首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of research into recent sediments and their distribution in Lake Baikal are presented. Five areas with different mechanisms of sedimentation have been recognized: (1) deep-water plains with pelagic mud and turbidites; (2) littoral zones without turbidites; (3) underwater ridges (rises) with hemipelagic mud accumulated under calm sedimentation conditions; (4) delta (fan) areas near the mouths of large rivers, where sediments consist mainly of terrigenous material; and (5) shallow Maloe More with poorly sorted terrigenous material and abundant sand. The rate of sedimentation differs considerably in different Baikal areas. The highest rates appear near the mouths of large rivers, lower ones occur in the deep lake basins, and the minimum rates are developed on underwater ridges. A map of the distribution of Holocene sediments in Baikal has been compiled for the first time. The obtained results show that the bottom morphology significantly determines the type of sediments in the lake.  相似文献   

2.
Paleogeographic reconstructions for the Samarovo, Taz, Murukta, and Sartan glaciations reveal the formation conditions of proglacial lakes dammed by ice in intermontane depressions and valleys of large rivers in eastern Transbaikalia. Middle-Late Pleistocene climate change is reconstructed using spore-pollen spectra from Pleistocene sediments in northern Transbaikalia. The age and lifetime of proglacial lakes are constrained by radiocarbon, thermoluminescence, and varve chronology of their bottom sediments in the periglacial zone. The lake levels remain recorded in sediments produced by deposition and erosion along the former lake shores, as well as in morphology and lithology variations of terminal moraines. A large proglacial lake, with a maximum level of 1020 m, occupied vast areas in Transbaikalia and its surroundings during the Samarovo glaciation. After the glaciers degraded, the Amur River system expanded into the area of closed lake basins in the southeastern Baikal region, including North China and Mongolia. The obtained results have implications for the Middle-Late Pleistocene history of lake deposition.  相似文献   

3.
Results of investigations of Baikal bottom sediments from a long core (BDP-97) and several short (0–1 m) cores are presented. It has been shown that the Holocene sediments in the Baikal basins consist of biogenic-terrigenous muds, accumulated under calm sedimentation conditions, and of turbidites, formed during catastrophic events. The turbidites can be distinguished from the host sediments by their enrichment in heavy minerals and thus their high magnetic susceptibility. Often, Pliocene and Pleistocene diatom species observed in the Holocene sediments (mainly in the turbidites) point to redeposition of ancient offshore sediments. Our results indicate that deltas, littoral zones, and continental slopes are the source areas of turbidites. The fact that the turbidites occur far from their sources confirms the existence of high-energy turbidity currents responsible for long-distance lateral-sediment transport to the deep basin planes of the lake.  相似文献   

4.
Lake Baikal is the only fresh-water lake where natural gas hydrate accumulations were found in sediments. For the recent decade, Baikal has become a natural laboratory for investigation of the properties of gas hydrates, their indicators, and recovery of gas from subsurface (subbottom) gas hydrates. We present the main results of subsurface gas hydrate mapping and gas recovery test near the delta of the Goloustnaya River.  相似文献   

5.
Results of study of pore waters of bottom sediments from different Baikal basins are presented. The most typical ion distribution patterns reflecting the Baikal sediment diagenesis are given. We have established that in areas with regular sedimentation, in the absence of faults and inflows, the sediment pore waters of three lake basins inherit the chemical composition of the Baikal water, which is stable in time and space. Changes in pore water composition mark general natural anomalies, such as the presence of active faults, tectonic movements, and inflows along permeable zones. In areas with the subsurface occurrence of gas hydrates, thorough long-term research has revealed an anomalous composition of pore waters. It has been established that the anomalies are caused by a discharge of deep-level mud-volcanic fluids. The ejected mud-volcanic waters differ from each other in mineralization, ion composition, and sources, which determines the difference in hydrate formation and the composition of gas hydrates.  相似文献   

6.
Lake-level changes inferred from seismic surveying and core sampling of the floor of Lake Baikal near the Selenga River delta can be used to constrain regional climatic history and appear to be correlated to global climate changes represented by marine oxygen isotope stages (MIS). The reflection pattern and correlation to the isotope stages indicate that the topset and progradational foreset sediments of the deltas formed during periods of stable lake levels and warm climatic conditions. During warm stages, the lake level was high, and during cold stages it was low. The drop in the lake level due to cooling from MIS 5 through MIS 4 is estimated to be 33-38 m; from MIS 3 through MIS 2, it fell an additional 11-15 m. Because the lake level is chiefly controlled by evaporation and river input, we infer that more water was supplied to Lake Baikal during warm stages.  相似文献   

7.
We report results of bottom temperature monitoring of 2003–2004 in the deepwater South Baikal basin (Lake Baikal) near active gas-fluid methane vents at lake depths of 1020 and 1350 m. Sediments and water temperatures were measured using an autonomous temperature recorder designed at the Institute of Geophysics (Novosibirsk). Experiments implied short-duration recording and pioneering continuous 350 day-long monitoring near the Staryi vent. Measurements within a 1 m thick layer above and below the bottom showed notable variations in water (up to 0.07 °C) and sediment temperatures and in geothermal gradient. The long temperature records include a relatively steady period (mid-June 2003-early February 2004) with smooth temperature variations (especially in sediments) and two transient unsteady periods. The steady season is the best time for heat flow studies in the South Baikal basin. The 0.04–0.05 °C drop in bottom water temperature during the unsteady periods may result from intrusion of cold surface water. A positive temperature anomaly of ∼0.04 °C recorded in April 2003 may be caused, among other reasons, by active gas venting.  相似文献   

8.
澄湖SC7孔沉积物粘土矿物特征及其古地理意义   总被引:1,自引:0,他引:1  
苏州澄湖湖底残留有一条NNW—SSE延伸且已被淤平的古河道。通过对湖心区古河道段SC7孔沉积物的粘土矿物XRD分析及与湖底硬粘土(Q3)、湖岸区沉积(Q4)和长江口滩地现代沉积的比较,表明古河道充填沉积中的粘土矿物主要为伊利石,其次为高岭石、绿泥石、蛭石,还有少量蒙皂石及蛭石/绿泥石混层矿物;其中的伊利石和绿泥石含量均明显偏高,高岭石含量则偏低,伊利石结晶度也较高。粘土矿物组合兼具太湖流域地带性粘土矿物和长江口沉积物的特点,表明古河道充填沉积既有来自本流域表层物质和澄湖扩大过程中的湖岸崩积,也受到长江物源的影响。这一沉积过程也说明古河道在最大海侵时涨潮流和洪水引起海水和江水的频繁倒灌,直至淤塞和淹废。  相似文献   

9.
This work is a review of the modern concepts of the accumulation of Fe and Mn in the Baikal bottom sediments and the regularities of formation of iron-manganese (including phosphate-bearing) nodules in the lake. Special attention is given to the probable participation of hydrothermal water in this process and the genesis of ancient nodules deeply buried in the Baikal sediments. The possible relationship between the shore ores and the nodules in the bottom sediments in the adjacent Baikal regions has been first shown.  相似文献   

10.
Modeling the bulk sediment XRD patterns allows insight into the environmental and depositional histories of two neighboring rift lake basins within the Baikal watershed. Parallel 14C-dated LGM-Holocene records in Lakes Baikal and Hovsgol are used to discuss the mineralogical signatures of regional climate change. In both basins, it is possible to distinguish ‘glacial’ and ‘interglacial’ mineral associations. Clay minerals comprise in excess of 50% of layered silicates in bulk sediment.The abundance of smectite (expandable) layers in mixed-layer illite–smectites and the total illite abundance are the main paleoclimatic indices in the clay mineral assemblage. Both indices exhibit coherent responses to the Bølling–Allerød and the Younger Dryas. The smectite layer index is not equivalent to the abundance of illite–smectite, because illite–smectite tends to transform into illite. Repeated wetting–drying cycles in soils and high abundance of expandable layers in illite–smectites (>42%) favor the process of illitization. This relationship is clearly shown in both Baikal and Hovsgol records for the first time. The opposite late Holocene trends in illite abundance in Lake Baikal and Lake Hovsgol records suggest that a sensitive optimal regime may exist for illite formation in the Baikal watershed with regard to warmth and effective moisture.The Lake Hovsgol sediments of the last glacial contain carbonates, suggesting a positive trend in the lake's water budget. A progressive change towards lower Mg content in carbonates indicates lowering mineralization of lake waters. This trend is consistent with the lithologic evidence for lake-level rise in the Hovsgol basin.The pattern of mineralogical changes during the past 20 ka is used to interpret bulk sediment and carbonate mineralogy of the long 81-m Lake Hovsgol drill core (HDP-04) with a basal age of 1 Ma. The interglacial-type silicate mineral associations are confined to several thin intervals; most of the sediment record is calcareous. Carbonates are represented by six main mineral phases: calcite, low-Mg calcite, intermediate/high-Mg calcite, dolomite, excess-Ca dolomite and metastable monohydrocalcite. These mineral phases tend to form stratigraphic successions indicative of progressive changes in lake water chemistry. Five sediment layers with abundant Mg-calcites in the HDP-04 section suggest deposition in a low standing lake with high mineralization (salinity) and high Mg/Ca ratios of lake waters. Lake Hovsgol sediments contain the oldest known monohydrocalcite, found tens of meters below lake bottom in sediments as old as 800 ka. This unusual find is likely due to the conditions favorable to preservation of this metastable carbonate.  相似文献   

11.
New data on the concentration and spatial distribution of the benz(a)pyrene and polycyclic aromatic hydrocarbons in bottom sediments in the testing area of the Baikal Pulp and Paper Plant (BPPP) waste water discharge in 1981–1988 and 2010 are presented in this paper. The bottom sediments in this section of the lake are strongly polluted with polycyclic aromatic hydrocarbons.  相似文献   

12.
The complex lithological, geochemical, geochronological, and micropaleontological (diatoms, spores, pollen) investigations of stratified bottom sediments that constitute facies-variable sedimentary sequences in a small isolated lake located near the upper limit of the sea on the White Sea coast made it possible to define lithostratigraphic units (LSU) forming the complete sedimentary succession in deep parts of isolated basins. It is shown that stratigraphy of heterogeneous sequences is determined by two regional transgressive–regressive cycles in relative sea level fluctuations: alternating late Glacial and Holocene transgressions and regressions. The lower part of a clastogenic clayey–sandy–silty sequence successively composed of freshwater (LSU 1) and brackish-water (LSU 2) sediments of the ice-marginal basins and marine postglacial facies (LSU 3) was formed during the late Glacial glacioeustatic marine transgression. Its upper part formed in different isolated basins at different stages of the Holocene is represented depending on its altimetric position on the coastal slope by costal marine sediments (LSU 4) and facies of the partly isolated inlet (LSU 5). The organogenic sapropelic sequence, which overlies sediments of the marine basin and partly isolated bay, corresponds to lithostratigraphic units represented by Holocene sediments accumulated in the meromictic lake (LSU 6), onshore freshwater basin (LSU 7), and freshwater basin with elevated water mineralization (LSU 8) deposited during maximum development of Holocene transgression and lacustrine sediments (LSU 9) formed in coastal environments during terminal phases of the Holocene. The defined lithostratigraphic units differ from each other in lithological, micropaleontological, and geochemical features reflected in structural and textural properties of their sediments, their composition, inclusions, and composition of paleophytocoenoses and diatom assemblages.  相似文献   

13.
赵孟军  黄第藩 《地球化学》1995,24(3):254-260
生油盆地主要分为陆相和海相环境,陆相盆地主要有淡水-微咸水、淡水和半咸水-咸水三种湖相沉积环境,其中不同沉积相中有机质类型和丰度不同,这反映在它们所形成原油的单体烷烃碳同位素分布上有区别。高等植物出现前后的海相沉积油源岩中有机质类型有着较为明显的差别,泥盆纪以前的成油母质以细菌、蓝绿藻等原核生物为主,而石炭纪以后以真核生物(包括浮游植物、浮游动物等)为主,这样它们所形成原油的单体烃类碳同位素分布各  相似文献   

14.
We discuss the redox environments and the compositions of bottom sediments and sedimentary pore waters in the region of a hydrothermal vent in Frolikha Bay, Lake Baikal. According to our results, the submarine vent and its companion nearby spring on land originate from a common source. The most convincing evidence for their relation comes from the proximity of stable oxygen and hydrogen isotope compositions in pore waters and in the spring water. The isotope composition indicates a meteoric origin of pore waters, but their major- and minor-element chemistry bears imprint of deep water which may seep through permeable faulted crust. Although pore waters near the submarine vent have a specific enrichment in major and minor constituents, hydrothermal discharge at the Baikal bottom causes a minor impact on the lake water chemistry, unlike the case of freshwater geothermal lakes in the East-African Rift and North America.  相似文献   

15.
Cape Kalamba oil seeps occur at the south end of the Ubwari Peninsula, at the intersection of faults controlling the morphology of the northern basin of the Tanganyika Rift, East Africa. Oil samples collected at the surface of the lake 3-4 km offshore from Cape Kalamba have been studied. The aliphatic hydrocarbon and biomarker compositions, with the absence of the typical suite of polynuclear aromatic hydrocarbons, indicate an origin from hydrothermal alteration of immature microbial biomass in the sediments. These data show a similarity between a tar sample from the beach and the petroleum from the oil seeps, and confirm that the source of these oils is from organic matter consisting mainly of bacterial and degraded algal biomass, altered by hydrothermal activity. The compositions also demonstrate a < 200 degrees C temperature for formation/generation of this hydrothermal petroleum, similar to the fluid temperature identified for the Pemba hydrothermal site located 150 km north of Cape Kalamba. The 14C age of 25.6 ka B.P. obtained for the tar ball suggests that Pleistocene lake sediments could be the source rock. Hydrothermal generation may have occurred slightly before 25 ka B.P., during a dry climatic environment, when the lake level was lower than today. These results also suggest that the Cape Kalamba hydrothermal activity did not occur in connection with an increased flux of meteoric water, higher water tables and lake levels as demonstrated in the Kenya Rift and for the Pemba site. Hydrothermal petroleum formation is a facile process also in continental rift systems and should be considered in exploration for energy resources in such locales.  相似文献   

16.
Lacustrine, alluvial terraces and sediments record at least one Holocene glacially dammed lake in Songzong Basin immediately upstream of the Purlung TsangpoRiver, a main tributary of the downstream of Yarlung Tsangpo River, at the northeastern syntaxis of the Himalaya. The lacustrine deposit is more than 88 meters thick at the SongzongLandslide. There is an 18.33 meters thick layer of lacustrine silt within the lacustrine terrace. The Optical Simulated Luminescence (OSL) ages at the bottom and top of the lacustrine silt layerare 22.5±3.3ka B.P., and 16.1±1.7ka B.P., respectively, which indicates that the lacustrine deposits were formed during the Last Glacial Maximum ranging from 25kaB.P. to 15kaB.P.The ancient shorelines and the lake erosion zone confirm the preexistence of Songzong Lake. There are also terraces formed by moraines in the Songzong Basin. The high and large moraineterrace seen near the mouth of the Dongqu Valley is very prominent. The special characteristics of thelacustrine sediment and the ancient lake line in the Songzong Basin indicate that the lacustrinesediments are related to the blocking of the Purlung Tsangpo River by a glacier from DongquValley during Last Glacial Maximum.  相似文献   

17.
Mercury distribution was examined in the sediments of Lake Baikal that were sampled within the scope of the Baikal Drilling International Project in 1996–1999. The Hg concentrations in the ancient sediments are close to those in the modern sediments with the exception of a few peak values, whose ages coincide with those of active volcanism in adjacent areas. Mercury was demonstrated to be contained in the sediments in the adsorbed Hg0 mode, predominantly in relation with organic matter. When the organic matter of the bottom sediments is decomposed in the course of lithification, Hg is retained in the sediments adsorbed on the residual organic matter, and the concentration of this element corresponds to its initial content in the bottom sediments during their accumulation. Mercury concentrations in lithologically distinct bottom sediments of Lake Baikal and its sediments as a whole depend on the climate. Sediments that were formed during warm periods of time contain more Hg than those produced during cold periods or glaciation. Periodical variations in the Hg concentrations in the bottom sediments of Lake Baikal reflect the variations in the contents of this element in the Earth’s atmosphere in the Late Cenozoic, which were, in turn, controlled by the climatic variations on the planet and, thus, can be used for detailed reconstructions of variations in the average global temperature near the planet’s surface.  相似文献   

18.
We studied recent sedimentation in small saline and brackish lakes located in the Ol’khon region (western Baikal area) with arid and semiarid climate. The lakes belong to the Tazheran system; it is a series of compactly located closed shallow lakes, with a limited catchment area and different mineralization, under the same landscape, climatic, geologic, and geochemical conditions. Two complementary approaches are applied in the research: (1) a detailed study of individual lake and (2) a comparison of the entire series of lakes, which can be considered a natural model for studying the relationship between endogenic mineral formation and the geochemistry of lake waters. The lake waters and bottom sediments were studied by a set of modern methods of geochemistry, mineralogy, and crystal chemistry. The mineral component of the bottom sediments was analyzed by powder X-ray diffraction (XRD), IR spectroscopy, and electron microscopy. The lakes are characterized by predominant carbonate sedimentation; authigenic pyrite, smectite, chlorite, and illite are detected in assemblage with carbonate minerals in the bottom sediments. Carbonate phases have been identified, and their proportions have been determined in the samples by decomposition of the complex XRD profiles of carbonate minerals into peaks using the Pearson VII function. Mathematical modeling of the XRD profiles of carbonates has revealed that predominantly Mg-calcites with variable Mg content and excess-Ca dolomite accumulate in lake bottom sediments influenced by biogenic processes. Aragonite, monohydrocalcite, and rhodochrosite form in some lakes along with carbonates of the calcite-dolomite series. We show a dependence of the composition of the assemblages of the newly formed endogenic carbonate minerals and their crystallochemical characteristics on the chemical composition of lake waters.  相似文献   

19.
The present study was conducted on the Manasbal Lake (34°14′N: 74°40′E) to assess the geochemical characteristics of the lake bottom sediments, its environmental implications and its response in the local catchment area. This study tracks the spatial distribution of grain size, geochemical analysis, C/N ratio, calcium carbonate (CaCO3) and organic matter (OM) of the lake bottom sediments. It is observed that the clay fraction (49.79%) is predominant in the lake bottom sediments, followed by silt (35.88%) and sand (14.33%) and its spatial distribution is controlled by water depth. Geochemistry and normalized diagrams for the major oxides and trace elements reveal enrichment of CaO, K2O, P2O5, S, Cl, Ni, Zn and Sr. Chemical index of alteration (CIA) reflects low to moderate weathering intensity and near compositional similarity with the bedrock exposed in the catchment area around the lake. Environmental indices (EF, Igeo) suggest that the sediments are enriched in Cu, Ni, Zn, Cr, Co, Pb followed by Mn content. Pollution load index (PLI) reveal that all the sampling sites reflect low to moderately polluted category except for few stations that are towards the southern and southeastern side of the lake. OM (16.85%), CaCO3 (14.04%) and C/N ratio (15.5) of the lake bottom sediments is attributed to high organic activity within the lake, shell fragments, contributions from the lake flora and fauna adhering to the clayey silty sediments. The C/N ratio of 15.5 suggests a mixed source of organic matter both terrestrially and in situ formation within the lake. Sulphur and chlorine are high amongst the trace elements suggesting anthropogenic detritus input into the lake and this is due to the chemical fertilizers from the agricultural runoff and organic load into the lake. Thus, the present study suggests that in order to preserve the pristine lake ecology and the environment; continued monitoring and restoration efforts need to be undertaken.  相似文献   

20.
The paper presents the results of a comprehensive investigation into the recent sediments of Proval Bay. This bay formed during catastrophicflooding of a big block of land as a result of an earthquake in 1862. Comparison of the sketch map of the bay for 1862 with its modern mapshows that the boundary of the Selenga River delta has shifted considerably eastward. The sediments of Proval Bay are sands, silty pelite,and pelitic silt. Terrigenous material is predominant and consists of mineral grains and land plant remains, admixed with diatom frustules andsponge spicules. In the southwestern part of the bay, turbidites and a soil layer have been found. The latter was buried when the water levelin Lake Baikal rose after the construction of the Irkutsk dam in 1959–1964. In the northeastern part of the bay, a peatlike layer has beenfound in the bottom sediment core. It formed in Lake Beloe, which existed in the Tsagan steppe before the 1862 earthquake. According todiatom analysis, this lake was shallow and eutrophic. The sedimentation rates in different parts of Proval Bay differ greatly and directly dependon proximity to the Selenga River. Variations in the geochemical indicators which reflect the ratio of organic to clastic components in thebottom sediments of the bay are controlled by temperature and water level variations in Lake Baikal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号