首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has long been known that S waves on seismograms of local explosions are often accompanied by strong low-frequency, low-velocity, Rg surface wave trains, often significantly diminished for earthquakes. We utilize this fact to construct a new formal discriminator between earthquakes and explosions by measuring the S -surface-wave group velocity. The method is based on analysing the velogram; that is, the display of the envelope of ground motion versus group velocity V = R/T , where R is the epicentral distance and T  the traveltime. We examine the distribution of seismic energy in time and space using envelopes of records from the Israel Seismic Network (ISN), from which we compute the velograms and observe differences in the velograms of quarry blasts and earthquakes. The data include 143 seismic events occurring in three areas (Galilee, Dead Sea, and Gilad) monitored by the ISN; the magnitude range is M L = 1.0–2.8 at distances of 15–310 km. From the velograms we measure the group velocity, V m s , within the 1–4 km s1 range at which the velogram reaches its maximum for each available station. The resulting V m s (R) function is closely fitted by the empirical relationship a + b  ln  R , with a and b coefficients varying from event to event. A simple linear function c = b + 0.33a at a threshold C = 0.69 completely separates ( a,b ) pairs for the 67 Galilee events, and, for the 76 remaining events, one earthquake and four explosions are wrongly classified. After data validation and application of the Fisher linear discriminator, adapted to the events from Galilee, only two misidentified events remain for the whole data set.  相似文献   

2.
In this paper, approximately 100 VLBI/SLR/GPS velocities map European strain rates from <0.09 × 10−8 to >9.0 × 10−8 yr−1 with regional uncertainties of 20 to 40 per cent. Kostrov's formula translates these strain-rate values into regional geodetic moment rates M¯˙ geodetic . Two other moment rates, M¯˙ seismic , extracted from a 100-year historical catalogue and M¯˙ plate , taken from plate-tectonic models, contrast the geodetic rates. In Mediterranean Europe, the ratios of M¯˙ seismic to M¯˙ geodetic are between 0.50 and 0.71. In Turkey the ratio falls to 0.22. Although aseismic deformation may contribute to the earthquake deficit ( M¯˙ seismic values less than M¯˙ geodetic ), the evidence is not compelling because the magnitudes of the observed shortfalls coincide with the random variations expected in a 100-year catalogue. If the lack of aseismic deformation inferred from the 100-year catalogue holds true for longer periods, then much of Europe's strain budget would have to be accommodated by more frequent or larger earthquakes than have been experienced this century to raise the ratios of M¯˙ seismic to M¯˙ geodetic to unity. Improved geological fault data bases, longer historical earthquake catalogues, and densification of the continent's space geodetic network will clarify the roles of aseismic deformation versus statistical quiescence.  相似文献   

3.
Seismic amplitude tomography for crustal attenuation beneath China   总被引:1,自引:0,他引:1  
Amplitude tomography reconstructs seismic attenuation directly from recorded wave amplitudes. We have applied the tomography to amplitude data reported in the 'Annual Bulletin of Chinese Earthquakes' and interpreted the regionally varying crustal attenuation in terms of tectonics. The seismic amplitudes were originally recorded for determining the M L and M S magnitudes. They generally correspond to the maximum amplitudes of the horizontal components of the short-period S waves and intermediate-period Rayleigh waves. Both sets of measurements are sensitive to crustal structure. The peak amplitudes from M L amplitudes spread spherically with significant dispersion and scattering. M S amplitudes show cylindrical spreading with little dispersion. Average crustal Q values for attenuation at 1 Hz are 737 and 505 for M L and M S, respectively, with substantial regional variations. Frequency dependence in the attenuation is also indicated. Regions with the lowest attenuation (high Q values) are beneath the south China Block, Sichuan Basin, Ordos Platform, the Daxinganling and the Korea Craton. These tend to be tectonically inactive regions, which are generally dominated by intrusive and cratonic rocks in the upper crust. Regions with the highest attenuation (low Q values) are beneath Bohai Basin, Yunnan, eastern Songpan-Ganzi Terrain, margins of the Ordos platform and the Qilian Shan. These are predominantly active basins, grabens and fold belts. The continental margin also highly attenuates both S and surface waves.  相似文献   

4.
5.
Summary . The great Etorofu earthquake of 1958 November 6 is characterized by a relatively small aftershock area (70 × 150 km2) and an extremely large felt area. The felt area is more extensive than those of any other large earthquakes which have occurred in the southern Kurile to northern Japan arc since the beginning of this century. The mechanism is a pure thrust fault typical of most great earthquakes in island arcs. A body wave magnitude of m b = 8.2 is obtained at periods around 6 s using more than 40 observations, although an m b value of only 7.6–7.7 would be expected empirically from the observed surface wave magnitude of M s= 8.1–8.2. Both an unusually large felt area and a high m b indicate a dominance of high-frequency components in the seismic waves. A seismic moment of M o= 4.4 × 1028 dyne cm is determined from long-period surface waves from which a high stress drop of Δσ = 78 bar is obtained using a relatively small aftershock area. Historic data indicate an anomalously long time interval between the 1958 event and any earlier great earthquake from the same source region. The observed high stress drop can be interpreted as a consequence of this long intervening period through which strain built up. The dominance of the high-frequency seismic waves can then be interpreted as a result of this high stress drop. Stress drops, seismic wave spectra and recurrence intervals of great earthquakes are in this way closely related to each other. The 1958 event may represent a high strength extreme of stochastic fluctuation of fracture strength relevant to great earthquakes.  相似文献   

6.
The investigation of L g attenuation characteristics in the region bounding the western branch of the East African rift system using digital recordings from a seismic network located along the rift between Lake Rukwa and Lake Malawi is reported. A set of 24 recordings of L g waves from 12 regional earthquakes has been used for the determination of anelastic attenuation, Q Lg , and regional body-wave magnitude, m b Lg , scale. The events used have body-wave magnitudes, m b , between 4.6 and 5.5, which have been determined teleseismically and listed in ISC bulletins. The data were time-domain displacement amplitudes measured at 10 different frequencies (0.7–5.0  Hz). Q Lg and its frequency dependence, η , in the region can be represented in the form Q Lg = (186.2 ± 6.5)  f  (0.78±0.05). This model is in agreement with models established in other active tectonic regions. The L g -wave-based magnitude formula for the region is given by m b Lg = log   A + (3.76 ± 0.38)  log   D − (5.72 ± 1.06), where A is a half-peak-to-peak maximum amplitude of the 1  s L g wave amplitude in microns and D is the epicentral distance in kilometres. Magnitude results for the 12 regional earthquakes tested are in good agreement with the ISC body-wave magnitude scale.  相似文献   

7.
The Pisco earthquake ( M w 8.0; 2007 August 15) occurred offshore of Peru's southern coast at the subduction interface between the Nazca and South American plates. It ruptured a previously identified seismic gap along the Peruvian margin. We use Wide Swath InSAR observations acquired by the Envisat satellite in descending and ascending orbits to constrain coseismic slip distribution of this subduction earthquake. The data show movement of the coastal regions by as much as 85 cm in the line-of-sight of the satellite. Distributed-slip model indicates that the coseismic slip reaches values of about 5.5 m at a depth of ∼18–20 km. The slip is confined to less than 40 km depth, with most of the moment release located on the shallow parts of the interface above 30 km depth. The region with maximum coseismic slip in the InSAR model is located offshore, close to the seismic moment centroid location. The geodetic estimate of seismic moment is 1.23 × 1021 Nm ( M w 8.06), consistent with seismic estimates. The slip model inferred from the InSAR observations suggests that the Pisco earthquake ruptured only a portion of the seismic gap zone in Peru between 13.5° S and 14.5° S, hence there is still a significant seismic gap to the south of the 2007 event that has not experienced a large earthquake since at least 1687.  相似文献   

8.
Summary . Vertical component Rayleigh-wave amplitudes from 1461 shallow earthquakes recorded in the distance range 0–150° are analysed to separate the effects of earthquake size, epicentral distance (Δ) and recording station.
The estimated decay of amplitude with distance has the form of a theoretical curve for the decay of Rayleigh waves with distance if the assumption is made that the decay due to dispersion for the data analysed is that of an Airy phase. Writing the decay due to anelastic attenuation as exp (- k Δ), k is estimated to be 0.676/rad over the whole range of distance. If the distance effects are represented by a straight line of the form h log Δ+ constant, h is estimated to be 1.15. The calibration function for computing M s derived from the estimated distance effects is very similar to that of Marshall & Basham.
Station effects on Rayleigh-wave amplitudes though statistically significant are small, and can probably be ignored in the computation of M s.
Comparing the estimated surface-wave magnitudes (earthquake size) obtained in this study with the long and short period body-wave magnitudes ( m LPb and m SPb respectively) obtained by Booth, Marshall & Young for the same earthquake shows that m LPb is about equal to M s over the magnitude range of interest (˜4.0–7.0). The m LPb and Ms relationship shows that the greater the long-period energy radiated by an earthquake the smaller proportionately is the short-period energy.  相似文献   

9.
We examine quantitatively the ranges of applicability of the equation Ω= A+B [1− t/t f ] m for predicting 'system-sized' failure times t f in the Earth. In applications Ω is a proxy measure for strain or crack length, and A , B and the index m are model parameters determined by curve fitting. We consider constitutive rules derived from (a) Charles' law for subcritical crack growth; (b) Voight's equation; and (c) a simple percolation model, and show in each case that this equation holds only when m < 0. When m > 0, the general solution takes the form Ω = A + B [1 + t / T  ] m , where T   is a positive time constant, and no failure time can be defined. Reported values for volcanic precursors based on rate data are found to be within the range of applicability of time-to-failure analysis ( m < 0). The same applies to seismic moment release before earthquakes, at the expense of poor retrospective predictability of the time of the a posteriori -defined main shock. In contrast, reported values based on increasing cumulative Benioff strain occur in the region where a system-sized failure time cannot be defined ( m > 0; commonly m ≈ 0.3). We conclude on physical grounds that cumulative seismic moment is preferred as the most direct measure of seismic strain. If cumulative Benioff strain is to be retained on empirical grounds, then it is important that these data either be re-examined with the independent constraint m < 0, or that for the case 0 < m + 1 < 1, a specific correction for the time-integration of cumulative data be applied, of the form ΣΩ = At + B '{1 − [1 − t/t f ] m+1 }.  相似文献   

10.
Analyses of relative P - and S -wave amplitudes of 15 selected earthquakes ( M L <2.3) from a seismic swarm, which occurred in May and June 1994 at the Eyjafjallajökull volcano in South Iceland, reveal similar radiation patterns, a thrust-type double-couple with an additional source component. All focal solutions have nearly vertical T -axes and horizontally oriented P -axes, with E-W-oriented nodal planes. The volume increase corresponding to an isotropic source component is estimated to be in the range of 24 m3. The temporal and spatial seismic pattern, small magnitude range, focal mechanisms and depth range of the Eyjafjallaökull earthquakes indicate vertical intrusion of magma into a confined region at the northern flank of the volcano.  相似文献   

11.
By inversion analysis of the baseline changes and horizontal displacements observed with GPS (Global Positioning System) during 1990–1994, a high-angle reverse fault was detected in the Shikoku-Kinki region, southwest Japan. The active blind fault is characterized by reverse dip-slip (0.7±0.2  m yr−1 within a layer 17–26  km deep) with a length of 208±5  km, a (down-dip) width of 9±2  km, a dip-angle of 51°±2° and a strike direction of 40°±2° (NE). Evidence from the geological investigation of subfaults close to the southwestern portion of the fault, two historical earthquakes ( M L=7.0, 1789 and 6.4, 1955) near the centre of the fault, and an additional inversion analysis of the baseline changes recorded by the nationwide permanent GPS array from 18 January to 31 December 1995 partially demonstrates the existence of the fault, and suggests that it might be a reactivation of a pre-existing fault in this region. The fact that hardly any earthquakes ( M L>2.0) occurred at depth on the inferred fault plane suggests that the fault activity was largely aseismic. Based on the parameters of the blind fault estimated in this study, we evaluated stress changes in this region. It is found that shear stress concentrated and increased by up to 2.1 bar yr−1 at a depth of about 20  km around the epicentral area of the 1995 January 17  Kobe earthquake ( M L=7.2, Japan), and that the earthquake hypocentre received a Coulomb failure stress of about 5.6 bar yr−1 during 1990–1994. The results suggest that the 1995  Kobe earthquake could have been induced or triggered by aseismic fault movement.  相似文献   

12.
Summary. Earthquake deformations and induced sedimentary structures preserved in Quaternary sediments include faults, folds, fissures, slumps, sand boils and other effects of liquefaction. Such deformations and structures are well preserved in the Lisan deposits of the Dead Sea. Of most importance are the fold-type deformations known as décollement structures which are present all along the eastern side of the Lisan and seem to decrease gradually westwards to disappear in the middle of the Lisan. These may indicate that palaeoearthquakes originating along the Araba fault have triggered such structures due to shaking of elastoplastic unconsolidated sediments over gentle slopes dipping to the west.
Preliminary results from studies on décollement structures preserved in a section representing some 1733 years of continuous deposition in the uppermost? Pleistocene, in the vicinity of Wadi Araba, indicate that: (1) seismic activity has fluctuated with time. Average recurrence period is about 340 ± 20yr for earthquakes with magnitudes greater than or equal to 6.5, Earthquakes with magnitude greater than 7 seem to have occurred along the Araba fault. (2) Deduced earthquake magnitudes conform to the frequency–magnitude relationship: log N = 5.24–0.68 M . (3) The deduced seismic slip rate along the Araba fault seems to be not less than 0.64 ± 0.04 cm yr−1.  相似文献   

13.
We evaluate the seismic moment–frequency relation for the Harvard catalogue in the period 1977–1994. This catalogue is composed of about 12 000 earthquakes. After selection of events in terms of depth and energy, we retain about 8000 data points. We estimate two parameters of the seismic moment distribution: the power exponent β and the cut-off value M m . The method used is a least-squares linear fit on a log–log scale performed over a range selected on the basis of the standard deviation from the histogram. The analysis is carried out for different subdivisions of the Earth in square grids of different sizes. Neither parameter exhibits a dependence on cell size, suggesting the universality of their values and the interpretation of the existence of a cut-off as a finite size effect linked to a finite catalogue length. The variations of the parameters are investigated as a function of time (duration of the catalogue) and versus the number of events used for building up the distribution. Again, β and M m do not depend on time, but M m depends on the number of events, reaching a stable value for N ≈ 1000. The only significant change in the parameters is observed for different values of M 0upper in the catalogue, revealing the existence of universality classes.  相似文献   

14.
Summary. Group velocities for first and second higher mode Rayleigh waves, in the frequency range 0.8–4.8 Hz, generated from a local earthquake of magnitude 3.7 M L in western Scotland, are measured at stations along the 1974 LISPB line. These provide detailed information about the crustal structure west of the line. The data divide the region into seven apparently homogeneous provinces. Averaged higher mode velocity dispersion curves for each province are analysed simultaneously using a linearized inversion technique, yielding regionalized shear velocity profiles down to a depth of 17 km into the upper crust. Shear wave velocity is between 3.0 and 3.4 km s−1 in the upper 2 km, with a slow increase to around 3.8 km s−1. P -wave models computed using these results agree with profiles from the LISPB and LUST refraction experiments.  相似文献   

15.
We invert surface-wave and geodetic data for the spatio-temporal complexity of slip during the M w =8.1 Chile 1995 event by simulated annealing. This quasi-global inversion method allows for a wide exploration of model space, and retains the non-linearity of the source tomography problem. Complex source spectra are obtained from 5 to 45 mHz from first- and second-orbit fundamental-mode Rayleigh waves using an empirical Green's function cross-correlation technique. Coseismic displacement vectors were measured at 10 GPS sites near Antofagasta. They are part of a French-Chilean experiment which monitors the Northern Chile seismic gap. The spectra, together with the geodetic data, are inverted for the moment distribution on a 2-D dipping fault, under the physical constraints of slip positivity and causality. Marginal a posteriori distributions of the model parameters are obtained from several independently inverted solutions. In general, features of the slip model are well resolved. Data are well fitted by a purely unilateral southward rupture with a nearly uniform velocity around 2.5–3.0 km s−1, and a total duration of 65 s. Several regions of moment release were imaged, one near the hypocentre, a major one 80 km south of it and a minor one 160 km south of it. The major patch of moment release seemed to have propagated to relatively shallow depths near the trench, 100 km SSW of the epicentre. The region of major slip is located updip of the 1987, M w =7.5 earthquake, suggesting a causal relationship. Most of the slip occurred updip of the hypocentre (36 km), but the entire coupled plate interface (20–40 km) ruptured during the Chile 1995 event.  相似文献   

16.
Magnitude corrections for attenuation in the upper mantle   总被引:3,自引:0,他引:3  
Summary. The m b: M s relation for explosions at the Nevada Test Site (NTS) differs from those for explosions in other parts of the world. There is considerable evidence that this results mostly from high body-wave attenuation in the upper mantle beneath the western US. The authors have developed an empirical magnitude correction for body-wave attenuation and applied it to both source and receiver ends of the teleseismic body-wave path. The results imply that m b values are lower for NTS explosions than for Soviet explosions of comparable yield and seismic coupling. The authors have also developed and applied a source-depth correction to account for pP-P interference in the P -wave arrival.
The body-wave magnitude resulting from these corrections is designated mo to distinguish it from other definitions of m b. Values of mQ determined for a world-wide set of large explosions show that a single mQ : yield relation is a fair fit to the data for the explosions with high seismic coupling. However, grouping the explosions under two mQ :yield relations gives a better fit to the data.
All the studied explosions in salt or granite or below the water table fit a common M s:yield relation. Explosions from North America, Eurasia and Africa have a common mQ : M s relation.  相似文献   

17.
The ratio of shear to compressional travel times from a local earthquake gives a good estimate of the average velocity ratio for the wave path, providing the origin time has been moderately well determined. Thus changes of velocity ratio can be identified and mapped from standard observatory data. The method is applied to the principal New Zealand earthquakes since 1964: Gisborne, 1966, M L= 6. 2; Seddon, 1966, M L= 6.0; Inangahua, 1968, M L= 7.1. The results suggest that monitoring could be achieved with a station spacing of 100 km. It appears that velocity change is essentially a rapid process and that the return to normality may not begin until the earthquake is imminent.  相似文献   

18.
A cause of bias in estimates of distance and station terms used to compute seismic magnitudes ( m b) is demonstrated in a comparative study on the world amplitude–distance curve. This bias results from the presence of station thresholds in the measurement and reporting of seismic amplitudes and is analogous to that known to be present in routinely computed magnitudes. Distance terms corresponding to low amplitudes such as in the core shadow will tend to be positively biased as are station terms for stations with high thresholds.  相似文献   

19.
The proposal that the moment release rate increases in a systematic way in a large region around a forthcoming large earthquake is tested using three recent, large New Zealand events. The three events, 1993–1995, magnitudes 6.7–7.0, occurred in varied tectonic settings. For all three events, a circular precursory region can be found such that the moment release rate of the included seismicity is modelled significantly better by the proposed accelerating model than by a linear moment release model, although in one case the result is dubious. The 'best' such regions have radii from 122 to 167 km, roughly in accord with previous observations world-wide, but are offset by 50–60 km from the associated main shock epicentre. A grid-search procedure is used to test whether these three earthquakes could have been forecast using the accelerating moment release model. For two of the earthquakes the result is positive in terms of location, but the main shock times are only loosely constrained.  相似文献   

20.
Summary. In this paper computer modelling is used to test simple approximations for simulating strong ground motions for moderate and large earthquakes in the Mexicali–Imperial Valley region. Initially, we represent an earthquake rupture process as a series of many independent small earthquakes distributed in a somewhat random manner in both space and time along the rupture surface. By summing real seismograms for small earthquakes (used as empirical Green's functions), strong ground motions at specific sites near a fault are calculated. Alternatively, theoretical Green's functions that include frequencies up to 20 Hz are used in essentially similar simulations. The model uses random numbers to emulate some of the non-deterministic irregularities associated with real earthquakes, due either to complexities in the rupture process itself and/or strong variations in the material properties of the medium. Simulations of the 1980 June 9 Victoria, Baja California earthquake ( M L= 6.1) approximately agree with the duration of shaking, the maximum ground acceleration, and the frequency content of strong ground motion records obtained at distances of up to 35 km for this moderate earthquake. In the initial stages of modelling we do not introduce any scaling of spectral shape with magnitude, in order to see at what stage the data require it. Surprisingly, such scaling is not critical in going from M = 4–5 events to the M = 6.1 Victoria earthquake. However, it is clearly required by the El Centro accelerogram for the Imperial Valley 1940 earthquake, which had a much higher moment ( Ms ∼ 7). We derive the spectral modification function for this event. The resulting model for this magnitude ∼ 7 earthquake is then used to predict the ground motions at short distances from the fault. Predicted peak horizontal accelerations for the M ∼ 7 event are about 25–50 per cent higher than those observed for the M = 6.1 Victoria event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号