碱性角闪石黑云花岗岩和花岗闪长岩都已发生可达角闪岩相的变质和石英-长石相韧性剪切变形。鉴于高温矿物和强烈韧性变形多出现在深成岩附近;远离深成岩,变质和变形就逐渐减弱,故本文认为,至少有一部分变质变形的热源是由岩浆提供的。韧剪组构和糜棱质花岗岩是在岩浆侵位的晚期或长乐-南澳断裂带左旋走滑时,在中地壳部位同时形成的,长乐断裂带中花岗岩的组构记录了一期同走滑变形的岩浆作用,“软变形”作用。据此,长乐-南澳带内花岗岩的形成是受走滑剪切应力和岩浆热双重制约的,是在走滑过程中实现的。其动力来源可能与晚中生代的太平洋板块沿日本中央构造线—台湾纵谷带朝东亚陆缘的斜向俯冲有关。  相似文献   

14.
The Diancang Shan metamorphic massif, the northwestern extension of the Ailao Shan Massif, is a typical metamorphic complex situated along the NW–SE-trending Ailao Shan–Red River shear zone. Diancang Shan granitic and amphibolitic mylonites collected from sheared high-grade metamorphic rocks were studied using petrographic and electron-backscatter diffraction techniques. Sensitive high-resolution ion microprobe U–Pb dating of zircon grains from the granitic mylonites constrains the timing of shearing. Macro- and microstructural and textural analysis reveals intense plastic deformation of feldspar, quartz, and amphibole under amphibolite-facies conditions, all consistently document left-lateral shearing. Porphyritic monzogranitic mylonite within the shear zone possesses evidence supporting a sequential, progressive process from crystallization during magma emplacement, through submagmatic flow to solid-state plastic deformation. We suggest that the early-kinematic pluton subsequently underwent strong left-lateral strike–slip shearing. The development of complex textures of quartz, feldspar, and amphibole from the granitic and amphibolitic mylonites apparently records successive variation of conditions attending coherent, solid-state high-temperature ductile deformation during regional left-lateral shearing. All magmatic zircons from the mylonitized porphyritic monzogranite give U–Pb ages of 30.95 ± 0.61 million years for the crystallization of the granite. This age provides the timing of onset of left-lateral shearing along the Ailao Shan–Red River shear zone in the Diancang Shan high-grade metamorphic massif.  相似文献   

15.
哀牢山-红河剪切带左行走滑作用起始时间约束   总被引:18,自引:1,他引:17  
位于哀牢山-红河剪切带NW延伸方向上的点苍山变质杂岩体遭受强烈的左行走滑剪切变形、变质作用改造,岩石中保存了典型的高温矿物组合以及由它们构成的宏观和微观高温变形构造特征,其中糜棱岩中具有极其发育的长石矿物拉伸线理而形成典型的L与LS型构造岩是其一个明显的特征。本文对点苍山地区高温糜棱岩主要矿物开展了显微构造与矿物变形、变形机制及组构分析,并对于遭受高温糜棱岩化改造的一个花岗质岩体开展了SHRIMP锆石U-Pb定年分析。结果表明岩石中长石、角闪石、石英等主要矿物具有典型的达角闪岩相条件下的高温晶质塑性变形和动态生长特征,它们也为走滑剪切变形活动提供了充分的微观构造证据。对于点苍山高温糜棱岩化改造的眼球状或似斑状二长花岗岩的显微构造分析结果表明,这套花岗质岩石从走滑剪切前期岩浆的侵位之后经历了早期强烈的岩浆期后交代作用—亚岩浆流动—高温固态塑性剪切变形的递进演化过程。由此可见,岩浆的上升与就位受左行走滑剪切作用的制约,岩体又遭受了强烈剪切变形改造。同时对这套构造前期就位花岗质岩石中的锆石进行定年分析,获得33.88±0.32Ma的岩浆结晶年龄,为此,我们有充分的理由认为,在点苍山地区哀牢山-红河剪切带左行走滑剪切作用的起始时间至少应该为早渐新世30.88±0.32Ma。  相似文献   

16.
Experimental shear zones and magnetic fabrics   总被引:1,自引:0,他引:1  
Magnetic fabric analysis has been used as a non-destructive means of detecting petrofabric development during experimentally produced multi-stage, transpressive deformations in ‘shear zones’. Artificial, magnetic-bearing silicate sands and calcite sands, bonded with Portland cement, were deformed at room temperature and at 100 and 150 MPa confining pressure. The slip-rate for the shear zone walls was 0.73 × 10−4 mm s−1 and the maximum shear strains were about 0.38, across zones that were initially about 5 mm thick. The magnetic fabric ellipsoid rapidly spins so that the maximum and intermediate susceptibilities tend to become parallel to the shear zone walls throughout the sheared zone. The ellipsoid becomes increasingly oblate with progressive deformation. However, in all cases, the anisotropy is strongly influenced by the pre-deformation magnetic fabric. During deformation the cement gel collapses so that cataclasis of the mineral grains is suppressed. In the quartz-feldspar aggregates the magnetite's alignment is accommodated by particulate flow (intergranular displacements) of the grains. In the calcite aggregates stronger magnetic fabrics develop due to plastic deformation of calcite grains as well as particulate flow. However, the calcite grain fabrics are somewhat linear (LS) whereas the magnetic fabrics are planar (S >L). The preferred dimensional orientations of magnetite are weak and it is possible that the magnetic fabrics are due to intragranular rearrangements of magnetic domains.The transpressive shear zones are much more efficient than axial-symmetric shortening in the increase of anisotropy of the magnetic fabrics, especially in the case of the calcite aggregates. This suggests that flow laws derived for axial-symmetric shortening experiments may not be appropriate for non-coaxial strain histories such as those of shear zones.  相似文献   

17.
In the Archaean Pilbara Craton of Western Australia, three zones of heterogeneous centimetre- to metre-scale sheeted granites are interpreted to represent high-level, syn-magmatic shear zones. Evidence for the syn-magmatic nature of the shear zones include imbricated and asymmetrically rotated metre-scale orthogneiss xenoliths that are enveloped by leucogranite sheets that show no significant internal strain. At another locality, granite sheets have a strong shape-preferred alignment of K-feldspar, suggesting magmatic flow, while the asymmetric recrystallisation of the grain boundaries indicates that non-coaxial deformation continued acting upon the sheets under sub-solidus conditions. Elsewhere, randomly oriented centimetre-wide leucogranite dykes are realigned at a shear zone boundary to form semi-continuous, layer-parallel sheets within a magma-dominated, dextral shear zone.

It is proposed that the granite sheets formed by the incremental injection of magmas into active shear zones. Magma was sheared during laminar flow to produce the sheets that are aligned sub-parallel to the shear zone boundary. Individual sheets are fed by individual dykes, with up to 1000s of discrete injections in an individual shear zone. The sheets often lack microstructural evidence for magmatic flow, either because the crystal content of the magma was too low to record internal strain, or because of later recrystallisation.  相似文献   


18.
In order to address the question of the processes involved during shear zone nucleation, we present a petro-structural analysis of millimetre-scale shear zones within the Roffna rhyolite (Suretta nappe, Eastern central Alps). Field and microscopic evidences show that ductile deformation is localized along discrete fractures that represent the initial stage of shear zone nucleation. During incipient brittle deformation, a syn-kinematic metamorphic assemblage of white mica + biotite + epidote + quartz precipitated at ca. 8.5 ± 1 kbar and 480 ± 50 °C that represent the metamorphic peak conditions of the nappe stacking in the continental accretionary wedge during Tertiary Alpine subduction. The brittle to ductile transition is characterized by the formation of two types of small quartz grains. The Qtz-IIa type is produced by sub-grain rotation. The Qtz-IIb type has a distinct CPO such that the orientation of c-axis is perpendicular to the shear fracture and basal and rhombhoedric slip systems are activated. These Qtz-IIb grains can either be formed by recrystallization of Qtz-IIa or by precipitation from a fluid phase. The shear zone widening stage is characterized by a switch to diffusion creep and grain boundary sliding deformation mechanisms. During the progressive evolution from brittle nucleation to ductile widening of the shear zone, fluid–rock interactions play a critical role, through chemical mass-transfer, metasomatic reactions and switch in deformation mechanisms.  相似文献   

19.
The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing.The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2–3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.  相似文献   

20.
用动态重结晶石英颗粒的分形确定变形温度及应变速率   总被引:13,自引:0,他引:13  
韧性变形岩石中动态重结晶石英颗粒边界形态具有自相似性,表现出分形特征。动态重结晶石英颗粒边界的分形维数随温度的升高而减小,随应变速率的增加而增大,可作为韧性变形温度及应变速率的标度计。适合重结晶石英边界分维值的计算方法有封闭折线法和面积周长法。鲁西青邑韧性剪切带中糜棱岩动态重结晶石英颗粒边界具有自相似性,分维值为1.228~1.326,初步估算出古应变速率为10  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号