首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current contribution presents aspects of the structural style and fault kinematics of the Rus Formation that expose at Jabal Hafit, Al Ain, United Arab Emirates. Although the major structure of Jabal Hafit is an anticlinal fold, fractures (joints and faults) are the prominent structure of the study area. The fractures can be interpreted as the distributed effect of deep-seated basement fault reactivation or to be as reactivation of deep-seated basement faults. These fractures were created during two main tectonic stress regimes. The first is a WNW–ESE S Hmax strike-slip stress regime, responsible for producing E–W to ESE–WNW joints and E–W dextral strike-slip and NNE–SSW reverse faults. This stress is interpreted to be post-Early Eocene in age and related to the second phase of thrusting in the Oman Mountains in the Miocene. The second stress regime is a NNE–SSW S Hmax transtensional (strike-slip extensive) stress regime that was responsible for N–S to NNE–SSW striking joints and NE–SW sinistral strike-slip and N–S normal faults. This regime is interpreted to be post-Middle Eocene in age. This stress was the response to the collision of the Arabian–Eurasian Plates which began during the Late Eocene and continues to the present day.  相似文献   

2.
This paper presents the first paleostress results obtained from displacement and fracture systems within the Lower Eocene sediments at Jabal Hafit, Abu Dhabi Emirate, UAE. Detailed investigation of Paleogene structures at Jabal Hafit reveal the existence of both extensional structures (normal faults) and compressional structures (strike-slip and reverse faults). Structural analysis and paleostress reconstructions show that the Paleogene kinematic history is characterized by the succession of four paleostress stages. Orientation of principal stresses was found from fault-slip data using an improved right-dihedra method, followed by rotational optimisation (TENSOR program).The paleostress results confirm four transtensional tectonic stages (T1–T4) which affected the study area. The first tectonic stage (T1) is characterized by SHmax NW–SE σ2-orientation. This stage produced NW–SE striking joints (tension veins) and E–W to ENE–WSW striking dextral strike-slip faults. The proposed age of this stage is Early Eocene. The second stage (T2) had SHmax N–S σ2-orientation. N–S striking joints and NNE–SSW striking sinistral strike-slip faults, E–W striking reverse faults and N–S striking normal faults were created during this stage. The T2 stage is interpreted to be post-Early Eocene in age. The third stage (T3) is characterized by SHmax E–W σ2-orientation. This stage reactivated the E–W reverse faults as sinistral strike-slip faults and created E–W striking joints and NE–SW reverse faults. The proposed age for T3 is post-Middle Eocene. During the T3 (SHmax E–W σ2-orientation) stage the NNW-plunging Hafit anticline was formed. The last tectonic stage that affected the study area (T4) is characterized by SHmax NE–SW σ2-orientation. During this stage, the ENE–WSW faults were reactivated as sinistral strike-slip and reverse faults. NE–SW oriented joints were also created during the T4 (SHmax NE–SW σ2-orientation) stage. The interpreted age of this stage is post-Middle Miocene time but younger than T3 (SHmax E–W σ2-orientation) stage.  相似文献   

3.
NE Iran, including the Kopeh Dagh and Allah Dagh-Binalud deformation domains, comprises the northeastern boundary of the Arabia–Eurasia collision zone. This study focuses on the evolution of the Plio-Quaternary tectonic regimes of northeast Iran. We present evidence for drastic temporal changes in the stress state by inversion of both geologically and seismically determined fault slip vectors. The inversions of fault kinematics data reveal distinct temporal changes in states of stress during the Plio-Quaternary (since ~ 5 Ma). The paleostress state is characterized by a regional transpressional tectonic regime with a mean N140 ± 10°E trending horizontal maximum stress axis (σ1). The youngest (modern) state of stress shows two distinct strike-slip and compressional tectonic regimes with a regional mean of N030 ± 15°E trending horizontal σ1. The change from the paleostress to modern stress states has occurred through an intermediate stress field characterized by a mean regional N trending σ1. The inversion analysis of earthquake focal mechanisms reveals a homogeneous, transpressional tectonic regime with a regional N023 ± 5°E trending σ1. The modern stress state, deduced from the youngest fault kinematics data, is in close agreement with the present-day stress state given by the inversions of earthquake focal mechanisms. According to our data and the deduced results, in northeast Iran, the Arabia–Eurasia convergence is taken up by strike-slip faulting along NE trending left-lateral and NNW trending right-lateral faults, as well as reverse to oblique-slip reverse faulting along NW trending faults. Such a structural assemblage is involved in a mechanically compatible and homogeneous modern stress field. This implies that no strain and/or stress partitioning or systematic block rotations have occurred in the Kopeh Dagh and Allah Dagh-Binalud deformation domains. The Plio-Quaternary stress changes documented in this paper call into question the extrapolation of the present-day seismic and GPS-derived deformation rates over geological time intervals encompassing tens of millions of years.  相似文献   

4.
Palaeostress results derived from brittle mesoscopic structures on Deception Island (Bransfield Trough, Western Antarctica) show a recent stress field characterized by an extensional regime, with local compressional stress states. The maximum horizontal stress (σy) shows NW–SE and NNE–SSW to NE–SW orientations and horizontal extension (σ3) in NE–SW and WNW–ESE to NW–SE directions. Alignments of mesofractures show a maximum of NNE–SSW orientation and several relative maxima striking N030-050E, N060-080E, N110-120E, and N160-170E. Subaerial and submarine macrofaults of Deception Island show six main systems controlling the morphology of the island: N–S, NNE–SSW, NE–SW, ENE–WSW to E–W, WNW–ESE, and NNW–SSE. Geochemical patterns related to submarine hydrothermally influenced fault and fissure pathways also share the same trends. The orientation of these fault systems is compared to Riedel shear fractures. Following this model, we propose two evolutionary stages from geometrical relationships between the location and orientation of joints and faults. These stages imply a counter-clockwise rotation of Deception Island, which may be linked to a regional left-lateral strike-slip. In addition, the simple shear zone could be a response to oblique convergence between the Antarctic and Pacific plates. This stress direction is consistent with the present-day movements between the Antarctic, Scotia, and Pacific plates. Nevertheless, present basalt-andesitic volcanism and deep earthquake focal mechanisms may indicate rollback of the former Phoenix subducted slab, which is presently amalgamated with the Pacific plate. We postulate that both mechanisms could occur simultaneously.  相似文献   

5.
Coseismic soft-sediment deformation has been studied by structural and tectononophysical methods in the Selenga Delta area shaken by the devastating M ~ 7.5 Tsagan earthquake in 1862. Among the documented deformation structures (seismites), clastic dikes are the most reliable paleoseismic indicators. The dikes have their sizes and extent showing proximity to the primary coseismic rupture zone and are closely associated with faults of different hierarchic levels. The Tsagan event occurred under SW–NE extension as motion on a stepped system of normal faults dipping at 300°–350°, ∠45°–75°.The amount of vertical motion measured against a reference layer in a trench reached 2.83 m, and the maximum dip displacement measured in a single fracture was 0.5 m. The earthquake was generated by the Delta Fault that dips at 60° on average to the northwest.The distribution of quantitative parameters of brittle and brittle-plastic deformation has been analyzed along two profiles, and two new parameters were introduced: indices of mean intensity (I) of clastic dikes and microdikes; the new parameters were calculated by specially developed equations. Summation of significant peaks in all parameters (SUMspp) allowed contouring the zone of most intense soft-sediment deformation near Dubinino Village.Deformation mostly propagated in the NE–SW and N–S directions. The location of the 1862 Tsagan earthquake at 52.35° N and 106.67° E was inferred from the SUMspp value taking into account the dip of the causative fault plane and the average origin depth of earthquakes in the Baikal rift. The approach we used is applicable to locating preinstrumental events.The recurrence of large earthquakes in the area of Proval Bay (Lake Baikal) has been estimated to be 1120–1230 years proceeding from alternating deformed and undeformed sediments in the sections, their thicknesses and deposition rates according to radiocarbon dating. The seismic activity has been associated with the same fault which can generate M ≥ 7 events.  相似文献   

6.
The Orot (Or) and Ermakovka (Er) intrusions of aegirine granites with various resources of accompanying Be mineralization in Transbaikalia were studied to reproduce Be behavior during the crystallization and degassing of alkaline granite magma. Data on the petrography and geochemistry of the rocks and the microthermomety and microprobe analysis of fluid and melt inclusions in them indicate that the intrusions were formed by discrete magma portions derived from a single magmatic source during successive stages of its differentiation. The intrusions crystallized at temperatures higher than 1030–1070°C (Or) and 840–640°C (Er), and the melts contained elevated concentrations of H2O and F: from 2.1 to 3.5% F and from <1 to 1% H2O for the former intrusion and from 3.9 to 6.7% F and from <2.6 to 4.1% H2O for the latter. Fluids were released from the magma during a late crystallization stage for the Orot intrusion and an intermediate stage for the Ermakovka intrusion. Early in the course of this process, the fluids were halide-sulfate brines with the Cl: F ratio higher for the Orot intrusion and lower for the Ermakovka intrusion. A temperature decrease resulted in the exsolution of the fluids into two immiscible phases, one of which contained low and the other high concentrations of salts. The magmatic brines and low-salinity solutions of both intrusions were enriched in Be (up to 1.1 g/kg), which is comparable with the concentration of this element in the emanations of Be-bearing pegmatites in the Pamirs and is manyfold higher than C Be in magmatic fluids related to granite intrusions with W-Sn mineralization. The Be ore mineralization of the Orot and Ermakovka deposits was produced by solutions whose composition and Be concentrations were analogous to those in the low-salinity phase of the corresponding magmatic fluids. The brines of the Ermakovka intrusion were enriched in Mo (up to 17 g/kg) and, to a lesser extent, Mn, Ce, and La and produced uneconomic monazite-molybdenite ore mineralization. Based on available data and results of our calculations, we arrived at the conclusion that the very high alkali concentrations in the melts of both intrusions (ASI < 1), their high F concentrations (up to 4.1%), and the absence of magmatic Be-bearing minerals facilitated Be selective extraction by the separated fluids in the form of its most soluble F-complexes. The high oxidation of the melt predetermined the predominance of hexavalent S and Mo compounds, which could be efficiently extracted by the fluid phase in the form of sulfates and molybdates of alkali metals. The differences in the ore potentials of the Orot and Ermakovka intrusions were caused by the different H2O, F, and perhaps, also Be concentrations in the parental melts, which was, in turn, caused by their different degrees of differentiation during the preintrusive stages of their magmatic evolution.  相似文献   

7.
《地学前缘(英文版)》2019,10(6):2093-2100
In quartzo-feldspathic continental crust with moderate-to-high heat flow,seismic activity extends to depths of 10-20 km,bounded by isotherms in the 350-450 C range.Fluid overpressuring above hydrostatic in seismogenic crust,is heterogeneous but tends to develop in the lower seismogenic zone(basal seismogenic zone reservoir=b.s.z.reservoir) where the transition between hydrostatically pressured and overpressured crust is likely an irregular,time-dependent.3-D interface with overpressuring concentrated around active faults and their ductile shear zone roots.The term Arterial Fault is applied to fault structures that root in portions of the crust where pore fluids are overpressured(i.e.at hydrostatic pressure) and serve as feeders for such fluids and their contained solutes into overlying parts of the crust.While arterial flow may occur on any type of fault,it is most likely to be associated with reverse faults in areas of horizontal compression where fluid overpressuring is most easily sustained.Frictional stability and flow permeability of faults are both affected by the state of stress on the fault(shear stress,τ;normal stress,σ_n),the level of pore-fluid pressure,P_f,and episodes of fault slip,allowing for a complex interplay between fault movement and fluid flow.For seismically active faults the time dependence of permeability is critical,leading to fault-valve behaviour whereby overpressures accumulate at depth during interseismic intervals with fluid discharged along enhanced fault-fracture permeability following each rupture event.Patterns of mineralization also suggest that flow along faults is non-uniform,concentrating along tortuous pathways within the fault surface.Equivalent hydrostatic head above ground level for near-lithostatic overpressures at depth(1.65×depth of zone) provides a measure of arterial potential.Settings for arterial faults include fault systems developed in compacting sedimentary basins,faults penetrating zones of active plutonic intrusion that encounter overpressured fluids exsolved from magma,together with those derived from contact metamorphism of fluid-rich wallrocks,and/or from regional devolatilisation accompanying prograde metamorphism.Specially significant are active faults within accretionary prisms rooted into overpressured subduction interfaces,and steep reverse faults activated by high overpressures from b.s.z.reservoirs during compressional inversion.  相似文献   

8.
We show here that epithermal mineralization in the Guazapares Mining District is closely related to extensional deformation and magmatism during the mid-Cenozoic ignimbrite flare-up of the Sierra Madre Occidental silicic large igneous province, Mexico. Three Late Oligocene–Early Miocene synextensional formations are identified by detailed volcanic lithofacies mapping in the study area: (1) ca. 27.5 Ma Parajes formation, composed of silicic outflow ignimbrite sheets; (2) ca. 27–24.5 Ma Témoris formation, consisting primarily of locally erupted mafic-intermediate composition lavas and interbedded fluvial and debris flow deposits; (3) ca. 24.5–23 Ma Sierra Guazapares formation, composed of silicic vent to proximal ignimbrites, lavas, subvolcanic intrusions, and volcaniclastic deposits. Epithermal low-to intermediate-sulfidation, gold–silver–lead–zinc vein and breccia mineralization appears to be associated with emplacement of Sierra Guazapares formation rhyolite plugs and is favored where pre-to-synvolcanic extensional structures are in close association with these hypabyssal intrusions.Several resource areas in the Guazapares Mining District are located along the easternmost strands of the Guazapares Fault Zone, a NNW-trending normal fault system that hosts most of the epithermal mineralization in the mining district. This study describes the geology that underlies three of these areas, which are, from north to south: (1) The Monte Cristo resource area, which is underlain primarily by Sierra Guazapares formation rhyolite dome collapse breccia, lapilli-tuffs, and fluvially reworked tuffs that interfinger with lacustrine sedimentary rocks in a synvolcanic half-graben bounded by the Sangre de Cristo Fault. Deposition in the hanging wall of this half-graben was concurrent with the development of a rhyolite lava dome-hypabyssal intrusion complex in the footwall; mineralization is concentrated in the high-silica rhyolite intrusions in the footwall and along the syndepositional fault and adjacent hanging wall graben fill. (2) The San Antonio resource area, underlain by interstratified mafic-intermediate lavas and fluvial sandstone of the Témoris formation, faulted and tilted by two en echelon NW-trending normal faults with opposing dip-directions. Mineralization occurs along subvertical structures in the accommodation zone between these faults. There are no silicic intrusions at the surface within the San Antonio resource area, but they outcrop ∼0.5 km to the east, where they are intruded along the La Palmera Fault, and are located ∼120 m-depth in the subsurface. (3) The La Unión resource area, which is underlain by mineralized andesite lavas and lapilli-tuffs of the Témoris Formation. Adjacent to the La Unión resource area is Cerro Salitrera, one of the largest silicic intrusions in the area. The plug that forms Cerro Salitrera was intruded along the La Palmera Fault, and was not recognized as an intrusion prior to our work.We show here that epithermal mineralization is Late Oligocene to Miocene-age and hosted in extensional structures, younger than Laramide (Cretaceous-Eocene) ages of mineralization inferred from unpublished mining reports for the region. We further infer that mineralization was directly related to the emplacement of silicic intrusions of the Sierra Guazapares formation, when the mid-Cenozoic ignimbrite flare-up of the Sierra Madre Occidental swept westward into the study area about 24.5–23 Ma ago.  相似文献   

9.
The Wadi Fatira area occurs at the southern margin of the Northern Eastern Desert (NED) of Egypt and is occupied by highly sheared metavolcanics tectonically alternated with banded iron formations and intruded by Barud tonalite–granodiorite, post-tectonic gabbroic and granitic intrusions. Detailed structural investigation showed that the schists and migmatitic amphibolites are formed by shearing in metavolcanics and syntectonic Barud tonalite–granodiorite due to movement along the Wadi Fatira shear zone (WFSZ). This shear zone starts as a NW–SE striking fault along Wadi Barud Al Azraq and the Eastern part of Wadi Fatira and turns to a E–W trending fault to the north of Wadi Fatira. Microstructural shear sense indicators such as asymmetric geometry of porphyroclasts such as σ-type and asymmetric folds deforming fine-grained bands which are frequently found around porphyroclasts indicate sinistral sense of shearing along the WFSZ. This shear zone is characterized by transitions from local convergence to local extension along their E–W and NW–SE trending parts, respectively. The NW–SE part of the WFSZ is of about 200 m in width and characterized by synmagmatic extensional features such as intrusion of synkinematic tonalite, creation of NE–SE trending normal faults, and formation of migmatitic amphibolites and schlieric tonalites. This part of the shear zone is metamorphosed under synthermal peak metamorphic conditions (725°C at 2–4 kbar). The E–W compressional part of the WFSZ is up to 3 km in width and composed of hornblende, chlorite, actinolite, and biotite schists together with sheared intermediate and acidic metatuffs. Contractional and transpressional structures in this part of the WFSZ include E–W trending major asymmetrical anticline and syncline, nearly vertical foliation and steeply pitching stretching lineations, NNE dipping minor thrusts, and minor intrafolial folds with their hinges parallel to the stretching lineation. PT estimates using mineral analyses of plagioclase and hornblende from schists and foliated metavolcanics indicate prograde metamorphism under medium-grade amphibolite facies (500–600°C at 3–7 kbar) retrogressed to low-grade greenschist facies (227–317°C). The foliation in Barud tonalite–granodiorite close to the E–W part of the WFSZ runs parallel to the plane of shearing and the tonalite show numerous magmatic flow structures overprinted by folding and ductile shearing. The WFSZ is similar to structures resulted from combined simple shear and orthogonal shortening of oblique transpressive shear zones and their sense of movement is comparable with the characteristics of the Najd Fault System.  相似文献   

10.
Al Jabal Al Akhdar is a NE/SW- to ENE/WSW-trending mobile part in Northern Cyrenaica province and is considered a large sedimentary belt in northeast Libya. Ras Al Hilal-Al Athrun area is situated in the northern part of this belt and is covered by Upper Cretaceous–Tertiary sedimentary successions with small outcrops of Quaternary deposits. Unmappable and very restricted thin layers of Palaeocene rocks are also encountered, but still under debate whether they are formed in situ or represent allochthonous remnants of Palaeocene age. The Upper Cretaceous rocks form low-lying to unmappable exposures and occupy the core of a major WSW-plunging anticline. To the west, south, and southeast, they are flanked by high-relief Eocene, Oligocene, and Lower Miocene rocks. Detailed structural analyses indicated structural inversion during Late Cretaceous–Miocene times in response to a right lateral compressional shear. The structural pattern is themed by the development of an E–W major shear zone that confines inside a system of wrench tectonics proceeded elsewhere by transpression. The deformation within this system revealed three phases of consistent ductile and brittle structures (D1, D2, and D3) conformable with three main tectonic stages during Late Cretaceous, Eocene, and Oligocene–Early Miocene times. Quaternary deposits, however, showed at a local scale some of brittle structures accommodated with such deformation and thus reflect the continuity of wrenching post-the Miocene. D1 deformation is manifested, in Late Cretaceous, via pure wrenching to convergent wrenching and formation of common E- to ENE-plunging folds. These folds are minor, tight, overturned, upright, and recumbent. They are accompanied with WNW–ESE to E–W dextral and N–S sinistral strike-slip faults, reverse to thrust faults and pop-up or flower structures. D2 deformation initiated at the end of Lutetian (Middle Eocene) by wrenching and elsewhere transpression then enhanced by the development of minor ENE–WSW to E–W asymmetric, close, and, rarely, recumbent folds as well as rejuvenation of the Late Cretaceous strike-slip faults and formation of minor NNW–SSE normal faults. At the end of Eocene, D2 led to localization of the movement within E–W major shear zone, formation of the early stage of the WSW-plunging Ras Al Hilal major anticline, preservation of the contemporaneity (at a major scale) between the synthetic WNW–ESE to E–W and ENE–WSW strike-slip faults and antithetic N–S strike-slip faults, and continuity of the NW–SE normal faults. D3 deformation is continued, during the Oligocene-Early Miocene, with the appearance of a spectacular feature of the major anticline and reactivation along the E–W shear zone and the preexisting faults. Estimating stress directions assumed an acted principal horizontal stress from the NNW (N33°W) direction.  相似文献   

11.
多边断层在世界50多个沉积盆地中均有发现,它是指平面上走向多方位且相互交叉组合成多边形形态、具有层控特征的伸展断裂系统,主要发育在被动大陆边缘盆地和内克拉通盆地内的细粒沉积物中。这类断层为非构造成因断层,目前占主流地位的成因机制有密度反转、脱水收缩和重力载荷机制;与构造正断层相比,多边断层明显具有层控性、多边性和体积应变等方性等特点。共同的几何学特征有:延伸长度短,多为平直或铲式断层,倾角变化范围为30°~70°(平均为45°),走向随机,断层平面交叉组合呈多边形形态。多边断层对储层砂体形态以及流体、天然气水合物的运移和聚集具有重要的意义。文中综合了自多边断层提出以来的国内外研究资料,概括了多边断层发育的几何学特征和成因机制以及多边断层对流体运移的影响,希望能对中国以后的多边断层研究提供参考。  相似文献   

12.
Earthquake focal mechanism solutions from 18 events in the central and northern parts of the Gulf of Suez with local magnitudes ranging from 2.8 to 5.2 and occurring between 1983 and 2004 are used to determine the type of motion and stress pattern of the region. Fault plane solutions show mostly normal component; pure normal faulting mechanisms and normal faulting with a strike-slip component. Only some mechanisms show pure strike-slip faulting. The fault planes strike in NW, WNW, NNE and ENE directions, in conformity with the geologically observed striking faults in the northern and central parts of the gulf. The principal stress orientation is also estimated by inverting the selected focal mechanism solutions. The results show that the northern part of the Gulf is subjected to NE–SW to NNE–SSW extension, with a horizontal σ3 (plunge 3°) and subvertical σ1 (plunge 80°). This means that the horizontal extensional stresses are still present in the central/northern Gulf of Suez.  相似文献   

13.
The southern termination of the left-lateral ‘Moyenne Durance’ Fault (FMD) consists in several segments, some being connected to WSW-trending south-verging reverse faults. To the south, the Aix fault is reactivated in a post-Oligocene strike-slip movement showing that these two faults might belong to the same system. This system seems to transfer, in turn, slip to the east-trending, south-verging Trévaresse reverse fault, allowing southward propagation of the Alpine deformation front in western Provence. Fault kinematics analysis shows lateral stress field change between the two faults. Strike-slip stress state is characterized by an average N150°E trending σ1 near the FMD termination, whilst strike-slip and reverse faulting stress states show north-trending σ1 to the south. To cite this article: P. Guignard et al., C. R. Geoscience 337 (2005).  相似文献   

14.
15.
Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°–20°) and at high angles in clay-rich layers (θi = 45°–86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.  相似文献   

16.
Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at FMQ;and(2) high-Ti,low CaO and higher H2O(>1.5 wt.%) parent magma(equivalent to Emeishan high-Ti basalt) at FMQ + 1.5.Modelling of these parent magma compositions produces significantly different results. We present here detailed f(O2) and H2O modelling for average compositions of both Emeishan high-Ti and low-Ti ferrobasalts in order to constrain the effects on crystallisation sequences for Emeishan ultra-mafic -mafic layered intrusions.Modelling is consistent with numerous experimental studies on ferro-basaltic magmas from other localities(e.g.Skaergaard intrusion).Modelling is compared with the geology of the Panzhihua intrusion in order to constrain the crystallisation of the gabbroic rocks and the Fe-Ti oxides ore layers.We suggest that the gabbroic rocks at the Panzhihua intrusion can be best explained by crystallisation from a parent magma similar to that of the high-Ti Emeishan basalt at moderate H2O contents(0.5-1 wt.%) but at the lower end of TiO2 content for typical high-Ti basalts(2.5 wt.%TiO2). Distinct silicate disequilibrium textures in the Fe-Ti oxide ore layers suggest that an influx of H2O may be responsible for changing the crystallisation path.An increase in H2O during crystallisation of gabbroic rocks will result in the depression of silicate liquidus temperatures and resultant disequilibrium with the liquid.Continued cooling of the magma with high H2O then results in precipitation of Mt-Uv alone. The H2O content of parent magmas for mafic layered intrusions associated with the ELIP is an important variable.H2O alters the crystallisation sequence of the basaltic magmas so that at high H2O and f(O2) Mt -Uv crystallises earlier than plagioclase and clinopyroxene.Furthermore,the addition of H2O to an anhydrous magma can explain silicate disequilibrium texture observed in the Fe-Ti oxide ore layers.  相似文献   

17.
《Journal of Structural Geology》2004,26(6-7):1231-1256
In the internationally significant Victorian goldfields a complex system of faults dismembers the 5 million ounce Magdala gold deposit. These faults represent a combination of neoformed faults and inherited faults that reflect deformation associated with stress tensors of variable orientation and stress shape ratio (φ). The fault geometry is strongly controlled by the pre-existing rheology. Faults have propagated around the flanks of an antiformal basalt dome, along earlier ductile cleavages and the margins of porphyry dykes. Many of the faults do not have Andersonian geometries and there is no correlation between the orientation of the faults and the palaeostress directions. Much of the faulting is associated with the emplacement of porphyry dykes, additional gold mineralisation related to plutonism and late-stage deformation post-dating the intrusion of the Stawell pluton. Systematic mapping of extension veins associated with faults, striations and conjugate joint sets allowed the construction of a revised and more robust history of brittle deformation. This successfully predicted the offset direction of the currently mined Magdala ore body beneath the studied system of faults. The use of extension veins was a critical aspect of the analysis. If striations on the fault surfaces had solely been used, the offset direction of the new Golden Gift orebody would not have been correctly ascertained. The palaeostress history was delineated via use of compression and tension dihedra, stress inversion of slip data and calculation of theoretical resolved shear stress for faults with orientations similar to those mapped. The calculation of theoretical resolved shear stress directions highlights the importance that the intermediate stress has on the slip direction for faults whose pole does not lie in the plane containing σ1 and σ3.  相似文献   

18.
The Hetaoping skarn type Pb–Zn deposit is located in the Baoshan–Narong–Dongzhi block metallogenic belt (BND belt), a belt between the Tengchong terrane and the Lanping basin. The deposit is hosted by marble of the upper Cambrian Hetaoping Formation and there are no outcrops of plutonic rocks present. This deposit is one of two large Pb–Zn deposits recently discovered in the BND belt. The Hetaoping deposit is a high Mn skarn. Four types of fluid inclusions were recognized in quartz from the deposit: vapor-rich inclusions (Type I), liquid-rich inclusions (Type II), pure vapor inclusions (Type III), and pure fluid inclusions (Type IV). The coexistence of Type I and Type III inclusions in Stage I (pre-ore stage) and Stage II (main ore stage) shows evidence of fluid boiling. Quartz-hosted fluid inclusions (Stage I and Stage II) display high homogenization temperatures and salinities (134–315 °C; 3.7–18.6 wt% NaCl equivalent) but calcite-hosted fluid inclusions in Stage III (post-ore stage) record lower homogenization temperatures and salinities (85–214 °C; 0.5–5.4 wt% NaCl equivalent). These data suggest a possible mixing between primary magmatic water and meteoric water. Based on chromatography data, the fluid inclusions in quartz contain abundant CO2 and O2 and subordinate CO, CH4 and C2H2 + C2H4, suggesting an oxidizing environment. Based on their Na/K and Cl/SO4 ratios, fluids contained in fluid inclusions are similar to volcanic spring waters. The low Na/K ratios (0.40–1.34) of the ore-forming fluids may have resulted from interaction with a deep alkaline intermediate-acid intrusion. Hydrogen and oxygen isotope determinations on quartz from different ore stages show low δ18O and δD values relative to VSMOW (−4.3‰ to 2.3‰; −109‰ to −91‰), indicating that the ore-forming fluids were diluted by external fluid sources as the skarn system cooled. Overall, geological and geochemical interpretations suggest that the Hetaoping deposit is a distal manganese skarn Pb–Zn deposit related to concealed intrusions.  相似文献   

19.
Analysis of fault system in the high-P/T type Sambagawa metamorphic rocks of central Shikoku, southwest Japan, shows that conjugate normal faults pervasively developed in the highest-grade biotite zone (upper structural level) in three study areas (Asemi river, Oriu and Niihama areas). These conjugate normal faults consist of NE–SW to E–W striking and moderately north-dipping (set A), and NNW–SSE striking and moderately east dipping (set B) faults. The fault set A is dominant compared to the fault set B, and hence most of deformation is accommodated by the fault set A, leading to non-coaxial deformation. The sense of shear is inferred to be a top-to-the-WNW to NNW, based on the orientations of striation or quartz slickenfibre and dominant north-side down normal displacement. These transport direction by normal faulting is significantly different from that at D1 penetrative ductile flow (i.e. top-to-the-W to WNW). It has also been found that these conjugate normal faults are openly folded during the D3 phase about the axes trending NW–SE to E–W and plunging west at low-angles or horizontally, indicating that normal faulting occurred at the D2 phase. D2 normal faults, along which actinolite breccia derived from serpentinite by metasomatism sometimes occurs, perhaps formed under subgreenschist conditions (ca. 250 °C) in relation to the final exhumation of Sambagawa metamorphic rocks into the upper crustal level. The pervasive development of D2 normal faults in the upper structural level suggests that the final exhumation of Sambagawa metamorphic rocks could be caused by “distributed extension and normal faulting (removal of overburden)” in the upper crust.  相似文献   

20.
The tectonics of the Chenoua massif suggests block rotations of Neogene nappes associated with the African–European plate convergence. To estimate the extent of these rotations, a Paleomagnetic study on rhyolites and andesites of Langhian–Serravallian age and sandstones of Burdigalian age was carried out on 23 sites (200 specimens). The sites are distributed in the northwestern, southeastern and southern Chenoua massif. One or two components of magnetization, mainly carried by magnetite, pyrrhotite and/or hematite, were isolated in sandstones and volcanics. The sandstone sites reveal magnetizations in sandstones from the Cap Blanc syncline that are post-folding. However, both polarities are found, which is consistent with data from Africa during the Upper Miocene. Clockwise and counterclockwise rotations were recorded, dating back to the Neogene times in volcanics and sediments. From the faulted Cap Blanc syncline counterclockwise rotations of 1?±?4° to 18?±?28° around a vertical axis occurred in sediments since the Miocene with respect to Africa. In fact, remagnetizations occurred at several periods of time and in different sites, providing information on the evolution of post-tectonic rotations. Some volcanics record counterclockwise rotations of about 30° since the Miocene, whereas others do not show any significant rotation. This can be explained by the direction of the principal compressive stress axis σ 1 and by lateral extrusions related to an indentation model, in which we expect both clockwise and counterclockwise rotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号