首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
GRACE(Gravity Recovery And Climate Experiment)卫星计划为监测陆地水储量变化提供了有效技术手段.本文采用2003至2010年共计8年的GRACE月重力场模型反演中国西南区域陆地水储量变化,与GLDAS(Global Land Data Assimilation System)全球水文模型进行对比分析,其结果在时空分布上均符合较好,同时在2009年秋至2010年春该区域陆地水储量均呈现明显减少,与该时段云贵川三省的干旱事件相一致;比较分析了2009年秋至2010年春GRACE反演陆地水储量变化与TRMM(Tropical Rainfall Measuring Mission)合成数据计算的月降雨量的时空分布,两组结果均与西南干旱事件对应时段与区域十分吻合;对近8年的陆地水储量变化与月降雨量数据进行相关性分析,其结果表明陆地水储量变化与降雨量强相关,即降雨量是导致陆地水储量变化的主要因素;分析该区域地表温度变化,结果显示2009年9月至2010年3月地表温度均比历史同期高,地表温度的升高加剧了陆地水储量的减少.  相似文献   

2.
Understanding the spatio-temporal characteristics of water storage changes is crucial for Ethiopia, a country that is facing a range of challenges in water management caused by anthropogenic impacts as well as climate variability. In addition to this, the scarcity of in situ measurements of soil moisture and groundwater, combined with intrinsic “scale limitations” of traditional methods used in hydrological characterization are further limiting the ability to assess water resource distribution in the region. The primary objective of this study is therefore to apply remotely sensed and model data over Ethiopia in order to (i) test the performance of models and remotely sensed data in modeling water resources distribution in un-gauged arid regions of Ethiopia, (ii) analyze the inter-annual and seasonal variability as well as changes in total water storage (TWS) over Ethiopia, (iii) understand the relationship between TWS changes, rainfall, and soil moisture anomalies over the study region, and (iv) identify the relationship between the characteristics of aquifers and TWS changes. The data used in this study includes; monthly gravity field data from the Gravity Recovery And Climate Experiment (GRACE) mission, rainfall data from the Tropical Rainfall Measuring Mission (TRMM), and soil moisture from the Global Land Data Assimilation System (GLDAS) model. Our investigation covers a period of 8 years from 2003 to 2011. The results of the study show that the western part and the north-eastern lowlands of Ethiopia experienced decrease in TWS water between 2003–2011, whereas all the other regions gained water during the study period. The impact of rainfall seasonality was also seen in the TWS changes. Applying the statistical method of Principal Component Analysis (PCA) to TWS, soil moisture and rainfall variations indentified the dominant annual water variability in the western, north-western, northern, and central regions, and the dominant seasonal variability in the western, north-western, and the eastern regions. A correlation analysis between TWS and rainfall indicated a minimum time lag of zero to a maximum of six months, whereas no lag is noticeable between soil moisture anomalies and TWS changes. The delay response and correlation coefficient between rainfall and TWS appears to be related to recharge mechanisms, revealing that most regions of Ethiopia receive indirect recharge. Our results also show that the magnitude of TWS changes is higher in the western region and lower in the north-eastern region, and that the elevation influences soil moisture as well as TWS.  相似文献   

3.
关中地区作为一带一路重要的工农业发达地区之一,开展针对该地区地下水储量变化的监测和分析工作对揭示地下水储量变化特征与经济社会发展具有重要现实意义.本文基于2003—2014年GRACE卫星重力场模型数据,采用组合滤波及单一尺度因子方法反演了关中地区陆地水储量变化,扣除GLDAS地表水平均结果,对关中地区地下水储量变化进行了监测分析.将陆地水储量变化与GLDAS进行相关性分析,将地下水储量变化与WGHM地下水模型及实测地下水位结果进行对比分析.研究结果表明:①关中地区陆地水变化与GLDAS模型结果具有较强的相关性,相关系数多数大于0.7,其中与模型平均结果的相关系数可达0.8.② 2003—2008年关中地区地下水呈正增长趋势,增加速率为0.25 cm·a-1,与同期实测数据变化趋势一致;但2003—2013年地下水存在长期亏损,亏损速率为-0.37 cm·a-1等效水高,这与同时期WGHM估算结果-0.35 cm·a-1十分吻合.③关中地区地下水存在明显的年变化特征,在2003—2014年期间地下水减少速率为-0.44 cm·a-1,与该地区降雨量有较好的一致性,在降雨偏少的2008、2012和2013年,地下水也显著减少.  相似文献   

4.
Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) provide quantitative measurement of terrestrial water storage (TWS) changes with unprecedented accuracy. Combining GRACE-observed TWS changes and independent estimates of water change in soil and snow and surface reservoirs offers a means for estimating groundwater storage change. Since its launch in March 2002, GRACE time-variable gravity data have been successfully used to quantify long-term groundwater storage changes in different regions over the world, including northwest India, the High Plains Aquifer and the Central Valley in the USA, the North China Plain, Middle East, and southern Murray–Darling Basin in Australia, where groundwater storage has been significantly depleted in recent years (or decades). It is difficult to rely on in situ groundwater measurements for accurate quantification of large, regional-scale groundwater storage changes, especially at long timescales due to inadequate spatial and temporal coverage of in situ data and uncertainties in storage coefficients. The now nearly 13 years of GRACE gravity data provide a successful and unique complementary tool for monitoring and measuring groundwater changes on a global and regional basis. Despite the successful applications of GRACE in studying global groundwater storage change, there are still some major challenges limiting the application and interpretation of GRACE data. In this paper, we present an overview of GRACE applications in groundwater studies and discuss if and how the main challenges to using GRACE data can be addressed.  相似文献   

5.
黑河流域陆地水储量变化对流域下游等周边区域水资源的合理利用以及经济和社会发展等有着重要的意义.本文利用2003年1月至2013年12月的GRACE RL05数据反演了黑河流域陆地水储量长时间序列的变化,并针对重力场模型和数据处理中产生的信号泄漏问题,采用Forward-Modeling方法进行了改正并恢复泄漏信号;将GRACE获得的泄漏信号恢复前后的黑河流域水储量变化结果与全球水文模型GLDAS和CPC进行比较分析,结果表明泄漏信号改正后的结果与水文模型结果的时间序列相关性均有明显提高,从其空间分布结果可以看出Forward-Modeling方法有效地恢复初始信号、增强被湮没的信号,泄漏信号误差减小;通过分析黑河流域水储量变化的长时间序列结果,发现其具有明显的阶段性变化特征,即2003—2006年呈明显下降趋势,约为-0.86cm·a-1,在2007—2010年趋于平衡状态,而2011—2013年则呈现缓慢上升趋势约为0.14cm·a-1;联合GRACE数据和GLDAS数据反演了黑河流域地下水储量变化,并与全球降雨数据GPCC进行了比较分析,两者相关性可达到0.88以上.  相似文献   

6.
In this study, a scheme is presented to estimate groundwater storage variations in Iran. The variations are estimated using 11 years of Gravity Recovery and Climate Experiments (GRACE) observations from period of 2003 to April 2014 in combination with the outputs of Global Land Data Assimilation Systems (GLDAS) model including soil moisture, snow water equivalent, and total canopy water storage. To do so, the sums of GLDAS outputs are subtracted from terrestrial water storage variations determined by GRACE observations. Because of stripping errors in the GRACE data, two methodologies based on wavelet analysis and Gaussian filtering are applied to refine the GRACE data. It is shown that the wavelet approach could better localize the desired signal and increase the signal‐to‐noise ratio and thus results in more accurate estimation of groundwater storage variations. To validate the results of our procedure in estimation of ground water storage variations, they are compared with the measurements of pisometric wells data near the Urmia Lake which shows favorable agreements with our results.  相似文献   

7.
Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude (f GRACE) and time series of monthly TWS (f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is mainly caused by the attenuation of the TWS differences between water abstraction variants due to the filtering required for GRACE TWS. Regarding GPS, station density is too low. Only if water abstractions lead to long-term changes in TWS by depletion or restoration of water storage in groundwater or large surface water bodies, GRACE may be used to support the quantification of human water abstractions.  相似文献   

8.
Gravity Recovery and Climate Experiment (GRACE) satellite mission is ground-breaking information hotspot for the evaluation of groundwater storage. The present study aims at validating the sensitivity of GRACE data to groundwater storage variation within a basaltic aquifer system after its statistical downscaling on a regional scale. The basaltic aquifer system which covers 82.06% area of Maharashtra state in India, is selected as the study area. Five types of basaltic aquifer systems with varying groundwater storage capacities, based on hydrologic characteristics, have been identified within the study area. The spatial and seasonal trend analysis of observed in situ groundwater storage anomalies (ΔGWSano) computed from groundwater level data of 983 wells from the year 2002 to 2016, has been performed to analyze the variation in groundwater storages in the different basaltic aquifer system. The groundwater storage anomalies (ΔGWSDano) have been derived from GRACE Release 05 (RL05) after removing the soil moisture anomaly (ΔSMano) and canopy water storage anomaly (ΔCNOano) obtained from Global Land Data Assimilation System (GLDAS) land surface models (NOAH, MOSAIC, CLM and VIC). The artificial neural network technique has been used to downscale the GRACE and GLDAS data at a finer spatial resolution of 0.125°. The study shows that downscaled GRACE and GLDAS data at a finer spatial resolution is sensitive to seasonal groundwater storage variability in different basaltic aquifer systems and the regression coefficient R has been found satisfactory in the range of 0.696 to 0.818.  相似文献   

9.
Freshwater resources in the arid Arabian Peninsula, especially transboundary aquifers shared by Saudi Arabia, Jordan, and Iraq, are of critical environmental and geopolitical significance. Monthly Gravity Recovery and Climate Experiment (GRACE) satellite‐derived gravity field solutions acquired over the expansive Saq transboundary aquifer system were analysed and spatiotemporally correlated with relevant land surface model outputs, remote sensing observations, and field data to quantify temporal variations in regional water resources and to identify the controlling factors affecting these resources. Our results show substantial GRACE‐derived terrestrial water storage (TWS) and groundwater storage (GWS) depletion rates of ?9.05 ± 0.25 mm/year (?4.84 ± 0.13 km3/year) and ?6.52 ± 0.29 mm/year (?3.49 ± 0.15 km3/year), respectively. The rapid decline is attributed to both climatic and anthropogenic factors; observed TWS depletion is partially related to a decline in regional rainfall, while GWS depletions are highly correlated with increasing groundwater extraction for irrigation and observed water level declines in regional supply wells.  相似文献   

10.
Previous studies indicate that water storage over a large part of the Middle East has been decreased over the last decade. Variability in the total (hydrological) water flux (TWF, i.e., precipitation minus evapotranspiration minus runoff) and water storage changes of the Tigris–Euphrates river basin and Iran’s six major basins (Khazar, Persian, Urmia, Markazi, Hamun, and Sarakhs) over 2003–2013 is assessed in this study. Our investigation is performed based on the TWF that are estimated as temporal derivatives of terrestrial water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) products and those from the reanalysis products of ERA-Interim and MERRA-Land. An inversion approach is applied to consistently estimate the spatio-temporal changes of soil moisture and groundwater storage compartments of the seven basins during the study period from GRACE TWS, altimetry, and land surface model products. The influence of TWF trends on separated water storage compartments is then explored. Our results, estimated as basin averages, indicate negative trends in the maximums of TWF peaks that reach up to ?5.2 and ?2.6 (mm/month/year) over 2003–2013, respectively, for the Urmia and Tigris–Euphrates basins, which are most likely due to the reported meteorological drought. Maximum amplitudes of the soil moisture compartment exhibit negative trends of ?11.1, ?6.6, ?6.1, ?4.8, ?4.7, ?3.8, and ?1.2 (mm/year) for Urmia, Tigris–Euphrates, Khazar, Persian, Markazi, Sarakhs, and Hamun basins, respectively. Strong groundwater storage decrease is found, respectively, within the Khazar ?8.6 (mm/year) and Sarakhs ?7.0 (mm/year) basins. The magnitude of water storage decline in the Urmia and Tigris–Euphrates basins is found to be bigger than the decrease in the monthly accumulated TWF indicating a contribution of human water use, as well as surface and groundwater flow to the storage decline over the study area.  相似文献   

11.
The interaction between surface water and groundwater is an important aspect of hydrological processes. Despite its importance, groundwater is not well represented in many land surface models. In this study, a groundwater module with consideration of surface water and groundwater dynamic interactions is incorporated into the distributed biosphere hydrological (DBH) model in the upstream of the Yellow River basin, China. Two numerical experiments are conducted using the DBH model: one with groundwater module active, namely, DBH_GW and the other without, namely, DBH_NGW. Simulations by two experiments are compared with observed river discharge and terrestrial water storage (TWS) variation from the Gravity Recovery and Climate Experiment (GRACE). The results show that river discharge during the low flow season that is underestimated in the DBH_NGW has been improved by incorporating the groundwater scheme. As for the TWS, simulation in DBH_GW shows better agreement with GRACE data in terms of interannual and intraseasonal variations and annual changing trend. Furthermore, compared with DBH_GW, TWS simulated in DBH_NGW shows smaller decreases during autumn and smaller increases in spring. These results suggest that consideration of groundwater dynamics enables a more reasonable representation of TWS change by increasing TWS amplitudes and signals and as a consequence, improves river discharge simulation in the low flow seasons when groundwater is a major component in runoff. Additionally, incorporation of groundwater module also leads to wetter soil moisture and higher evapotranspiration, especially in the wet seasons.  相似文献   

12.
The Earth’s surface fluid mass redistribution, e.g., groundwater depletion and severe drought, causes the elastic surface deformation, which can be measured by global positioning system (GPS). In this paper, the continuous GPS observations are used to estimate the terrestrial water storage (TWS) changes in southwestern USA, which have a good agreement with TWS changes derived from Gravity Recovery And Climate Experiment (GRACE) and hydrological models. The seasonal variation is mostly located in the Rocky mountain range and Mississippi river watershed. The largest amplitude of the seasonal variation is between 12 and 15 cm in equivalent water thickness. The timing and duration of TWS anomalies caused by the severe drought in 2012 are observed by the GPS-derived TWS, which are confirmed by the GRACE results. Different hydrological models are further used for comparison with GPS and GRACE results. The magnitude of TWS depletion from GRACE and GPS observations during the drought is larger than that from hydrological models, which indicates that the drought was caused by comparable groundwater and surface water depletion. The interannual TWS changes from GPS are also consistent with the precipitation pattern over the past 6 years, which further confirms the severe drought in 2012. This study demonstrates that continuous GPS observations have the potential as real-time drought indicator.  相似文献   

13.
Water storage depletion is an increasing hydrological threat to agricultural production and social stability across the globe. It is fast approaching threshold levels especially in arid/semiarid regions with low precipitation and excessive evapotranspiration (ET). This study analyses water storage dynamics in the North China Region (NCR) – an important grain‐production base in China. It uses monthly Gravity Recovery and Climate Experiment (GRACE), Global Land Data Assimilation System (GLDAS) and field‐measured precipitation data products for 2002–2009. The datasets are analysed in a basin‐scale water balance equation to determine the state of storage in the NCR study area. Based on the validated satellite‐based data products with field‐measured values, average error/bias in the datasets is <10%. The analysis also shows favourable agreements among the GRACE‐derived and flux‐based storage changes at various temporal scales. Whereas the amplitudes and phases of the precipitation and ET fluxes are largely stable for 2002–2009, those of GLDAS runoff and GRACE total water storage anomaly apparently narrow out. The linear trends in the monthly, seasonal and annual storage changes are negative for the study period, suggesting storage loss. There is an apparent seasonality of storage change in the study area; with summer storage gain, winter storage loss and an overall storage loss that is on the average of 16.8 mm/yr. Storage loss is most severe in the central floodplain region (the main irrigated production zone) of the study area. Storage depletion in this important agro‐based semi‐arid region could have negative implications for the millions of people in the region and beyond in terms of water supply, crop production, food security and social stability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
在无真实观测值的情况下,本文利用广义三角帽方法评估了五种GRACE时变重力场模型(CSR、GFZ、GRGS、HUST发布的球谐系数解和JPL发布的Mascon解)反演中国大陆地区2003-2013年水储量变化的不确定性.研究结果表明,CSR、GFZ、JPL、HUST和GRGS反演月水储量变化不确定性的区域平均RMS分别为14.4 mm、26.3 mm、25.3 mm、26.6 mm和56.1 mm,其中GRGS的结果未恢复泄漏信号;在季和年尺度上,模型的不确定性均小于月尺度;扣除周期和趋势信号后,各模型反演结果更为一致.除长江流域外,CSR在13个流域的不确定性均小于其他模型,GRGS反演各流域水储量变化的不确定性通常较大,且可能高估了温带大陆性气候地区水储量的波动;CSR和JPL的不确定性受流域周边水文特征、气候类型、流域面积和形状的影响相对较小,不确定性变化范围分别为2.3~17.1 mm和5.6~22.5 mm,GFZ和HUST受影响较大,不确定性变化范围分别为5.5~35.1 mm和4.0~40.6 mm.本文的研究结果为GRACE产品不确定性评估提供了新的途径,为GRACE时变重力场模型的选取提供参考.  相似文献   

15.
Global Terrestrial Water Storage Changes and Connections to ENSO Events   总被引:1,自引:0,他引:1  
Improved data quality of extended record of the Gravity Recovery and Climate Experiment (GRACE) satellite gravity solutions enables better understanding of terrestrial water storage (TWS) variations. Connections of TWS and climate change are critical to investigate regional and global water cycles. In this study, we provide a comprehensive analysis of global connections between interannual TWS changes and El Niño Southern Oscillation (ENSO) events, using multiple sources of data, including GRACE measurements, land surface model (LSM) predictions and precipitation observations. We use cross-correlation and coherence spectrum analysis to examine global connections between interannual TWS changes and the Niño 3.4 index, and select four river basins (Amazon, Orinoco, Colorado, and Lena) for more detailed analysis. The results indicate that interannual TWS changes are strongly correlated with ENSO over much of the globe, with maximum cross-correlation coefficients up to ~0.70, well above the 95% significance level (~0.29) derived by the Monte Carlo experiments. The strongest correlations are found in tropical and subtropical regions, especially in the Amazon, Orinoco, and La Plata basins. While both GRACE and LSM TWS estimates show reasonably good correlations with ENSO and generally consistent spatial correlation patterns, notably higher correlations are found between GRACE TWS and ENSO. The existence of significant correlations in middle–high latitudes shows the large-scale impact of ENSO on the global water cycle.  相似文献   

16.
Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 km3/year during 1998–2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 km3/year during 1998–2002. It is the sum of the net abstraction of 250 km3/year of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/year of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.  相似文献   

17.
Most GPS coordinate time series, surface displacements derived from the Gravity Recovery and Climate Experiment (GRACE), and loading models display significant annual signals at many regions. This paper compares the annual signals of the GPS position time series from the Crustal Dynamics Data Information System (CDDIS), estimates of loading from GRACE monthly gravity field models calculated by three processing centers (Center of Spatial Research, CSR; Jet Propulsion Laboratory, JPL; GeoForschungsZentrum, GFZ) and three geophysical fluids models (National Center for Environmental Prediction, NCEP; Estimating the Circulation and Climate of the Ocean, ECCO; Global Land Data Assimilation System, GLDAS) for 270 globally distributed stations for the period 2003-2011. The results show that annual variations derived from the level-2 products from the three GRACE product centers are very similar. The absolute difference in annual amplitude between any two centers is never larger than 1.25 mm in the vertical and 0.11 mm in horizontal displacement. The mean phase differences of the GRACE results are less than ten days for all three components. When we correct the GPS vertical coordinate time series using the GRACE annual amplitudes using the products from three GRACE analysis centers, we find that we are able to reduce the GPS annual signal in the vertical at about 80% stations and the average reduction is about 47%. In the north and the east, the annual amplitude is reduced on 77% and 72% of the stations with the average reduction 32% and 33%. We also compare the annual surface displacement signal derived from two environmental models; the two models use the same atmospheric and non-tidal ocean loading and differ only in the continental water storage model that we use, either NCEP or GLDAS. We find that the model containing the GLDAS continental water storage is able to better reduce the annual signal in the GPS coordinate time series.  相似文献   

18.
West African countries have been exposed to changes in rainfall patterns over the last decades, including a significant negative trend. This causes adverse effects on water resources of the region, for instance, reduced freshwater availability. Assessing and predicting large-scale total water storage (TWS) variations are necessary for West Africa, due to its environmental, social, and economical impacts. Hydrological models, however, may perform poorly over West Africa due to data scarcity. This study describes a new statistical, data-driven approach for predicting West African TWS changes from (past) gravity data obtained from the gravity recovery and climate experiment (GRACE), and (concurrent) rainfall data from the tropical rainfall measuring mission (TRMM) and sea surface temperature (SST) data over the Atlantic, Pacific, and Indian Oceans. The proposed method, therefore, capitalizes on the availability of remotely sensed observations for predicting monthly TWS, a quantity which is hard to observe in the field but important for measuring regional energy balance, as well as for agricultural, and water resource management. Major teleconnections within these data sets were identified using independent component analysis and linked via low-degree autoregressive models to build a predictive framework. After a learning phase of 72 months, our approach predicted TWS from rainfall and SST data alone that fitted to the observed GRACE-TWS better than that from a global hydrological model. Our results indicated a fit of 79 % and 67 % for the first-year prediction of the two dominant annual and inter-annual modes of TWS variations. This fit reduces to 62 % and 57 % for the second year of projection. The proposed approach, therefore, represents strong potential to predict the TWS over West Africa up to 2 years. It also has the potential to bridge the present GRACE data gaps of 1 month about each 162 days as well as a—hopefully—limited gap between GRACE and the GRACE follow-on mission over West Africa. The method presented could also be used to generate a near-real-time GRACE forecast over the regions that exhibit strong teleconnections.  相似文献   

19.
There is some evidence of rapid changes in the global atmosphere and hydrological cycle caused by the influence of climate variability. In West Africa, such changes impact directly on water resources leading to incessant extreme hydro‐meteorological conditions. This study examines the association of three global climate teleconnections—El‐Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Atlantic Multi‐decadal Oscillation (AMO) with changes in terrestrial water storage (TWS) derived from both Modern‐Era Retrospective Analysis for Research and Applications (MERRA, 1980–2015) and Gravity Recovery and Climate Experiment (GRACE, 2002–2014). In the Sahel region, positive phase of AMO coincided with above‐normal rainfall (wet conditions) and the negative phase with drought conditions and confirms the observed statistically significant association (r = 0.62) between AMO and the temporal evolutions of standardised precipitation index. This relationship corroborates the observed presence of AMO‐driven TWS in much of the Sahel region (though considerably weak in some areas). Although ENSO appears to be more associated with GRACE‐derived TWS over the Volta basin (r =?0.40), this study also shows a strong presence of AMO‐ and ENSO‐induced TWS derived from MERRA reanalysis data in the coastal West African countries and most of the regions below latitude 10°N. The observed presence of ENSO‐ and AMO‐driven TWS is noticeable in tropical areas with relatively high annual/bimodal rainfall and strong inter‐annual variations in surface water. The AMO has a wider footprint and sphere of influence on the region's TWS and suggests the important role of North Atlantic Ocean. IOD‐related TWS also exists in West Africa and its influence on the region's hydrology maybe secondary and somewhat complementary. Nonetheless, presumptive evidence from the study indicates that ENSO and AMO are the two major climatic indices more likely to impact on West Africa's TWS.  相似文献   

20.
青藏高原GRACE卫星重力长期变化   总被引:3,自引:0,他引:3       下载免费PDF全文
刘杰  方剑  李红蕾  崔荣花  陈铭 《地球物理学报》2015,58(10):3496-3506
本文采用最新的GRACE(Gravity Recovery and Climate Experiment)(RL05)数据,通过水文模型(Global Land Data Assimilation System,GLDAS与Climate Prediction Center,CPC)扣除土壤水及雪水的影响,利用Paulson提供的冰川模型结果扣除GIA(Glacial Isostatic Adjustment)的影响,采用尺度因子的方法减少数据处理过程中误差的影响,最终基于最小二乘计算方法得到2003—2013中国及周边地区长期性重力异常变化情况.结果发现青藏高原有较为明显的重力上升信号,我们认为该信号可能由印度板块俯冲欧亚板块导致青藏高原地壳增厚所引起.接着依据GPS观测结果和艾黎均衡假说构建了地壳形变模型并通过直立长方体模型予以正演模拟分析.以班公湖—怒江断裂带为界将青藏高原划分为南北两大区块,结果显示青藏高原重力异常大致以0.2μGal·a-1的速率在递增,小于GRACE得到的0.3±0.08μGal·a-1的增长速率(对应于地壳增厚速率约3mm·a-1),剩余未解释部分可能与湖水、冰川因素、冻土因素等有关.该结果对于认识青藏高原隆升动力学有一定参考意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号