首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sediments of Early Aptian age in Bulgaria can be assigned to four different facies: platform carbonates (Urgonian complex), shallow-water siliciclastics, hemipelagic and flyschoid siliciclastics. The taxonomic analysis of the ammonite faunas of 18 sections from these four different facies resulted in a revision of the existing ammonite zonation scheme so far applied in Bulgaria and adjoining areas. A new biostratigraphic scheme, which bridges the western and eastern Tethys, is thereby proposed for the Lower Aptian of Bulgaria.The Upper Barremian Martelites sarasini Zone is characterized in its upper part by the Pseudocrioceras waagenoides Subzone in the shallow-water sections and by a horizon with Turkmeniceras turkmenicum in the deep-water settings. The Upper Barremian/Lower Aptian boundary is fixed by the first appearance of Paradeshayesites oglanlensis. For the Lower Aptian the following ammonite zones were established (from bottom to top): The Paradeshayesites oglanlensis Zone, the Deshayesites forbesi Zone (= formerly Paradeshayesites weissi Zone) including the Roloboceras hambrovi Subzone in the upper part, the Deshayesites deshayesi Zone including the Paradeshayesites grandis Subzone in the upper part and the Dufrenoyia furcata Zone. The Lower–Middle Aptian boundary has been defined by the appearance of species belonging to the genera Epicheloniceras and Colombiceras.The Lower Aptian ammonite faunas of Bulgaria, allow an interregional correlation with other areas of the Tethyan Realm. The presence of Turkmeniceras in the Upper Barremian enables a correlation with the Transcaspian region, whereas Roloboceras, Koeneniceras and Volgoceratoides found in the middle part of the Lower Aptian are more typical representatives of the ammonite faunas in northern Europe (England, Germany, Volga region).The analysis of the ammonite successions in combination with sedimentological observations enable us to conclude that the marls and marly limestones of the Lower Aptian studied here also cover the interval of the Oceanic Anoxic Event 1a. An interval of thin-laminated clays, rich in organic matter, was identified in the upper part of the D. forbesi Zone (Roloboceras hambrovi Subzone). This interval is characterized by a total lack of benthic faunas.  相似文献   

2.
New volatile data (CO2, H2O, He, Ne, and Ar) are presented for 24 submarine basaltic glasses from the Kolbeinsey Ridge, Tjörnes Fracture Zone and Mohns Ridge, North Atlantic. Low CO2 and He contents indicate that magmas were strongly outgassed with the extent of degassing increasing toward the south, as expected from shallower ridge depths. Ne and Ar are significantly more abundant in the southernmost glasses than predicted for degassed melt. The strong atmospheric isotopic signal associated with this excess Ne and Ar suggests syn- or posteruptive contamination by air. Degassing, by itself, cannot generate the large variations in δ13C values of dissolved CO2 or coupled CO2-Ar variations. This suggests that δ13C values were also affected by some other processes, most probably melt-crust interaction. Modelling indicates that degassing had a negligible influence on water owing to its higher solubility in basaltic melt than the other volatiles. Low H2O contents in the glasses reflect melting of a mantle source that is not water-rich relative to the source of N-MORB.Before eruption, Kolbeinsey Ridge melts contained ∼400 ppm CO2 with δ13C of −6‰, 0.1 to 0.35 wt.% H2O, 3He/4He ∼11 RA, and CO2/3He of ∼2 × 109. We model restored volatile characteristics and find homogeneous compositions in the source of Kolbeinsey Ridge magmas. Relative to the MORB-source, He and Ne are mildly fractionated while the 40Ar/36Ar may be low. The 3He/4He ratios in Tjörnes Fracture Zone glasses are slightly higher (13.6 RA) than on Kolbeinsey Ridge, suggesting a greater contribution of Icelandic mantle from the south, but the lack of 3He/4He variation along the Kolbeinsey Ridge is inconsistent with active dispersal of Icelandic mantle beyond the Tjörnes Fracture Zone.  相似文献   

3.
This study was conducted on recent desert samples—including (1) soils, (2) plants, (3) the shell, and (4) organic matter from modern specimens of the land snail Eremina desertorum—which were collected at several altitudes (316–360 m above sea level) from a site in the New Cairo Petrified Forest. The soils and shellE. desertorum were analyzed for carbonate composition and isotopic composition (δ18O, δ13C). The plants and organic matterE. desertorum were analyzed for organic carbon content and δ13C. The soil carbonate, consisting of calcite plus minor dolomite, has δ18O values from −3.19 to −1.78‰ and δ13C values −1.79 to −0.27‰; covariance between the two values accords with arid climatic conditions. The local plants include C3 and C4 types, with the latter being dominant. Each type has distinctive bulk organic carbon δ13C values: −26.51 to −25.36‰ for C3-type, and −13.74 to −12.43‰ for C4-type plants.The carbonate of the shellE. desertorum is composed of aragonite plus minor calcite, with relatively homogenous isotopic compositions (δ18Omean = −0.28 ± 0.22‰; δ13Cmean = −4.46 ± 0.58‰). Most of the δ18O values (based on a model for oxygen isotope fractionation in an aragonite-water system) are consistent with evaporated water signatures. The organic matterE. desertorum varies only slightly in bulk organic carbon δ13C values (−21.78 ± 1.20‰) and these values suggest that the snail consumed more of C3-type than C4-type plants. The overall offset in δ13C values (−17.32‰) observed between shellE. desertorum carbonate and organic matterE. desertorum exceeds the value expected for vegetation input, and implies that 30% of carbon in the shellE. desertorum carbonate comes from the consumption of limestone material.  相似文献   

4.
Sections through Lower Jurassic epicontinental carbonates from Southern Britain (Junction Bed and equivalent) show a positive carbon-isotope excursion (δ13Ccarbonate), detectable in bulk rock, in the falciferum Zone of the lower Toarcian. Isotopic data from organic matter in more clay-rich sections from Wales and north-east England, together with determinations on belemnite calcite, indicate that highest δ13C values are localized in the upper exaratum Subzone of the falciferum Zone. Levels of particular enrichment in organic carbon were developed in the early to mid-exaratum Subzone and hence pre-date this δ13C maximum. These phenomena reflect the impact of the early Toarcian oceanic anoxic event in the British area. Similar isotopic trends have been recorded in other Toarcian sections from Tethyan Europe and are interpreted as reflecting the chemistry of sea water. On the assumption of isotopic correlation between the English and Tethyan sections, the δ13C maximum would be everywhere dated as latest exaratum Subzone in terms of the north European ammonite scheme. Absolute oxygen-isotope values in carbonates probably reflect both early diagenetic cementation and later temperature-related burial diagenesis, although a palaeotemperature maximum is tentatively identified as characterizing the early falciferum Zone. Subsequent climatic deterioration may have been triggered by drawdown of CO2, related to regional excess carbon burial during the oceanic anoxic event. Using the positive δ13C excursion as a correlative level in sections from different faunal provinces (Britain, Italy and Spain) implies that lower Toarcian zonal stratigraphy is diachronous between northern and southern Europe. There is evidence for partitioning of water masses between the north European shelf and the Tethyan continental margin during the Early Jurassic.  相似文献   

5.
The 5th meeting of the IUGS Lower Cretaceous Ammonite Working Group (the Kilian Group) held in Ankara, Turkey, 31st August 2013, discussed the Mediterranean ammonite zonation, and its calibration with different ammonite zonal schemes of the Boreal, Austral and Central Atlantic realms. Concerning the standard zonation, that corresponds to the zonal scheme of the West Mediterranean province, some changes have been made on two stages. For the Valanginian, the Busnardoites campylotoxus Zone was abandoned; the upper part of the lower Valanginian is now characterised by the Neocomites neocomiensiformis and Karakaschiceras inostranzewi zones. For the upper Barremian, the former Imerites giraudi Zone is here subdivided into two zones, a lower I. giraudi Zone and an upper Martellites sarasini Zone. The I. giraudi Zone is now subdivided into the I. giraudi and Heteroceras emerici subzones, previously considered as horizons. The current M. sarasini and Pseudocrioceras waagenoides subzones correspond to the lower and upper parts of the M. sarasini Zone, respectively. The Anglesites puzosianum Horizon is kept. The Berriasian, Hauterivian, Aptian and Albian zonal schemes have been discussed but no change was made. The upper Hauterivian zonal scheme of the Georgian (Caucasus) region (East Mediterranean province) has been compared with the standard zonation. Discussions and some attempts at correlations are presented here between the standard zonation and the zonal schemes of different palaeobiogeographical provinces: the North-West European area for the Valanginian and Hauterivian, the Argentinean region for the Berriasian, Valanginian and Hauterivian, and the Mexican area for the Valanginian–Hauterivian and Aptian–lower Albian. The report concludes with some proposals for future work.  相似文献   

6.
The Iju Cu porphyry is located in the NW part of the Kerman Magmatic Copper Belt (KMCB). It is related to a ~ 9 Ma granodiorite porphyry intrusion, with three main stages of hydrothermal activity. The homogenization temperatures for the fluid inclusions are in the ranges of 200–494 °C, and their salinities vary from 4.0 to 42.8 wt% NaCl equiv., which are typical magmatic-hydrothermal fluids. The δ34S values of sulfides range from −0.4 to +3.2 ‰ (V-CDT), and the δ34S values of anhydrite samples range from +11.6 to +16.8 ‰. The δ34S values of sulfides show a narrow range, implying a homogeneous sulfur source. The oxygen isotopic composition of hydrothermal water in equilibrium with quartz samples ranges from +3.4 to +6.0 ‰ (V-SMOW) consistent with the hydrothermal fluids having a magmatic signature, but diluted with meteoric waters in the main mineralizing stage. The most important factors responsible for metal precipitation in the Iju porphyry deposit are fluid boiling, oxygen fugacity decrease and cooling followed by dilution with meteoric water. The primary fluids of the Iju Cu deposit are characterized by relatively high temperature and moderate salinity, and are CO2-rich, indicating a typical post-collisional porphyry system.  相似文献   

7.
The carbon isotopic composition of CO2 inclusions trapped in minerals reflects the origin and evolution of CO2-bearing fluids and melts, and records the multiple-stages carbon geodynamic cycle, as CO2 took part in various geological processes widely. However, the practical method for determination isotope composition of individual CO2 inclusion is still lacking. Developing a microanalytical technique with spatial resolution in micrometers to precisely determinate the δ13C value of individual CO2 inclusion, will make it possible to analyze a tiny portion of a zoning mineral crystal, distinguish the differences in micro-scale, and possible to find many useful information that could not be obtained with the bulk extraction and analysis techniques. In this study, we systematically collected Raman spectra of CO2 standards with different δ13C values (?34.9 ‰ to 3.58 ‰) at 32.0 °C and from ~7.0 MPa to 120.0 MPa, and developed a new procedure to precisely determinate the δ13C value of individual CO2 inclusion. We investigated the relationship among the Raman peak intensity ratio, δ13C value, and CO2 density, and established a calibration model with high accuracy (0.5 ‰?1.5 ‰), sufficient for geological application to distinguish different source of CO2 with varying δ13CO2. As a demonstration, we measured the δ13C values and the density of CO2 inclusions in the growth zones of alkali basalt-hosted corundum megacrysts from Changle, Shandong Province. We found the significant differences of density and δ13C between the CO2 inclusions in the core of corundum and those inclusions in the outer growth zones, the δ13C value decreases from core to rim with decreasing density: δ13C values are from ?7.5 ‰ to ?9.2 ‰ for the inclusions in the core, indicating the corundum core was crystallized from mantle-derived magmas; from ?13.5 ‰ to ?18.5 ‰ for CO2 inclusions in zone 1 and from ?16.5 ‰ to –22.0 ‰ for inclusions in zone 2, indicating the outer zones of corundum grew in a low δ13C value environment, resulted from an infilling of low δ13C value fluid and/or degassing of the ascending basaltic magma.  相似文献   

8.
Free and sulfur-bound biomarkers in sediments deposited in the northern proto North Atlantic (Newfoundland Basin, ODP Site 1276) during the Cenomanian–Turonian oceanic anoxic event 2 (OAE-2) were studied. The δ13C records of phytane and lycopane confirmed the stratigraphic position of the positive carbon isotope excursion associated with OAE-2, previously reported for total organic carbon (TOC) and β,β-homohopane. Sediments before and after the OAE-2 interval were poor in organic matter (OM) and comprised numerous gravity flow deposits. The interval itself was composed of pelagic sediments with occasionally a much higher TOC content of up to 12.7%. The OAE-2 sediments were characterized by a low amount of terrestrial OM since the dominant biological sources of the biomarkers were aquatic in origin. High hopane, pentamethylicosane (PMI), and squalane abundances in the OM-rich sediments pointed to a relatively high input of prokaryotes, partly derived from cyanobacteria, as suggested by the occasional occurrence of 2-methylhopanes. PMI comprised both the regular and irregular isomer and changes in the δ13C of PMI are thought to reflect contributions from methanogenic and methanotrophic archea. The high relative concentration of lycopane indicated that bottom water conditions were anoxic during large parts of the OAE-2 interval. In one horizon, trace amounts of isorenieratane provided evidence for the occasional occurrence of photic zone anoxia. Taken together, the data imply that oceanic anoxia, and probably also high productivity, reached the northernmost part of the proto-North Atlantic during OAE-2, albeit that photic zone anoxia was much less common than in the southern proto-North Atlantic.  相似文献   

9.
The changes in macrofauna and microfauna, before, during and after the latest Cenomanian global Oceanic Anoxic Event (OAE2), from the Eastern Desert of Egypt are documented, along with an inferred paleoenvironment. The age of the studied OAE2 interval is constrained by the last occurrence of the marker calcareous nannofossils species Axopodorhabdus albianus along with the previously identified positive δ13C excursion from the coeval ammonite Vascoceras cauvini Zone (= Neocardioceras juddii Zone), enabling correlation with the peak ‘b’ of the OAE2. Based on the studied microfaunal assemblages, a warm shallow restricted lagoonal environment with mesotrophic conditions and strong seasonality is inferred. The presence of a rare ammonite (and ostracods) attest to the intermittent introduction of marine waters within this inner ramp setting. In terms of sequence stratigraphy, two 3rd order depositional sequences are recorded. The top surface of the first depositional sequence, at the sequence boundary, SB Ce 5 (the start of the OAE2), is marked by an abrupt faunal change with reduced abundances of the macrofaunal elements. This is in tune with other Egyptian records of relatively smaller loss (10 %) at the Cenomanian-Turonian boundary, as compared to much higher numbers (53–79% of species), globally. This faunal (biotic bottleneck) and lithological change (from siliciclastic-dominated deposits to a largely carbonate-dominated one) at the SB Ce 5 is attributed as a response to the latest Cenomanian drowning (the highest sea-level during the Phanerozoic), that also resulted in the formation of carbonate platform.  相似文献   

10.
Cyclostratigraphic analyses of Upper Pliensbachian and Lower Toarcian carbon-13 isotope (δ13C) data, together with radiometric dating, are used to calibrate biozones and magnetic chrons in the Astronomical Time Scale (ATS). In turn, the ATS is used to date sea-level and climate cycles in relation to the Early Toarcian carbon-isotope excursion (T-CIE) and the Karoo-Ferrar Large Igneous Provinces. The resulting chronology however is insufficiently accurate to determine if these global-scale events are causally related. In particular, cyclostratigraphic analyses typically underestimate the durations of biozones by failing to account for hiatuses in depositional discontinuities. To account for hiatuses this paper constructs a δ13C reference curve consisting of correlative segments from several localities and dates them with ammonite zones and subzones. By comparing the reference curve to those from numerous localities, four major discontinuity-prone intervals were identified and named ‘stratigraphic black holes’ (SBH). SBH 1 occurs in the Late Pliensbachian P. spinatum Zone. Early Toarcian SBH 2 occurs in a δ13C maximum interval in middle D. tenuicostatum Zone. The T-CIE is characterized by a decreasing δ13C trend (c. 0.4 myr falling limb) in D. semicelatum Subzone, a minimum δ13C interval (c. 0.4 myr valley) and an increasing δ13C trend (c. 0.4 myr rising limb) in the E. elegantulum Subzone. SBH 3 occurs at base T-CIE rising limb and SBH 4 near its top or above it in a c. 0.4 myr, post-T-CIE plateau in upper E. elegantulum Subzone. Comparisons to published floating chronologies resulted in an Early Toarcian timescale with ~1.0 myr for the D. tenuicostatum Zone, and ~1.6 myr for the H. serpentinum Zone. Initial volcanism in the Karoo Province correlates with the Pliensbachian/Toarcian boundary at ~183.6 Ma, while its second phase was coeval with the T-CIE. Volcanism in the Ferrar Province correlates with the T-CIE.  相似文献   

11.
The Baiyangping Cu–Ag polymetallic ore district is located in the northern part of the Lanping–Simao foreland fold belt, which lies between the Jinshajiang–Ailaoshan and Lancangjiang faults in western Yunnan Province, China. The source of ore-forming fluids and materials within the eastern ore zone were investigated using fluid inclusion, rare earth element (REE), and isotopic (C, O, and S) analyses undertaken on sulfides, gangue minerals, wall rocks, and ores formed during the hydrothermal stage of mineralization. These analyses indicate: (1) The presence of five types of fluid inclusion, which contain various combinations of liquid (l) and vapor (v) phases at room temperature: (a) H2O (l), (b) H2O (l) + H2O (v), (c) H2O (v), (d) CmHn (v), and (e) H2O (l) + CO2 (l), sometimes with CO2 (v). These inclusions have salinities of 1.4–19.9 wt.% NaCl equivalents, with two modes at approximately 5–10 and 16–21 wt.% NaCl equivalent, and homogenization temperatures between 101 °C and 295 °C. Five components were identified in fluid inclusions using Raman microspectrometry: H2O, dolomite, calcite, CH4, and N2. (2) Calcite, dolomitized limestone, and dolomite contain total REE concentrations of 3.10–38.93 ppm, whereas wall rocks and ores contain REE concentrations of 1.21–196 ppm. Dolomitized limestone, dolomite, wall rock, and ore samples have similar chondrite-normalized REE patterns, with ores in the Huachangshan, Xiaquwu, and Dongzhiyan ore blocks having large negative δCe and δEu anomalies, which may be indicative of a change in redox conditions during fluid ascent, migration, and/or cooling. (3) δ34S values for sphalerite, galena, pyrite, and tetrahedrite sulfide samples range from −7.3‰ to 2.1‰, a wide range that indicates multiple sulfur sources. The basin contains numerous sources of S, and deriving S from a mixture of these sources could have yielded these near-zero values, either by mixing of S from different sources, or by changes in the geological conditions of seawater sulfate reduction to sulfur. (4) The C–O isotopic analyses yield δ13C values from ca. zero to −10‰, and a wider range of δ18O values from ca. +6 to +24‰, suggestive of mixing between mantle-derived magma and marine carbonate sources during the evolution of ore-forming fluids, although potential contributions from organic carbon and basinal brine sources should also be considered. These data indicate that ore-forming fluids were derived from a mixture of organism, basinal brine, and mantle-derived magma sources, and as such, the eastern ore zone of the Baiyangping polymetallic ore deposit should be classified as a “Lanping-type” ore deposit.  相似文献   

12.
The subject of the study was the taxonomy of the ammonite fauna from the Upper Barremian marls and marly limestones of the Donji Milanovac Formation outcropped at the Boljetin Hill (Danubicum Unit). These sediments yielded a rich ammonite fauna which included also representatives of two superfamilies, Desmoceratoidea and Silesitoidea. The Desmoceratoidea include the family Barremitidae to which belong Plesiospitidiscus boljetinensis n. sp., Barremites balkanicus, Montanesiceras breskovskii n. sp., Barremitites strettostoma strettostoma and B. panae, Torcapella serbiensis n. sp., Pseudohaploceras tachthaliae, P. portaeferreae, Melchiorites haugi and Patruliusiceras cf. crenelatum. The Silesitoidea are represented by the family Silesitidae with Silesites trajani and S. seranonis. With the exception of the new, possibly endemic species, Plesiospitidiscus boljetinensis n. sp., Montanesiceras breskovskii n. sp., and Torcapella serbiensis n. sp., these taxa are common in the Tethyan regions. The studied deposits with ammonites belong to the lower part of the Late Barremian, in particular to the upper part of the Toxancyloceras vandenheckii ammonite Zone up to the lower part of the Imerites giraudi Zone.  相似文献   

13.
Carbonate cements in late Dinantian (Asbian and Brigantian) limestones of the Derbyshire carbonate platform record a diagenetic history starting with early vadose meteoric cementation and finishing with burial and localized mineral and oil emplacement. The sequence is documented using cement petrography, cathodoluminescence, trace element geochemistry and C and O isotopes. The earliest cements (Pre-Zone 1) are locally developed non-luminescent brown sparry calcite below intrastratal palaeokarsts and calcretes. They contain negligible Fe, Mn and Sr but up to 1000 ppm Mg. Their isotopic compositions centre around δ18O =?8.5‰, δ13C=?5.0‰. Calcretes contain less 13C. Subsequent cements are widespread as inclusion-free, low-Mg, low-Fe crinoid overgrowths and are described as having a‘dead-bright-dull’cathodoluminescence. The‘dead’cements (Zone 1) are mostly non-luminescent but contain dissolution hiatuses overlain by finely detailed bright subzones that correlate over several kilometres. Across‘dead'/bright subzones there is a clear trend in Mg (500–900 ppm), Mn (100–450 ppm) and Fe (80-230 ppm). Zone 1 cements have isotopic compositions centred around δ18O =?8.0‰ and δ13C=?2.5‰. Zone 2 cement is bright, thin and complexly subzoned. It is geochemically similar to bright subzones of Zone 1 cements. Dull Zone 3 cement pre-dates pressure dissolution and fills 70% or more of the pore space. It generally contains little Mn, Fe and Sr but can have more than 1000 ppm Mg, increasing stratigraphically upwards. The δ18O compositions range from ?5.5 to ?15‰ and the δ13C range is ?1 to + 3.20/00. Zone 4 fills veins and stylolite seams in addition to pores. It is synchronous with Pb, Ba, F ore mineralization and oil migration. Zone 4 is ferroan with around 500 ppm Fe, up to 2500 ppm Mg and up to 1500 ppm Mn. Isotopic compositions range widely; δ15O =?2.7 to ?9‰ and δ13C=?3.8 to+2.50‰. Unaltered marine brachiopods suggest a Dinantian seawater composition around δ15O = 0‰ (SMOW), but vital isotopic effects probably mask the original δ13C (PDB) value. Pre-Zone 1 calcites are meteoric vadose cements with light soil-derived δ13C and light meteoric δ18O. An unusually fractionated‘pluvial’δ15O(SMOW) value of around — 6‰ is indicated for local Dinantian meteoric water. Calcrete δ18O values are heavier through evaporation. Zone 1 textures and geochemistry indicate a meteoric phreatic environment. Fe and Mn trends in the bright subzones indicate stagnation, and precipitation occurred in increments from widespread cyclically developed shallow meteoric water bodies. Meteoric alteration of the rock body was pervasive by the end of Zone 1 with a general resetting of isotopic values. Zone 3 is volumetrically important and external sources of water and carbonate are required. Emplacement was during the Namurian-early Westphalian by meteoric water sourced at a karst landscape on the uplifted eastern edge of the Derbyshire-East Midland shelf. The light δ18O values mainly reflect burial temperatures and an unusually high local heat flow, but an input of highly fractionated hinterland-derived meteoric water at the unconformity is also likely. Relatively heavy δ13C values reflect the less-altered state of the source carbonate and aquifer. Zone 4 is partly vein fed and spans burial down to 2000 m and the onset of tectonism. Light organic-matter-derived δ13C and heavy δ18O values suggest basin-derived formation water. Combined with textural evidence of geopressures, this relates to local high-temperature ore mineralization and oil migration. Low water-to-rock ratios with host-rock buffering probably affected the final isotopic compositions of Zone 4, masking extremes both of temperature and organic-matter-derived CO2.  相似文献   

14.
In this study, we describe a new stratigraphy of three exposed sections in central Tunisia, integrating Coniacian and Santonian planktic foraminifera and calcareous nannoplankton, supported by ammonite and inoceramid bioevents. In the three sections, the Coniacian/Santonian (C/S) boundary lies slightly above the lowest occurrence (LO) of the calcareous nannofossil Lucianorhabdus cayeuxii, which marks nannofossil Zone CC16 and matches well with the LO of the planktic foraminifera Dicarinella asymetrica. It also lies ∼4–7 m below the LO of the inoceramid Platyceramus cycloides and the ammonite Texanites (Texanites) sp. Comparing these marker C/S bioevents with the global stratotype section, the Olazagutia section (Spain) shows that the stratigraphic range of the bioevents are variable. This observation must be taken into consideration when making regional chronostratigraphic correlations.  相似文献   

15.
To understand Holocene climate evolutions in low-latitude region of the western Pacific, paired δ18O and Mg/Ca records of planktonic foraminifer Globigerinoides ruber (250–300 μm, sensu stricto, s.s.) from a marine core ORI715-21 (121.5°E, 22.7°N, water depth 760 m) underneath the Kuroshio Current (KC) off eastern Taiwan were analyzed. Over the past 7500 years, the geochemical proxy-inferred sea surface temperature (SST) hovered around 27–28 °C and seawater δ18O (δ18OW) slowly decreased 0.2–0.4‰ for two KC sites at 22.7° and 25.3°N. Comparison with a published high-SST and high-salinity equatorial tropical Pacific record, MD98-2181 located at the Mindanao Current (MC) at 6.3°N, reveals an anomalous time interval at 3.5–1.5 kyr ago (before 1950 AD). SST gradient between the MC site and two KC site decrease from 1.5–2.0 °C to only 0–1 °C, and δ18OW from 0.1–0.3‰ to 0‰ for this 2-kyr time window. The high SST and low gradient could result from a northward shift of the North Equatorial Current, which implies a weakened KC. The long-term descending δ18OW and increasing precipitation in the entire low-latitude western Pacific and the gradually decreasing East Asian summer monsoonal rainfall during middle-to-late Holocene is likely caused by different land and ocean responses to solar insolation and/or enhanced moisture transportation from the Atlantic to Pacific associated with the southward movement of ITCZ.  相似文献   

16.
The 4th Kilian Group meeting (Dijon, France, 30th August 2010) focused on the Aptian and Albian Stages. For the Aptian, a two-fold division of the stage was adopted for the Mediterranean area with a boundary between the Dufrenoyia furcata and Epicheloniceras martini Zones. The main changes to the zonal scheme concern the Lower Aptian with: the introduction of a Deshayesites luppovi Subzone in the upper part of the Deshayesites oglanlensis Zone; the replacement of Deshayesites weissi by Deshayesites forbesi as new index-species of the second interval zone; the introduction of a Roloboceras hambrovi Subzone in the upper part of the D. forbesi Zone; and the subdivision of the D. furcata Zone into the D. furcata and Dufrenoyia dufrenoyi Subzones. For the Albian, the upper part of the Douvilleiceras mammillatum Zone (Lower Albian) is now characterized by a Lyelliceras pseudolyelli Subzone. The main amendments concern the Upper Albian. The base of this substage is defined by the base of the Dipoloceras cristatum Zone. Above it, the Upper Albian zonal scheme comprises in stratigraphic order the Mortoniceras pricei, Mortoniceras inflatum, Mortoniceras fallax, Mortoniceras rostratum, Mortoniceras perinflatum and Arrhaphoceras briacensis Zones.  相似文献   

17.
The Lechówka section comprises the most complete Cretaceous–Paleogene (K-Pg) boundary succession in Poland and is among 29 sites worldwide with the youngest ammonite record. Here, cephalopods (ammonites and nautilids), organic-walled dinoflagellates (dinocysts) and foraminifera from the uppermost Maastrichtian interval are studied. In terms of ammonite biostratigraphy, the upper Maastrichtian Hoploscaphites constrictus crassus Zone is documented up to a level 120 cm below the K-Pg boundary. There is no direct, ammonite-based evidence of the highest Maastrichtian H. constrictus johnjagti Zone. However, the predominance of the dinocyst marker taxon Palynodinium grallator suggests the presence of the equivalent of the uppermost Maastrichtian Thalassiphora pelagica Subzone, which is correlatable with the H. c. johnjagti ammonite Zone. The planktonic foraminiferal assemblage is coeval with that from the H. c. johnjagti Zone as well. These data indicate that the top of the Maastrichtian at Lechówka is complete within the limits of biostratigraphic resolution, albeit slightly condensed. The dinocyst and foraminiferal assemblages are dominated by taxa that are characteristic of high-energy, marginal marine environments. A reduction in test size among the calcareous epifaunal benthic foraminifera is observed at a level 50 cm below the K-Pg boundary, which is possibly related to environmental stress associated with Deccan volcanism.  相似文献   

18.
19.
Variation in 13C/12C-isotope ratios of fracture filling calcite was analyzed in situ to investigate carbon sources and cycling in fractured bedrock. The study was conducted by separating sections of fracture fillings, and analyzing the 13C/12C-ratios with secondary ion mass spectrometry (SIMS). Specifically, the study was aimed at fillings where previously published sulfur isotope data indicated the occurrence of bacterial sulfate reduction. The results showed that the δ13C values of calcite were highly variable, ranging from −53.8‰ to +31.6‰ (VPDB). The analysis also showed high variations within single fillings of up to 39‰. The analyzed calcite fillings were mostly associated with two calcite groups, of which Group 3 represents possible Paleozoic fluid circulation, based on comparison with similar dated coatings within the Baltic Shield and the succeeding Group 1–2 fillings represent late-stage, low temperature mineralization and are possibly late Paleozoic to Quaternary in age. Both generations were associated with pyrite with δ34S values indicative of bacterial sulfate reduction. The δ13C values of calcite, however, were indicative of geochemical environments which were distinct for these generations. The δ13C values of Group 3 calcite varied from −22.1‰ to +11‰, with a distinct peak at −16‰ to −12‰. Furthermore, there were no observable depth dependent trends in the δ13C values of Group 3 calcite. The δ13C values of Group 3 calcite were indicative of organic matter degradation and methanogenesis. In contrast to the Group 3 fillings, the δ13C values of Group 1–2 calcite were highly variable, ranging from −53.8‰ to +31.6‰ and they showed systematic variation with depth. The near surface environment of <30 m (bsl) was characterized by δ13C values indicative of degradation of surface derived organic matter, with δ13C values ranging from −30.3‰ to −5.5‰. The intermediate depth of 34–54 m showed evidence of localized methanotrophic activity seen as anomalously 13C depleted calcite, having δ13C values as low as −53.8‰. At depths of ∼60–400 m, positive δ13C values of up to +31.6‰ in late-stage calcite of Group 1–2 indicated methanogenesis. In comparison, high CH4 concentrations in present day groundwaters are found at depths of >300 m. One sample at a depth of 111 m showed a transition from methanogenetic conditions (calcite bearing methanogenetic signature) to sulfate reducing (precipitation of pyrite on calcite surface), however, the timing of this transition is so far unclear. The results from this study gives indications of the complex nature of sulfur and carbon cycling in fractured crystalline environments and highlights the usefulness of in situ stable isotope analysis.  相似文献   

20.
The polymetallic Mykonos vein system in the Cyclades, Greece, consists of 15 tension-gashes filled with barite, quartz, pyrite, sphalerite, chalcopyrite and galena in ca. 13.5 Ma, I-type, Mykonos monzogranite. Zones of silica and chlorite–muscovite alteration are associated with the veins and overprint pervasive silicification, phyllic and argillic alteration that affected large parts of the monzogranite. The mineralization cements breccias and consists of an early barite–silica–pyrite–sphalerite–chalcopyrite assemblage followed by later argentiferous galena. A combination of fluid inclusion and stable isotope data suggests that the barite and associated mineralization were deposited from fluids containing 2 to 17 wt.% NaCl equivalent, at temperatures of ~ 225° to 370 °C, under a hydrostatic pressure of ≤ 100 bars. The mineralizing fluids boiled and were saturated in H2S and SO2.Calculated δ18OH2O and δDH2O, initial 87Sr/86Sr isotope compositions and the trace and REEs elements contents are consistent with a model in which the mineralizing fluids were derived during alteration of the Mykonos intrusion and subsequently mixed with Miocene seawater. Heterogeneities in the calculated δ34SSO4 2 and δ34SH2S compositions of the ore fluids indicate two distinct sources for sulfur, namely of magmatic and seawater origin, and precipitation due to reduction of the SO4 2 during fluid mixing. The physicochemical conditions of the fluids were pH = 5.0 to 6.2, logfS2 =  13.8 to − 12.5, logfO2 =  31.9 to − 30.9, logfH2S(g) =  1.9 to − 1.7, logfTe2 =  7.9 and logα(SO4 2(aq)/H2S(aq)) = + 2.6 to + 5.5. We propose that retrograde mesothermal hydrothermal alteration of the Mykonos monzogranite released barium and silica from the alkali feldspars. Barite was precipitated due to mixing of SO4 2-rich Miocene seawater with the ascending Ba-rich magmatic fluid venting upwards in the pluton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号